物理化学课件
物理化学课件
(2)对状态性质的影响:
仅当系统处于平衡状态时,各种状态性质才有唯一的值。
(3) 系统处于平衡状态应满足的条件:
① 热平衡。系统内部各处温度均相等。
② 力平衡。系统内部各处力均相等。
③ 相平衡。无论系统内部有几个相,要求各相组成均 匀,即各相内部不存在扩散现象。 ④ 化学平衡。系统内部没有化学变化发生,组成不随 时间变化。
4、过程与途径
(1)过程:
系统由一个状态向另一个状态转化的经过。 唯一性
(2)途径:
实现某一过程的具体转化步骤(方式)。 可变性
例1 (状态一)
1mol O2 25℃,5atm 1mol O2 100℃,1atm
(状态二) 1mol O2 100℃,5atm
1mol O2 25℃,1atm
例2
青岛
7、内能 (热力学能)
(1)能量:
① 定义:对系统运动所做的最一般的量度。 (物质所具有的能量是指物质中各种运动的总度量。)
② 特点:能量是物质运动状态的单值函数。
(状态一定,能量一定;状态改变,能量改变。) ③ 分类:整体系统的平动能;系统在外场中的位能;
系统内部的能量。
(2)内能:
① 定义:系统由其内部状态所决定的能量,即系统内所 有离子除整体势能及整体动能外的全部能量的总和。 (包括动能、位能等)
3、焦耳实验:
P20
图1.7
结论:理想气体单纯 PVT 变化,U= ƒ ( T )。
§1.3 定容热、定压热及焓
1、定容热 QV
(1)定义:系统进行定容且不做非体积功的过程中与环
《物理化学概论》PPT课件
0.3 物理化学的建立与发展
十八世纪开始萌芽:从燃素说到能量守恒与转化
定律。俄国科学家罗蒙诺
索夫最早使用“物理化学
”这
一术语。
上一内容 下一内容 回主目录
返回
2020/11/7
0.3 物理化学的建立与发展
十九世纪中叶形成:1887年俄国科学家W.Ostwald (1853~1932)和荷兰科学家 J.H.van’t Hoff (1852~1911) 合办了第一本“物理化学杂志” (德文)。
2020/11/7
化学学科的发展趋势
(5)从研究平衡态到研究非平衡态 经典热力 学只研究平衡态和封闭体系或孤立体系,然 而对处于非平衡态的开放体系的研究更具有 实际意义,自1960年以来,逐渐形成了非平 衡态热力学这个学科分支。
上一内容 下一内容 回主目录
返回
2020/11/7
0.5 物理化学课程的学习方法
譿諭才愩鹗刭織薒瑄泽瞓瑵裘乊
諺蕵綔廸伔瘻筆曰騏櫨汐韁懢檪
釥瀤捡鐌长銷糘炼颙诀鼧饃滭缗
貳饣蕡嵐倉櫸倭珢畅洏侂祾済穭
員•• 12颯诨嬚樀卝贺鯺薇妋禾鯿吴会 黓• 3膆崁禱女敆嫝力皴蚤覦嶇蹨齸 穚•• 45醒靿鋐裥滹啑賛蝾濅熑鏦桗屮 稬•• 67男古罱女古塣男怪男怪鎸女古古疳怪啐怪个鳩蠪傢榎邇艛吊鷊 鍵• 8v飩vvv樃vvv塎踘怔殂祤燒鞦芒鱭粩癆 婥•• 9鋇鱗甚齌嫚褕朸淂紽頛落鍭鑝
0.1 物理化学的目的和内容
物理化学 从研究化学现象和物理现象之间 的相互联系入手,从而探求化学变化中具有普 遍性的基本规律。在实验方法上主要采用物理 学中的方法。
上一内容 下一内容 回主目录
返回
2020/11/7
0.1 物理化学的目的和内容
《物理化学1气体》课件
04 气体反应动力学 与速率方程
气体反应速率的概念
反应速率
单位时间内反应物浓度减 少或产物浓度增加的量。
反应速率常数
反应速率与反应物浓度的 乘积,表示反应速率与浓 度的关系。
活化能
反应速率与温度的关系, 表示反应所需的最低能量 。
速率方程的建立与求解
质量作用定律
反应速率与反应物浓度的幂次方 成正比。
《物理化学1气体》ppt课 件
目 录
• 气体的基本性质 • 气体定律与热力学基础 • 气体混合物与分压定律 • 气体反应动力学与速率方程 • 气体化学反应平衡常数与计算
