小升初数学总复习资料(3.5比和比例)
(精编)小升初数学复习四(--比与比例)
3.6:1.4
2
1 —
:0.8
7
1 1吨 1米10厘米:15分米 2
你明白了吗?
—7 日 :12时 8
化简比是根据比的基本性质,把比的前项和后项都乘上或 者除以相同的数(0除外),求比值是根据比例的意义, 用前项除以后项。化简比的结果是一个前项和后项互质数
的整数比,而求比值的结果是一个数,可以是整数,也可 以是分数或者小数。
A:1:3 B: 3:5 C:1:25 D:9:25
2)把100克白糖放如1000克水中,糖和水的比是(C )
a: 1:12 b: 1:11 c : 1:10 d: 1:9 3)比的前项扩大2倍,后项缩小2倍,比值( a )
a: 扩大4倍 b: 缩小4倍 c:不变 d: 扩大2倍
4)甲数的-53 等于乙数的-65 ,乙数与甲数的比是( A )
1、解下列比例
0.25:x=15:100
1—.5 0.2
=0x-.4
-52 :x=0.3:0.5
4、你是怎样判断两种量成正比例还是成反比 例的?
两种相关联的量,一种量变化,另一种量也随 着变化,若比值一定,则成正比例;若积一定, 则成反比例。
正比例和反比例的意义,也可以用字母表示:
_y x
=k
(一定)
2)判断两个比是否能组成比例,可以看它们的
(
)也可以用(
进行判断。
3)写出比值是2.5的比,并组成比例( 5:2=10:4
)
4)在比例中,如果两个内项的分别是4和5,那么组成
两个外项的两个数的积一定是( 20)
5比)值甲是数(是乙1.5数的1-21),。甲数和乙数的比是( 3:2), 6()48()8:)60成(= 22—05 )=(16 )÷20=0.8=(80 )℅=
小升初数学专项复习第五讲《 比和比例》名师教学课件
比的前项和比的后项同时乘或除以相同的数(0除外),比值不变。
应用:化简比
2.比例的基本性质:
在比例里,两个外项的积等于两个内项的积。
注:在分数比例中求比例的两外项的积、两内项的积,交叉相乘即可。
应用:解比例
一、知识梳理
(三)化简比,求比值
方法:前项÷后项,把结果写成最简分数。
15 3
A. 16
B. 18
C.24
D.27
③实际距离一定,比例尺扩大10倍,图上距离( B )。
A.缩小10倍
B. 扩大10倍
C. 不变
D.无法确定
④长方形的周长是40厘米,长与宽的比是5:3,面积是( C )平方厘米。
A. 375
B. 15
C. 93.75
D.45
三、基础训练
2.填空题
①小明要调制1.8升的果汁,纯果汁和水的体积比是7:2,需要纯果汁( 1.4)升,水
( 3x=84×1
)。
三、基础训练
3.在一个书架上装有两层的书,上层书的数量与下层书的数量比是5:6,从上层拿出30
本书到下层后,上、下两层书的数量之比是3:4,上、下两层书原来各有多少本?
