汽车保险精算定价模型研究共14页文档

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车保险论文关于汽车保险论文:

汽车保险精算定价模型研究综述

摘要:汽车保险定价模型在非寿险精算领域内占有重要地位,本文对车险定价模型一百多年来的研究进展作了综述性的回顾。首先,本文介绍了车险定价模型的先验估费方法;其次着重介绍了时齐的后验估费方法,以及时变的先验后验相结合的精算模型;最后提出了车险定价模型的未来发展方向。

关键词:汽车保险;先验估费;后验估费;索赔频率;索赔额

一、前言

汽车保险是承保汽车因自然灾害或意外事故导致的损失或民事赔偿责任的综合性财产保险,属于运输工具保险。汽车保险是伴随着19世纪后期汽车在欧洲的普及而出现的。当时,汽车交通事故导致的意外伤害和财产损失不断增加,引起了精明的保险商对汽车保险的关注。第一张汽车保险单是由英国的“法律意外保险有限公司”于1895年签发的保费为10至100英镑的汽车第三者责任保险,随后汽车保险又扩展到了汽车火灾险和汽车碰撞损失险[1]。第二次世界大战结束后,发达国家汽车制造工业迅速扩张,汽车保险业也得到飞速发展,成为各国财产保险中最重要的业务险种。在发达国家,汽车保险的保费收入一般要占财产险总保费的50%左右。在我国实施交通事故强制保险制度后,汽车保险也约占到总财产险保费的70%。

汽车保险的精算定价是与汽车保险同时诞生的,至今已经有一百多年的历史了。由于汽车保险已成为财产保险中名副其实的“龙头险种”,其经营效益的优劣直接影响到各财险公司财务盈亏,因此,各

家保险公司对车险精算定价极其重视,车险精算也成为非寿险精算领域的重要研究内容。汽车保险的精算定价是保险公司承保风险之前最主要和最重要的风险管理工具。精算师和学者进行了广泛研究,定价模型也历经先验估费模型、后验估费模型、先验与后验相结合模型,得到不断的改进和应用。本文将概括性介绍汽车保险精算研究中的经典模型、研究进展和重要热点,为今后的研究提供一些启示和借鉴作用。

二、先验估费阶段

在20世纪50年代之前,汽车保险的定价方法是按照寿险均衡保费定价原则进行定价的。投保人的风险纯保费P为

P=E(L)(1)

L表示被保险人的损失风险。为了体现定价的公平性,和寿险精算(生命表)中选择年龄、性别等作为风险分类的先验风险变量一样,非寿险精算师们依据投保人先前影响风险的先验变量(风险因素)确定其风险保费水平(费率等级)。在这种先验估费方法中,汽车的类型、用途和被保险人居住区域是最主要的先验定价变量。例如,欧洲大多数国家把汽车的排气量作为汽车保险的主要车型风险分类变量;荷兰的保险公司还把投保人的行驶里程作为先验风险分类变量[1]。

先验估费的基本原理就是把具有相同先验风险因素的投保人分入同一风险等级(收取相同保险费),在同一风险等级的保单组合内进行均衡保费定价。先验估费方法移植了寿险精算均衡保费定价方法,简便易行。但是由于相比人寿保险,汽车保险的保险标的具有更

大的风险异质性,因此,相同的先验风险变量下的车险保单很可能具有不同的实际风险水平。由于先验估费忽略了汽车驾驶员的驾驶能力这一最重要的先验风险因素(保险公司很难测定),从而造成了驾驶能力不同而其他先验风险相同的驾驶员被分入同一费率等级,定价缺乏公平性和合理性,逐渐受到了社会公众的质疑。

三、后验估费阶段

二战结束后,社会对汽车保险先验估费方法的不满加剧,一些欧洲国家希望将汽车保险费率系统改进为按照驾驶员实际索赔记录定价的无赔款优待费率系统(No Claim Discount),非寿险精算师们面临后验估费定价模型这一新精算方法的挑战。此时,法国总统戴高乐将军促成了汽车保险后验估费方法的研究。戴高乐将军在1958年当选为法国总统后,要求汽车保险公司使用无赔款优待系统,即根据被保险人的历史索赔记录来决定其未来保费等级。为此,法国的精算师们求助于ASTIN(国际精算协会非寿险精算分会),于是,ASTIN开展了以“汽车保险研究”为主题的的第一次国际研讨会,大大促进了后验估费模型的研究[2]。