01 气体的基本性质
气体的定义与分类
总结词
气体的定义、分类及特性
详细描述
气体是物质的一种聚集状态,具有无固定形状和体积、流动性强等特性。根据气 体分子间相互作用力的不同,气体可分为理想气体和实际气体。理想气体忽略了 气体分子间的相互作用力,而实际气体则考虑了这种相互作用力。
理想气体定律
理想气体假设
理想气体状态方程,即PV=nRT,其 中P表示压强,V表示体积,n表示摩 尔数,R表示气体常数,T表示温度。
理想气体是一种假设的气体模型,其 分子之间没有相互作用力,分子本身 的体积可以忽略不计。
理想气体状态方程的应用
用于计算气体的压力、体积、温度等 物理量之间的关系,以及气体的热力 学性质。
热力学第一定律
热力学第一定律
01不
能消失,只能从一种形式转化为另一种形式。
内能和热量
02
内能是系统内部能量的总和,热量是系统与外界交换能量的量
度。
热力学第一定律的应用
03
用于计算系统的内能、热量、功等物理量之间的关系,以及系
物理化学幻灯片PPT课件
.
2
物理化学的形成
物质的化学运动形式和物理运动形式是相互联系的。早期的物理学家和化学家并没有 十分明确的分工。化学家波义耳在物理学上曾做出十分重要的贡献;而物理学家牛顿 在化学上虽然没有取得什么成就,但却全盘接受了波义耳的化学思想,他用在炼金术 和化学上的时间比用在物理学上的时间还多。既是物理学家又是化学家的罗蒙诺索夫 就曾使用过“物理化学”这一术语,还提出了这门学科的性质和研究范围。
1887年,阿累尼乌斯提出电解质稀溶液的电离理论
.
24
关于电化学
一个伽凡尼电池, 两个电极用盐桥连 接以传递离子。外 电路中产生电流。
.
25
科学家的故事
1800年,伏打用锌片与铜片夹以盐水浸湿的纸 片叠成电堆产生了电流,这个装置后来称为伏打电堆 ,他还把锌片和铜片放在盛有盐水或稀酸的杯中,放 多这样的小杯子中联起来,组成电池。他指出这种电 池“具有取之不尽,用之不完的电”,“不预先充电 也能给出电击”。
物理化学
PHYSICAL CHEMISTRY
胡泽伟 杨 靓
.1Leabharlann 物理化学是什么?物理化学是一门从物理学角度分析物质体系化学行为的原 理、规律和方法的学科,是近代化学的原理根基。
物理化学家关注于分子如何形成结构、动态变化、分子光 谱原理、平衡态等根本问题,涉及的物理学有静力学、动 力学、量子力学、统计力学等。
初步发现
1748年法国人诺勒发现渗透现象 1827年法国人杜特罗夏定量测定了渗透压
1877年德国浦菲弗发现 PV = KT(K 为常数)
进一步发展
1886年范霍夫建立起稀溶液理论
揭示出拉乌尔公式中常数的热力学意义
物理化学课件
热力学第一定律在物理学和化学 领域中具有重要地位,它为解释 许多自然现象提供了基础。
热力学第二定律
内容
热力学第二定律指出,热量总是从高 温物体传导到低温物体,而不能反过 来。也就是说,热量传递的方向总是 从高到低,不能反过来。
意义
热力学第二定律表明了自然界的某种 方向性,它限制了某些自然过程的进 行方式。
VS
详细描述
光化学第一定律指出,在一定温度和压力 下,光化学反应的速率与辐射能量成正比 。这个定律对于研究光化学过程和设计光 化学设备具有重要意义。
光化学第二定律
总结词
光化学第二定律是描述光化学过程中辐射能 量与化学反应途径关系的物理化学定律。
详细描述
光化学第二定律指出,在一定温度和压力下 ,一个光化学反应的速率与反应途径中各个 步骤的辐射能量差成正比。这个定律对于研 究光化学反应机理和设计光化学合成路线具 有重要意义。
化学平衡
内容
化学平衡是指化学反应中反应物和生成物之间的平衡状态。在一定条件下,反 应物和生成物之间的浓度不再发生变化,达到动态平衡。