书的总本书:
30÷(
4
6
- )=1155(本)
3+4 5+6
5
原来上层的本数是:1155× =525(本)
5+6
小升初专项复习数与代数
比和比例
目录
CONTENTS
01 知识梳理
02 典例精讲
03 基础训练
04 拓展提升
1
Part One
知 识 梳 理
一、知识梳理
小升初数学常考十大内容比和比例
小升初数学常考十大内容-比和比例小升初数学常考十大内容比和比例1 、比和比例的意义比的意义是:两个数相除又叫做两个数的比,比例的意义是:表示两个比相等的式子叫做比例。
比例是比的结果,比是比例的基础。
他们都是衡量数量关系的一种工具。
比和比例,是小学数学中的一个重要内容,也是学习更多数学知识的重要基础.有了“比”和“比例”这两个概念和表达方式,对于处理倍数、分数等问题,要方便灵活得多. 比和比例的相关知识在生活中用非常广泛,我们在以后还要进行更广泛更深入的学习。
因此,要为以后的学习打下坚实的基础。
2、比和比例的基本类型及解法(一)比和比例的分配最基本的比例问题是求比或比值,从已知一些比或者其他数量关系,求出新的比.例1、甲、乙、丙三人同去商场购物,甲花钱数的乙花钱数的,乙花钱数的等于丙花钱数的,结果丙比甲多花93元,问他们三人共花了多少钱?解、根据比例与乘法的关系甲数×=乙数×即:甲数:乙数=:=2:3乙数×=丙数×即:乙数:丙数=:=16:21连比后是甲∶乙∶丙=(2×16)∶(3×16)∶(3×21 )=32∶48∶63.三人共花了93÷(63-32)×(32+48+63)=429(元)答:甲、乙、丙三人共花了429元.下面我们转向求比的另一问题,即“比的分配”问题,当一个数量被分成若干个数量,如果知道这些数量之比,我们就能求出这些数量.例2一个分数,分子与分母之和是100.如果分子加23,分母加32,新的分数约分后是,原来的分数是多少?解:新的分数,分子与分母之和是(10+23+32),而分子与分母之比2∶3.因此分子=(100+23+32)×=62分母=(100+23+32)×=93原来分数是=答:原来分数是例3加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟,现有1825个零件要加工,为尽早完成任务,甲、乙、丙应各加工多少个?所需时间是多少?解:三人同时加工,并且同一时间完成任务,所用时间最少,要同时完成,应根据工作效率之比,按比例分配工作量.三人工作效率之比是::=28:24:21他们分别需要完成的工作量是甲完成1825×=700(个)乙完成1825×=600(个)丙完成1825×=525(个)所需时间是700×3=2100分钟)=35小时 .答:甲、乙、丙分别完成700个,600个,525个零件,需要35小时.(二)比的变化已知两个数量的比,当这两个数量发生增减变化后,当然比也发生变化.通过变化的描述,如何求出原来的两个数量呢?.例4、有一些球,其中红球占,当再放入8个红球后,红球占总球数的,问现在共有多少球?解:其他球的数量没有改变.增加8个红球后,红球与其他球数量之比是5∶(14-5)=5∶9.在没有球增加时,红球与其他球数量之比是1∶(3-1)=1∶2=4.5∶9.因此8个红球是5-4.5=0.5(份).现在总球数是8÷0.5×(5+9)=224(个)答:现在共有球224个.本题的特点是两个数量中,有一个数量没有变.把1∶2写成4.5∶9,就是充分利用这一特点.本题也可以列出如下方程求解:(x+8)∶2x=5∶9.例5 张家与李家的收入钱数之比是8∶5,开支的钱数之比是8∶3,结果张家结余240元,李家结余270元.问每家各收入多少元?解一:我们采用“假设”方法求解.如果他们开支的钱数之比也是8∶5,那么结余的钱数之比也应是8∶5.张家结余240元,李家应结余x元.有240∶x=8∶5,x=150(元).实际上李家结余270元,比150元多120元.这就是8∶5中5份与8∶3中3份的差,每份是120÷(5-3)=60.(元).因此可求出张家:开支60×8=480(元),收入480+240=720(元)李家:开支60×3=180(元),收入180+270=450(元)答:张家收入720元,李家收入450元.解二:设张家收入是8份,李家收入是5份.张家开支的3倍与李家开支的8倍的钱一样多.我们画出一个示意图:张家开支的3倍是(8份-240)×3.李家开支的8倍是(5份-270)×8.从图上可以看出5×8-8×3=16份,相当于270×8-240×3=1440(元).因此每份是1440÷16=90(元).张家收入是90×8=720(元),李家收入是90×5=450(元).本题也可以列出比例式:(8x-240)∶(5x-270)=8∶3.例6 小明和小强原有的图画纸之比是4∶3,小明又买来15张.小强用掉了8张,现有的图画纸之比是5∶2.问原来两人各有多少张图画纸?