后验估费,也叫做经验费率(Empirical Rating)方法,即根据被保险人以往的索赔次数和损失程度决定其未来的保费,是非寿险精算特有的方法[2]。用P表示被保险人未来的风险纯保费,P可以写作以下函数

P=P(k1,k2,...,kt;x1,x2,...,xk)k=ti=1Σki;k1,...,kt=0,1,2, (2)

式(2)中,t表示被保险人过去保险期;ki表示被保险人在过去的第i个保单年度内发生索赔的次数,k则是t个保单年度内发生索赔的总次数;xj表示被保险人在过去的第j次索赔中实际的索赔金额,j=1,2,...,k。研究表明,车险中索赔次数和索赔额的分布通常是相互独立的,风险纯保费等于索赔次数期望值与索赔金额期望值之积[2]。在实际车险业务中,由于观察保险期t的时间长度和索赔数量都是很有限的,因此,精算师通常使用索赔次数和索赔金额均值的最优估计来计算风险纯保费。于是,P可以表示为

P=λ(k1,k2,…,kt)·X(x1,x2,…,xk)(3)

式中λ(k1,k2,...,kt)为被保险人未来索赔频率(索赔次数均值)的最优估计,X(x1,x2,...,xk)为被保险人未来索赔额的最优估计。在式(3)的保费计算方法中,如果对全体保单采用统一的索赔金额均值(不采用后验估计),式(3)即变为车险索赔频率定价模型P=λ(k1,k2,…,kt)·X (4)

因此,汽车保险后验估费模型可以按照是否考虑历史索赔金额分为两大类:一是式(4)的索赔频率模型;二是式(3)中考虑索赔金额定价模型。

(一)索赔频率模型

传统车险定价索赔频率模型中,混合泊松分布模型处于主导地位。泊松-伽玛(负二项模型)、二元风险模型、泊松-逆高斯和泊松-霍夫曼模型是主要的索赔频率模型,被广泛应用。尤其是负二项模型,各国汽车保险业用以建立最优无赔款优待费率系统。

负二项模型(泊松-伽玛分布)。Bichsel(1960)和Thyrion(1960)是最早使用负二项分布作为非同质保单组合的索赔频率模型的,他们在车险实证研究中用负二项模型都取得了良好的拟合效果[3][4]。Ruohonen(1988)对三参数位移伽玛分布作为结构函数的混合泊松索赔频率模型进行了研究。三参数伽玛分布模型比负二项模型更好地拟合了车险经验数据。Ruohonen还给出了新模型下信度保费的计算公式[5]。

二元风险模型。Derron(1963)首先提出使用二点分布作为索赔次数的结构密度函数。在二点分布的二元风险模型中,保单组合被认为由两类司机组成:低风险驾驶员和高风险驾驶员[6]。

泊松-逆高斯模型。Willmot(1986)最早将泊松逆高斯模型应用于车险索赔频率模型。他分别将贝塔分布、均匀分布、逆高斯分布等作为结构密度函数,并给出了相应的索赔频率分布的递推计算公式[7]。Tremblay(1992)用泊松逆高斯模型良好地拟合了汽车保险索赔经验数据,在此基础上建立了最小化保险公司风险的奖惩系统(BMS)[8]。

泊松-霍夫曼模型。Walhin和Paris(2019)提出了一种三参数霍夫曼(Hofmann)混合泊松分布模型来替代负二项和泊松逆高斯模型,该模型包含了负二项分布、泊松逆高斯分布,而且非常好地拟合了车险经验索赔数据;他们还采用非参数估计方法构建了车险奖惩系统,而且该系统具有级别有限、简单的稳态分布和转移概率的优点[9]。

相关文档
最新文档