意义
化学平衡是化学反应中一个重要的概念,它帮助我们了解反应进行的程度和方 向。
化学反应速率
内容
化学反应速率是指单位时间内反应物消耗或生成物产生的速率。通常用单位浓度 的变化量表示。
复杂系统与跨尺度研究
总结词
跨学科、多尺度研究
详细描述
物理化学在复杂系统和跨尺度研究方面具有独特的优势 。复杂系统研究涉及多个相互作用因素,需要综合运用 物理、化学和生物等学科的知识来理解和预测系统的行 为。跨尺度研究则要求科学家从原子、分子到纳米、宏 观等不同尺度上理解和控制化学过程,物理化学为解决 这些问题提供了有效的方法和工具。
物理化学ppt课件
求 真 厚 德
I RF T I R ESR
NMR
达 ESCA 美
利用计算机还可以进行模拟放大和分子设计。
§0.2 物理化学的建立与发展
(5) 从单一学科到边缘学科
探 化学学科 广 内部及与其他
学科相互渗透、 索 相互结合,形 微 药学 成了许多极具 生命力的边缘 创 学科,如: 新
计算
计算 化学 药物 化学 天体 化学 材料 化学
探 广 索 微 创 新
热力学研究方法是从静态利用热力学函数判断
求 真 厚 德 达 美
变化的方向和限度,但无法给出变化的细节。 激光技术和分子束技术的出现,可以真正地研
究化学反应的动态问题。
分子反应动力学已成为非常活跃的学科。
§0.2 物理化学的建立与发展
(4) 从定性到定量
探 广 索 微 创 新
随着计算机技术的飞速发展,大大缩短了数 据处理的时间,并可进行自动记录和人工拟合。 使许多以前只能做定性研究的课题现在可进 行定量监测,做原位反应,如:
求 真 厚 德 达 美
恩格斯
• 恩格斯的论断反映了19世纪中叶
探 广 微 创 新
自然科学各学科的“成熟程度”。 求 真 表明各学科研究对象 物质运动 索 形式与规律 其复杂程度的差异厚
• 然而,百年来科技的发展使各学
化
德
达 科的“成熟程度”发生了巨大变 美
无机、有机化学在19世纪率先建立
冶金、建材工业推动了无机
检验
探 广 索 微 创 新
运用数学的多 求 真 少是一门科学成熟
程度的标志。
厚 德 达 美
马克思
探 广 索 微 创 新
数学的 应用: 在刚体 力学中是绝对的,在气体 力学中是近似的,在液体 力学中就已经比较困难了; 在物理学中是试验性的和 相对的;在化学中是最简 单的一次方程;在生物学 中等于零。
大学物理化学经典傅献彩ppt课件
(1)
(2)
( 1 )Z n ( s ) │ Z n S O 4 ( a q ) │ C u S O 4 ( a q ) │ C u ( s )
( 2 )Z n ( s ) │ Z n S O 4 ( a q ) ‖ C u S O 4 ( a q ) │ C u ( s )
完整最新ppt
25
P t│ H 2 ( p ) │ H C l ( a ) │ A g C l ( s ) │ A g ( s )
( 2 )H 2 ( p 1 ) C l 2 ( p 2 ) 2 H + ( a H ) 2 C l ( a C l )
E1E1 RFTlnaa1 H2 2aaC 1l22
E2 E2
RTln a2a2 2F aH2 aCl2
E 1E 2
E 1E 2
r G m ( 1 ) E 1 F r G m ( 2 ) 2 E 2 F
Sn4(a1),Sn2(a2)|Pt S n4 (a 1)2 e S n2 (a 2)
Cu2(a1), Cu(a2)|Pt
C u2(a 1)e C u(a2)
完整最新ppt
13
§9.2 电动势的测定
对消法测电动势 标准电池
完整最新ppt
14
对消法测定电动势的原理图
Ew
A
H
E
s .c
K D
R
E(RoRi)I
CB
U RO I
G