解一:充分利用已知数据的特殊性.4+3=7,5+2=7,15-8=7.原来总数分成7份,变化后总数仍分成7份,总数多了7张,因此,新的1份=原来1份+1原来4份,新的5份,5-4=1,因此新的1份有15-1×4=11(张).小明原有图画纸11×5-15=40(张),小强原有图画纸11×2+8=30(张).答:原来小明有40张,小强有30张图画纸.解二:我们也可采用“假设”方法.先要将两个比中的前项化成同一个数(实际上就是通分)4∶3=20∶155∶2=20∶8.假设小强也买来15×=(张),那么变化后的比仍是20:15 但现在是20∶8,因此这个比的每一份是()÷(15-8)=小明现有20×=55(张),原有55-15=40(张)小强现有8×=22(张),原有22+8=30(张)“假设”这一思路是很有用的,希望大家能很好掌握,灵活运用.从课外的角度,我们更应启发小同学善于思考,去找灵巧的解法,这就要充分利用数据的特殊性.因此我们总是先讲述灵巧的解法,利于心算,促进思维.(三)比例的其他问题比例关系可以用比表示,也可以用分数表示,例如,甲比乙的多7,这里必须用分数来说,而不能用比.实际上它还是隐含着比例关系:(甲-7)∶乙= 2∶3.因此,有些分数问题,就是比例问题. .例7、有两堆棋子, A堆有黑子 350个和白子500个, B堆有黑子400个和白子100个,为了使A堆中黑子占A堆的,B堆中黑子占,要从B堆中拿到 A堆黑子、白子各多少个?解:要B堆中黑子占,即黑子与白子之比是3:1,先从B堆中拿出黑子100个,使余下黑子与白子之比是(40-100)∶100=3∶1.再要从 B堆拿出黑子与白子到A堆,拿出的黑子与白子数目也要保持3∶1的比.现在 A堆已有黑子 350+ 100= 450个),与已有白子500个,相差50个黑子,占就是两种棋子一样多,从B堆再拿出黑子与白子,要相差50个,又要符合3∶1这个比,要拿出白子数是50÷(3-1)=25(个).再要拿出黑子数是 25×3= 75(个).答:从B堆拿出黑子 175个,白子25个.例8 张、王、李三人共有108元,张用了自己钱数的,王用了自己钱数的,李用了自己钱数的,各买了一支相同的钢笔,问张和李剩下的钱共有多少元?解:设钢笔的价格是1.张有的钱数是1÷=王有的钱数是1÷=李有的钱数是1÷=这样就可以求出,钢笔价格是108÷(++)=108÷=24(元)张剩下的钱数是24×(-1)=16(元)李剩下的钱数24×(-1)=12(元)16+12=28(元)答:张、李两人剩下的钱共28元.。
比和比例—小升初复习讲义(通用版 含详解)17页
2021-2022学年小升初数学精讲精练专题汇编讲义第5讲比和比例知识点一:比1.比的意义:两个数相除又叫作两个数的比。
2.比的各部分名称及比的读法:4 : 5=4÷5=0.8↓↓↓↓前项比号后项比值3.比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变4.求比值与化简比(1)求比值:前项除以后项所得的商是比的结果,叫比值。
同类量的比,其比值没有单位名称; 不同类量的比,其比值有单位名称。
例如:100千米:5时=20千米/时(2)化简比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
把两个数的比化成最简整数比的,称为化简比或比的化简。
5.比与分数、除法的关系关系:比与分数相比,比的前项相当于分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线;比与除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于商,比号相当于除号。
(1)比、分数和除法之间的联系与区别如下表所示:由比与分数、除法各部分间的关系可知,比的基本性质、分数的基本性质以及商不变的规律三者只是说法不同,其实质是一样的。
6.按比分配:(1)在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配方法通常叫作按比分配。
(2)按比分配应用题的特征:已知总数量和部分数量的比,求各部分数量。
(3)常用的解题方法有两种:一种是先求总份数,再求各部分量占总量的几分之几,最后求各部分数量;另一种是先求每份是多少,再求几份是多少。
知识点二:比例1.比例的意义:表示两个比相等的式子叫做比例。
2.比例的各部分名称:组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
3.比例的基本性质:在比例里,两个外项的积等于两个内项的积。
这叫做比例的基本性质。
4.比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
【小升初】数学总复习之【比和比例】专项复习课件ppt
1.与15∶16比值相等的是( D )。
A.