U RO
E RO Ri
Ex
Ex
Es.c
AC AH
RO
E U
完整最新ppt
15
对消法测电动势的实验装置
标准电池 待测电池
工作电源
物理 化学 第一章 课件
(3) 量的数值
特定单位表示的数值,量与单位的比值。{A}= A/[A]。在图、表中常用到。 如 T/K =300。图中横坐标表示为x/[x], 如 T/K; 纵坐标 y/[y], 如 p/kPa。
20
图1.1.2 300 K下N2, He, CH4的 pVm-p 等温线
21
0.2.2 对数中的物理量 lnA 或 logA
0 绪 论
0.1 课程简介
0.1.1 什么是物理化学
化学:无机化学 有机化学 物理化学 分析化学 (高分子化学)
物理化学是化学的理论基础,是用物理的原理和方法来 研究化学中最基本的规律和理论,所研究的是普遍适用于各 个化学分支的理论问题——理论化学(化学中的哲学)。 研究化学变化中的普遍规律,不管是有机还是无机,化 学变化及相关的物理变化都是物理化学研究的对象。
作业/考题中若有 1 mol, 25℃,常数如π,e,二分之一等..., 约 定有效数字位数为无限多位。
24
第1章 气体的pVT关系
• 物质的聚集状态 气体、液体、固体。
宏观性质:p, V, T,ρ, U…
p, V, T 物理意义明确,易于测量
状态方程 联系 p, V, T 之间关系的方程。
液体和固体,其体积随压力和温度的变化很小,常 忽略不计;气体在改变压力和温度时,其体积会发生较 大变化,通常只讨论气体的状态方程。
物理化学
溶 液 化 学
9
0.1.3 本课程 物理化学B 的主要内容
绪论 气体的 pVT 关系 热力学第一定律 热力学第二定律 多组分系统热力学 化学平衡 相平衡 电化学 界面现象 化学动力学
胶体化学
10
0.1.4 关于本课程
2024版傅献彩物理化学电子教案课件
01绪论Chapter物理化学概述物理化学的定义01物理化学的研究范围02物理化学在化学科学中的地位03物理化学的研究对象与任务研究对象研究任务实验方法通过实验手段观测和记录物质的物理现象和化学变化,获取实验数据。
理论方法运用数学、物理学等理论工具对实验数据进行处理和分析,揭示物质的基本规律。
计算方法利用计算机模拟和计算等方法,对物质的性质、结构和变化规律进行预测和研究。
物理化学的研究方法030201物理化学的学习方法与要求学习方法学习要求02热力学基础Chapter热力学基本概念与术语热力学系统状态与状态函数过程与途径热力学平衡态热力学第一定律能量守恒定律能量不能创造也不能消灭,只能从一种形式转化为另一种形式。
热力学能系统内能的变化等于传入系统的热量与外界对系统做功之和。
焓定义为系统的热力学能与体积的乘积,用于描述等压过程中的能量变化。
热力学第二定律热力学第二定律表述热力学温标熵增原理热力学函数与基本方程热力学函数热力学基本方程麦克斯韦关系式热力学在化学中的应用化学反应的热效应化学平衡相平衡03化学动力学基础Chapter化学反应速率的概念与表示方法化学反应速率表示方法摩尔浓度变化率、质量浓度变化率、气体分压变化率等化学反应速率理论简介碰撞理论过渡态理论01020304浓度越高,反应速率越快。
反应物浓度温度越高,反应速率越快。
温度催化剂可以降低反应的活化能,从而加快反应速率。
催化剂对于有气体参与的反应,压力的变化会影响反应速率。
压力影响化学反应速率的因素复杂反应动力学简介平行反应竞争反应连续反应根据反应条件(如温度、压力、浓度等)预测反应的速率。
预测反应速率通过调整反应条件(如温度、压力、催化剂等)来优化反应速率和选择性。
优化反应条件通过分析反应速率与各种因素的关系,可以推断出反应的机理和过渡态的性质。
研究反应机理化学反应速率理论的应用04电化学基础Chapter电化学基本概念与术语电化学电极电解质电离电导率将化学能转变为电能的装置。
物理化学全套课件
强调实验过程中可能存在的安全隐患,并 提供相应的防范措施,确保实验安全。
实验数据处理与分析
数据记录与整理
及时、准确地记录实验数据, 并按照要求整理成表格或图表
,以便后续分析。
数据处理方法
选择合适的数据处理方法,如 平均值、中位数、众数等,对 数据进行处理,以便更好地反 映实验结果。
数据分析与解释
对处理后的数据进行深入分析 ,挖掘数据背后的规律和意义 ,并对实验结果进行解释和讨 论。
重要性
物理化学对于理解化学反应的本 质、推动化学工业的发展、促进 新材料的研发等方面具有重要意 义。
物理化学的发展历程
早期发展
物理化学作为一门学科,起源于19 世纪中叶,随着热力学、统计力学和 电化学等分支的建立和发展,逐渐形 成完整的学科体系。
现代进展
进入20世纪后,物理化学在理论和实 践方面都取得了重大进展,如量子化 学、分子动态学、生物物理化学等领 域的突破和创新。
实验方法习题及答案解析
总结词
提高实验设计和操作能力
详细描述
针对物理化学实验中的基本方法和操作,设计了一系列 习题。这些习题要求学生设计实验、选择合适的仪器和 试剂、记录和处理数据等。答案解析详细解释了每道题 目的解题思路和答案,帮助学生提高实验设计和操作能 力,培养科学素养。
THANKS
感谢观看
数据误差分析
分析数据误差的来源和影响, 提高实验结果的准确性和可靠
性。
实验误差与实验结果评价
误差来源分析
分析实验过程中可能产生的误差 来源,如测量误差、操作误差等 ,并评估其对实验结果的影响。
误差控制与减小
采取有效措施控制和减小误差,提 高实验结果的准确性和可靠性。
《物理化学》PPT课件
2
完整版课件ppt
3
OA 是气-液两相平衡线 即水的蒸气压曲线。它 不能任意延长,终止于临界点。临界点 T=647K, p=2.2×107Pa,这时气-液界面消失。高于临界温度, 不能用加压的方法使气体液化。
OB 是气-固两相平衡线 即冰的升华曲线,理论上可 延长至0 K附近。
OC 是液-固两相平衡线 当C点延长至压力大于
属于此类的体系有:H 2O-HN 3,H 2 O O-H等C。l在标 准压力下,H2O-HC的l 最高恒沸点温度为381.65 K, 含HCl 20.24,分析上完整常版课用件pp来t 作为标准溶液。 20
杠杆规则 Lever Rule
在p-x图的两相区,物系点O代表了体系总的 组成和温度。
通过O点作平行于横坐标 的等压线,与液相和气相线分 别交于M点和N点。MN线称 为等压连结线(tie line)。
如图所示,是对拉乌尔 定律发生正偏差的情况,虚 线为理论值,实线为实验值。 真实的蒸气压大于理论计算 值。
完整版课件ppt
15
如图所示,是 对拉乌尔定律发生 负偏差的情况,虚 线为理论值,实线 为实验值。真实的 蒸气压小于理论计 算值。
完整版课件ppt
16
2. p-x图 和 T-x图 对于二组分体系,K=2,f =4-Φ。φ至少为1,
完整版课件ppt
25
精馏
精馏是多次简单蒸馏的组合。
精馏塔底部是加热 区,温度最高;塔顶温 度最低。
精馏结果,塔顶 冷凝收集的是纯低沸 点组分,纯高沸点组 分则留在塔底。
精馏塔有多种类型,如图所示是泡罩式精馏
塔的示意图。
完整版课件ppt
26完整版课件ppt来自27体系自身确定。
H2O的三相点温度为 273.16 K,压力为
物理化学ppt课件
热力学第二定律与熵增原理
总结词
热力学第二定律是指在一个封闭系统中,熵(即系统的混乱度)永远不会减少,只能增加或保持不变 。
详细描述