1∶1 65
C. 5∶ 6
B.
1∶ 6
5
D.6∶5
2.把 20 克盐溶于 100 克水中,盐和水的比是( B )。
A. 1∶ 6
B. 1∶ 5
C. 1∶ 4
D. 1∶ 3
3. 1和它的倒数的比是( D )。 5
A. 1∶ 1
B. 1∶ 5
C. 5∶ 1
D. 1∶ 25
温馨提示: 分数的分母和除法的除数不能为 0,所以比的后项也不能为 0。
考点三 求比值与化简比的区别
温馨提示: 化简比时,要注意前项和后项先统一单位,然后化简。
考点四 比的应用 1.按比例分配:把一个 数量按照一定的比进行分配 ,这种分 配方法叫做按比例分配。 温馨提示: 按比例分配是“平均分”问题的发展。例如,把 12 张画片分 给甲、乙两个小朋友,如果按 1∶1 分,习惯上叫平均分,如果按 2∶1 分,就是通常所说的按比例分配,显然平均分是按比例分配 的特例。
温馨提示: ①根据比的意义,写比时一般写成两个数的比,不带单位。例 如:六(1)班男、女生人数的比是 24∶26。 ②不同单位的两个同类量相比,要先化成同一单位。例如:一 块长方形钢板长 1.2 米,宽 80 厘米,钢板长与宽的比是 1.2∶0.8 或 120∶80。
3.比的各部分的名称
在一个比中,比号前面的数叫做比的前项,比号后面的数叫
【例 1】 填空。
(1)a 与 b 的商是5,a 与 b 的比是(
)。
8
(2)圆的 周长和直径的比是 (
)。
(3)4∶9 的前项乘 3,要使比值不变,后项应加( )。
☞思路点拨 本题主要考查比的意义和比的基本性质。 (1)a 与 b 的商是5,5可以看成是 5∶8,所以 a 与 b 的比是 5∶8。
小升初数学知识点专项训练5比和比例
小升初数学知识点专项训练5比和比例一、比的基本概念:比是数学中常用的比较大小的一种方式。
比是由两个数或两个量之间的关系建立起来的。
在比中,一个被比较的数或量称为被比数或者前项,另一个数或量称为比数或后项。
比数不能为零。
二、比的表示方法:1.用冒号:表示,如a:b,读作“a比b”。
2.用分数表示,如a/b,读作“a除以b”。
三、比的性质:1.同一比的前、后项成比例。
即若a:b=c:d,那么a/b=c/d。
2.等比关系具有传递性。
即若a:b=b:c,那么a:c。
3.比例中的比是相等的。
四、比的化简:化简比的过程就是寻找可以整除分子和分母的公因数,并将分子和分母同时除以这个公因数。
五、比例的基本概念:比例是指两个或多个比相等的关系。
四个数的比例可以表示为a:b=c:d,读作“a与b成比例,c与d成比例”。
六、比例的性质:1.若a:b=c:d,那么a:b=d:c。
2.若a:b=c:d,且b≠0,那么a/c=b/d。
3.若a:b=c:d,那么(a+c):b=(c+d):d4.若a:b=c:d,且c≠0,那么a/b=(a+c)/(b+d)。
七、比例的化简:化简比例的过程与化简比的过程类似,即寻找可以整除分子和分母的公因数,并将分子和分母同时除以这个公因数。
八、比例的应用:1.比例可以用来求未知量。
若已知a:b=c:d,且已知其中三个数,可以通过求解等式得到未知数。
2.比例可以用来做比较问题。
通过比的大小可以判断两种情况的大小关系。
3.比例可以用来做倍数问题。
如果两个数与一个数成比例,那么它们与这个数的倍数仍然成比例。
九、相似图形与比例:相似图形的对应角相等,对应边成比例。
若图形ABC和XYZ相似,那么AB/XY=AC/XZ=BC/YZ。
十、总结:小升初数学中的比和比例是数学中非常重要的概念,是后续学习中的基础。
比的概念、表示方法以及比的化简方法都是需要掌握的基本知识。
在应用方面,比和比例可以用于解决各类问题,包括未知量的求解、比较问题以及倍数问题。
小升初数学常考内容讲义:比和比例-学习文档
小升初数学常考内容讲义:比和比例编者小语:小编为同学们整理了小升初数学常考内容讲义:比和比例,适合六年级同学小升初复习之用,低年级也可以提前进行学习。