热力学第二定律是热力学的另一个基本定律,它表明在一个封闭系统中,熵(即系统的混乱度)永远 不会减少,只能增加或保持不变。这意味着能量转换总是伴随着熵的增加,这也是为什么我们的宇宙 正在朝着更加混乱和无序的方向发展。
03
化学平衡与相平衡
化学平衡条件与平衡常数
化学反应的平衡条件
当化学反应达到平衡状态时,正逆反 应速率相等,各组分浓度保持不变。
平衡常数
平衡常数表示在一定条件下,可逆反 应达到平衡状态时,生成物浓度系数 次幂的乘积与反应物浓度系数次幂的 乘积的比值。
相平衡条件与相图分析
相平衡条件
相平衡是指在一定温度和压力下 ,物质以不同相态(固态、液态 、气态)存在的平衡状态。
色谱分析技术
色谱法的原理
色谱法是一种基于不同物 质在固定相和移动相之间 的分配平衡,实现分离和 分析的方法。
色谱法的分类
根据固定相的不同,色谱 法可分为液相色谱、气相 色谱、凝胶色谱等。
色谱法的应用
色谱法在物理化学实验中 广泛应用于分析混合物中 的各组分含量、分离纯物 质等。
质谱分析技术
质谱法的原理
05
物理化学在环境中的应用
大气污染与治理
1 2 3
大气污染概述
大气污染是指人类活动向大气中排放大量污染物 ,导致空气质量恶化,对人类健康和生态环境造 成危害的现象。
主要污染物
大气中的主要污染物包括颗粒物、二氧化硫、氮 氧化物等,这些污染物会对人体健康和环境产生 严重影响。
治理措施
针对大气污染,采取了多种治理措施,包括工业 污染源控制、机动车污染控制、城市绿化等。
物理化学简明教程课件
环境领域
电化学在环境领域的应用包括污 水处理、废气处理、土壤修复等
。
THANKS
感谢观看
相平衡条件与相图分析
相平衡条件
在一定的温度和压力下,不同相之间的化学成分和物理状态 达到平衡。
相图分析
通过分析多相体系的组成、温度、压力等因素的变化,判断 体系的相平衡状态。
化学平衡与相平衡的移动
化学平衡的移动
在一定条件下,化学反应的平衡状态受到外界条件的影响而发生变化。
相平衡的移动
在一定条件下,不同相之间的平衡状态受到外界条件的影响而发生变化。
性剂可以增加皮肤的吸收性,提高化妆品的效果。
06
CATALOGUE
电化学基础与应用
电极电位与电池电动势
电极电位
电极电位是表示电极反应达平衡时, 电极的电极电位值。
电池电动势
电池电动势是指单位正电荷在电源内 部从负极移到正极时非静电力所做的 功。
原电池与电解池的工作原理及计算方法
原电池工作原理
原电池是一种将化学能转变为电 能的装置,通过氧化还原反应将
物理化学简明教 程课件
汇报人: 202X-12-21
contents
目录
• 物理化学概述 • 热力学基础 • 化学反应动力学 • 化学平衡与相平衡 • 表面化学与胶体化学 • 电化学基础与应用
01
CATALOGUE
物理化学概述
定义与性质
定义
物理化学是研究物质在化学反应 中物理变化和化学变化的相互关 系的科学。
物理化学在各领域的应用
01
02
03
04
医药领域
物理化学在药物研发、药物分 析和药物作用机制研究中发挥
着重要作用。
物理化学完整ppt课件
数称为(独立)组分数。 S:物种数
CSRR'
R:独立的化学平衡数 R′独立限制条件数
说明:★独立限制条件数只有在同一相中才能起作用
CaCO3(s)=CaO(s)+CO2(g) R′= 0 ★独立的化学平衡数:指物质间构成的化学平衡是相互独立的
C+H2O=CO+H2 C+CO2=2CO CO+H2O=CO2+H2 R=2 S=5 C=5-2=3
(1)因外压增加,使凝固点下降 0.00748K (2)因水中溶有空气,使凝固点下降 0.00241K
可编辑课件
16
例:如图为CO2的相图,试问: (1)将CO2在25℃液化,最小需加多大压力? (2)打开CO2灭火机阀门时,为什么会出现少量白色固体(俗称于冰)?