并祝各位同学在小升初考试中取得优异成绩!!!第九讲比和比例两个数相除又叫做两个数的比.一、比和比例的性质性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d; 性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d; 性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x 为常数)性质4:若a: b=c:d,则ad = b(即外项积等于内项积) 正比例:如果ab=k(k为常数),则称a、b成正比;反比例:如果ab=k(k为常数),则称a、b成反比.二、比和比例在行程问题中的体现在行程问题中,因为有速度= ,所以:当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.1.A和B两个数的比是8:5,每一数都减少34后,A是B的2倍,试求这两个数.【分析与解】方法一:设A为8x,则B为5x,于是有(8x-34):(5x-34)=2:1,x=17,所以A为136,B为85.方法二:因为减少的数相同,所以前后A 、B的差不变,开始时差占3份,后来差占1份且与B一样多,也就是说减少的34,占开始的3-1=2份,所以开始的1份为342=17,所以A为178=136,B为175=85.2.近年来火车大提速,1427次火车自北京西站开往安庆西站,行驶至全程的5/11再向前56千米处所用时间比提速前减少了60分钟,而到达安庆西站比提速前早了2小时.问北京西站、安庆西站两地相距多少千米?6.已知三种混合物由三种成分A、B、C组成,第一种仅含成分A和B,重量比为3:5;第二种只含成分B和C,重量比为I:2;第三种只含成分A和C,重量之比为2:3.以什么比例取这些混合物,才能使所得的混合物中A,B和C,这三种成分的重量比为3:5:2 ?【分析与解】注意到第一种混合物种A、B重量比与最终混合物的A、B重量比相同,均为3:5.所以,先将第二种、第三种混合物的A、B重量比调整到 3:5,再将第二种、第三种混合物中A、B与第一种混合物中A、B视为单一物质.第二种混合物不含A,第三种混合物不含B,所以1.5倍第三种混合物含A为3,5倍第二种混合物含B为5,即第二种、第三种混合物的重量比为5:1.5.于是此时含有C为52+1.53=14.5,在最终混合物中C的含量为3A/5B含量的2倍.有14.52-1=6.25,所以含有第一种混合物6.25.即第一、二、三这三种混合物的比例为6.25:5:1.5=25:20:6.7.现有男、女职工共1100人,其中全体男工和全体女工可用同样天数完成同样的工作;若将男工人数和女工人数对调一下,则全体男25天完成的工作,全体女工需36天才能完成,问:男、女工各多少人?【分析与解】直接设出男、女工人数,然后在通过方程求解,过程会比较繁琐.设开始男工为1,此时女工为k,有1名男工相当k名女工.男工、女工人数对调以后,则男工为k,相当于女工k2,女工为I.。
小升初数学比和比例知识点-word文档
2019年小升初数学比和比例知识点数学比和比例知识点比和比例1.比的意义和性质(1)比的意义数学比和比例知识点:两个数相除又叫做两个数的比。
:是比号,读作比。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3)求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
2、比例的意义和性质(1)比例的意义表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
3、正比例和反比例(1)成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
六年级下册数学讲义及试题-小升初总复习资料:比和比例苏教版(含答案)
比和比例⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧→→⎭⎬⎫→→⎪⎩⎪⎨⎧⎩⎨⎧⎭⎬⎫→⎪⎭⎪⎬⎫→⎩⎨⎧→→→应用意义正、反比例解比例性质意义比例比例尺按比例分配求未知数化简比性质求未知数求比值比与除法、分数的关系意义比比和比例一、本章概念: 比:比的意义:两个数相除,又叫做两个数的比。
比值:比的前项除以后项所得的商,叫作比值。
比值相等的两个比相等。
比、分数、除法的关系:)0(:≠÷==b b a bab a比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
按比例分配:在工农业生产和日常生活中,常常需要把一个数量按照一定的比例进行分配。
比例:比例的意义:表示两个比相等的式子叫作比例。
比例的基本性质:在比例里,两个外项的积等于两个内项的积。
解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。
求比例中的未知项,叫做解比例。
比例尺:图上距离和实际距离的比,叫做这幅图的比例尺。
比例尺分为数值比例尺和线段比例尺。
正比例的意义:两种相关联的量,一种量变化,另一种也随着变化,如果这两种量中叫作正比例关系。
如果用字母x 和y 分别表示两种相关联的量,用k 表示它们的比值,正比例关系的式子可表示为:(一定)k xy =。
反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量对应的两个量积一定,这两种量就叫作反比例的量,它们的关系叫作反比例关系。
如果用字母x 和y 分别表示两种相关联的量,用k 表示它们的积,反比例关系可以用式子表示为:(一定)k xy =。
二、先关概念的比较1.比和比例的意义、形式、组成和基本性质的区别意义 形式 各部分名称 组成 基本性质比两个数相除由两项组成(前项、后项)项后号比:项前↓↓↓7149任意两个数都可以组成比(同类量或不同类量) 比的前项和后项同时乘以或除以相同 的数(0除外),比值不变比例两个比相等的式子由四项组成(内项、外项各两个)任意四个数不一定能组成比例 在比例里,两个外项的积等于两个内项的积2.比、分数和除法的区别和联系相当部分区别比(bab a 或:) 前项 比号(:) 后项 比值 两个数的倍比关系分数(ba ) 分子 分数线(—) 分母 分数值 一个数值 除法(b a ÷)被除数除号(÷)除数商一种运算3.求比值和化简的区别意义一般方法结果求比值 前项除以后项所得的商根据比值的意义,用前项除以后项是一个商,可以是整数、小数或分数化简比把两个数的比化成最简单的整数比 根据比的基本性质,比的前项和后项同时乘以或除以相同的数(0除外);有时也可以用求比值的方法来化简比 是一个比,它的前项和后项都是整数,而且公因数只有1 注意:当同类量的两个数相比,前项和后项单位不同时,要先化成相同的单位,然后再求比值或者化简比。
小升初数学比和比例知识点
小升初数学比和比例知识点
以下是小升初数学中关于比和比例的知识点:
1. 比的概念:比是两个数或物体之间的大小关系的表示,用冒号(:)或分数形式表示,比的两个数或物体叫做比的两个项。
2. 比的运算:加法、减法、乘法、除法和幂运算都可以用在比的运算中,比的运算必
须保持两个项之间的比值不变。
3. 比的性质:如果两个比相等,那么它们的对应项相等;如果两个比的两个项都乘以
同一个非零数,那么它们的比值不变。
4. 比例的概念:若两个比相等,就叫做比例。
比例通常用等号(=)表示。
5. 比例的性质:如果一个比例中的三个比中有一个是未知数,我们可以通过已知项求
出未知项。
6. 等比例的概念:如果两个比中的两个项分别相等,那么这两个比叫做等比例。
7. 等比例的性质:如果一个比例中的两个比都是未知数,并且这两个比相等,那么这
个比例是等比例。
8. 比例的运算:比例的运算与比的运算相似,同样需要保持比例中各个项的比值不变。
以上是小升初数学中关于比和比例的主要知识点,理解并掌握这些知识将有助于解决
与比和比例相关的问题。
人教版六年级下册数学小升初数学总复习《比和比例》课件
2
250 x
5
3 + 500 x =150(ml)
10
150÷750×100% ≈33.3% (百分号前保留一位小数)
例:3克的蚂蚁能搬动45克的物体;3吨的大象能 拉动4.5吨的物体,蚂蚁和大象谁的力气大?(要求:
用学过的知识说明你的观点,回答要全面)
3:45 =1:15 或 45:3=15
3:4.5 =1:1.5
4.5:3=1.5
从物体的重量与动物本身的重量的比或比值看 是蚂蚁的力气大,但是如果从动物驮的物体的重量 来看是大象的力气大。
黄金比
我的上半身的高 度 是 65cm , 下 半身高度是 98cm。
当一个人上半身的 高度与下半身的比 是0.618:1时, 这个人身材看上去 就很美。
四、复习内容分析
比、除法和分数的关系
比
前
6 : 3=2 项
联系 比后 号项
区别
比 一种 值 关系
被
除法
除
6 ÷3=2 数
除 号
除 数
商
一种 运算
分数 6= 2 3
分 子
分 数 线
分 母
分 数 一个数
值
比值的意义: 同类数量的比值:表示倍数关系或几分之几。 不能加单位
不同类数量的比值: ——产生新的量。
能加单位
例:两辆汽车在公路上行驶,甲车行了75千米,耗油10升, 乙车行了60千米,耗油9升。
四、复习内容分析
3、按比例分配问题: 应用比的知识
计算按比例分配问题
引导学生思考按比例分配应用题 的解题依据、解题思路和方法。
四、复习内容分析
在农业生产和日常生活中,常常需要把一个数量按照一 定的比来进行分配。这种分配的方法通常叫做按比例分配。
2024年小升初分班考试数学专题复习:《比和比例》附答案解析
2024年小升初分班考试数学专题复习:《比和比例》
一.选择题(共6小题)
1.某人造地球卫星在太空中绕地球运行的周数和所用时间的关系如图所示,所用的时间和运行的周数()
A.成正比例B.成反比例C.不成比例D.不能判断2.住房面积一定,居住人口数和人均住房面积()
A.成正比例B.成反比例C.不成比例
3.下面不成正比例的是()
A.速度一定,李叔叔跑步的时间和路程
B.一个圆的半径与它的周长
C.一个圆的半径和它的面积
4.王小亮在弹簧秤上挂了3千克的物体,弹簧伸长约1.5厘米,在这个弹簧秤上挂2.5千克物体时,弹簧大约伸长()厘米。
A.1.25B.1.5C.1
5.一个三角形的三个内角的度数比是4:5:9,那么这个三角形是()
A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形6.一个三角形,三个内角度数的比是1:2:1,下列不符合对这个三角形的描述是() A.直角三角形B.等腰三角形
C.直角等腰三角形D.锐角三角形
二.填空题(共6小题)
7.在横线里填上“每时生产零件个数”“生产时间”或“生产零件总数”。
一定,和成反比例;
一定,和成正比例。
8.一个因数一定,另一个因数和积比例.(在横线里写上“正”“反”“不成”)
第1页(共13页)。
【原创】人教版小升初数学专题:比和比例 知识点精准讲解总复习优质课件PPT 苏教版
比和比例
意义 两个数相除又叫做这两个数的比
各部分名称 比由两项组成,比号前面的数叫做比
比
的前项,比号后面的数叫做比的后项
基本性质
比的前项和后项同时乘或除以相同的数 (0除外),比值不变。利用比的基本性质 可以化简比
意义 表示两个比相等的式子叫做比例。
各部分名称 由四项组成,两端的两项叫做比例的 外项,中间的两项叫做比例的内项
判断两种相关联的量成正比例关系或反比例关系的方法: (1)分析这两种相关联的量,看它们是相( 比 )的关系还
是相( 乘 )的关系; (2)再看它们是比值一定还是积一定,如果相比、比值一
定,那么就成( 正)比例关系;如果相乘、积一定,那 么就成( )反比例关系。
对应训练1
(1)三角形的面积一定,则三角形的底和高成( 反 )比例 关系。
例 用字母表示为x×y=k(一定)变化规律
变化规律
图像
正 比 例
两种量同时扩大、同时 缩小
表示正比例关系的图象是 一条由点(0,0)引出的
直(线 )
反 比 例
一种量扩大(或缩小), 另一种量反而缩小(或 扩大)
表示反比例关系的图象是 ( 曲线 )
正比例和反比例的区别: 都是两种( 相关联 )的量,都是一种量随着另一种 量的变化而变化;都可以用( 图象 )来表示不同点
比和比例的联系:比例是由两个( 比值)相等的比组成 的,这两个相等的比都可以写成( ) 形分式数。
对应训练1
填空:
(1)把25 kg∶ 1 t化成最简整数比是( 1∶20 ),它的比值是
2
0.(05 )。
(2)甲数的
3 是甲、乙两数和的
5
小升初总复习资料:数学比和比例知识点-最新学习文档
小升初总复习资料:数学比和比例知识点如何让小学生学会用数学的思维方式去观察和分析生活,如何帮助他们更好地学好数学这门学科呢?查字典数学网小学频道精心准备了数学比和比例知识点,希望对大家有所帮助!小升初总复习资料:数学比和比例知识点比和比例1.比的意义和性质(1) 比的意义两个数相除又叫做两个数的比。
:是比号,读作比。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3) 求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
2 比例的意义和性质(1) 比例的意义表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
小升初数学比和比例总复习 教学PPT课件
4 位置上,把乙和5放在两个内项的位置上,且把甲、乙放在
比例的同一侧,两个分数放在另一侧,进行化简即可求得:
4344 甲∶乙=5∶4=5×3=16∶15。
3 解法二:此题也可用假设法解。设甲是 16,则 16×4= 4 乙×5,求出乙是 15。可得:甲∶乙=16∶15。
3
4
43
解法三:由等式甲×4=乙×5,可推导出甲=乙×5÷4
(2)0.8∶1.6 【解】(2)0.8∶1.6 =(0.8×10)∶(1.6×10) =8∶16 =(8÷8)∶(16÷8) =1∶2
1 比值为2
(3)1.5 吨∶120 千克 【解】(3)1.5 吨∶120 千克 =1500 千克∶120 千克 =(1500÷60)∶(120÷60) =25∶2
量也随着变化
不
两种量相对应的两 两种量相对应的两
特征
同
个数的比值一定 个数的积一定
点 关系式
x y=k(一定)
xy=k(一定)
考点三 判断两种量成正比例、反比例或不成比例的方法
不是相关联的量→不成比例
相关联的量的比值(商)一定→成正比例
两种量是相关联的量相关联的量的积一定→成反比例
相关联的量的积和商都不一定→不成比例
的比
叫做比例
两项:前项和后项
四项:两个内项和两个外 项
比的前项和后项都乘(或除 在比例中,两个外项的积
以)相同的数(0 除外),比值 等于两个内项的积
不变
内项=外项之积÷另一
前项÷后项=比值
个内项 外项=内项之积÷另一
个外项
考点二 正比例和反比例的区别及联系
相同点
正比例
反比例
两种相关联的量,一种量变化,另一种
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学总复习资料(3.5比和比例)
编者小语:小升初的压力始终贯穿于六年级的学习生活,为了成功升学,准备好每一门科目的考验势在必行!数学网为同学们整理了小升初数学总复习资料(3.5比和比例),供同学们复习参考,并祝各位同学在小升初考试中取得优异成绩!!!
五比和比例
1.比的意义和性质
(1) 比的意义
两个数相除又叫做两个数的比。
:是比号,读作比。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
(2)比的性质
比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3) 求比值和化简比
求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
(4)比例尺
图上距离:实际距离=比例尺
要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
(5)按比例分配
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
2 比例的意义和性质
(1) 比例的意义
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质
在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
(3)解比例
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
3 正比例和反比例
(1) 成正比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)
(2)成反比例的量
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价
不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,
边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
用字母表示xy=k(一定)。