解:(1)根据相图,当温度为25℃ 液一气平衡时,压力应为67大气压, 在25℃时最小需要67大气压才能使 CO2液化。
2、水的相图
可编辑课件
13
◎组分数
S:物种数
CSRR'
R:独立的化学平衡数 R′独立限制条件数
总结1
说明:★独立限制条件数只有在同一相中才能起作用 ★独立的化学平衡数:指物质间构成的化学平衡是相互独立的
◎相律
◎单组分系统相图 F=C-P十2=3-P
单组分系统最多三相共存 单组分系统是双变量系统
可编辑课件
可编辑课件
7
杠杆规则还可以表示为:
(1)
m() 1 wB() wB 1
m( )
wB wB ()
m() m() wB() wB wB wB()
m( )
wB wB ()
m() wB wB() m wB() wB()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学主要特点:①热力学是一宏观理论,只研究宏观系统中物质的宏观性质及其相互间关系,结论具有统计意义。
不涉及物质的任何微观结构和运动;②热力学只研究处于平衡态的物质的宏观性质,不涉及变化过程的速度和细节。
即没有时间概念,只算物质状态变化前后的总账,不考虑细节;③热力学不能直接用数学从理论上证明。
总之,在经典热力学中,没有物质结构和时间的概念,不需要知道物质微粒的结构就能对化学变化、相变化的方向、限度及能量转换关系作出可靠的结论。
就研究方法而言这是最简便的。
但同时也暴露了热力学的局限性。
热力学内容:1、热力学第一定律——变化过程中的能量转换的定量关系。
2、热力学第二定律——变化过程的方向和限度。
3、热力学第三定律——规定熵,解决化学平衡的计算问题。
热力学第一定律一、热力学基本概念和术语1、系统与环境:虽然系统和环境可以人为划分,但一旦划定后,在研究过程中不能随意扩大或缩小系统和环境。
2、状态与状态性质。
状态函数的基本性质:①状态一定,其值一定(单值性);②殊途同归变化等③周而复始变化零3、广延性质与强度性质。
前者:系统分割成若干部分时,具有加和关系的性质,如V、U、C p等。
后者:系统分割成若干部分时,不具备加和关系的性质。
如P、T、ρ等。
Note:1. 两广延性质之比得一强度性质。
如ρ、C p,m、V m。
2. 强度性质不具有加和性,分压定律是否与其矛盾否?P=∑P B4、热力学平衡态。
若把处于某一状态下的系统与其环境之间的一切联系均隔绝,它的状态仍不随时间而变化,则该状态是系统在此条件下的平衡态。
有力平衡,热平衡,相平衡,化学平衡。
5、过程与途径。
过程——系统状态的任何变化都构成一个热力学过程。
即系统由一平衡态变到另一平衡态的经过。
常见的变化过程:单纯pvt变化、相变化、化学变化。
(1)等温过程:T(始) = T(末) = T(环)(2)等压过程:P(始) = P(末) = P(环)(3)等容过程:V(始) = V(末)(4)恒外压过程:P(环)=常数(5)绝热过程:Q=0(对那些变化极快的过程,如爆炸、快速燃烧、体系与环境来不及发生热交换,那个瞬间可近似作为绝热过程处理。
)(6)循环过程:所有状态函数的改变值都等于零。
途径——即系统从始态→末态所经历的一系列状态的轨迹。
只要始、末态一定,途径的变换不影响系统状态函数的变化值。
6、热与功(过程函数或途径函数)。
热——是由于系统与环境之间存在温差而产生的能量传递,以Q表示。
单位:J,kJ。
系统吸热:Q>0;系统放热:Q<0功——系统与环境之间无物质交换时,与环境交换的除热量之外的其他形式的能量传递。
以W表示。
单位:J,kJ。
系统得功:W>0;系统向环境作功:W<0功和热的共同点:热和功总是与系统所进行的具体过程联系着,过程不同,热和功的数值就不同,没有过程就没有功和热的概念。
不同点:前者是无序运动,后者是有序运动。
体积功:đW = –F·dl= –P(环)A·dl = –P(环)dV 体积功定义式:đW=–P(环)dV系统膨胀时: dV>0:đW<0 系统被压缩: dV<0:đW>0。
热力学中功是系统与环境间实际交换能量的一种形式,所以计算时要用P (环),而非P (系)。
同时P (环)不是系统本身的性质,而与途径密切相关,这就是功为途径函数的根本原因。
7、可逆体积功:书上那个例题:途经Ⅲ(称为可逆过程)需要无限多次膨胀,该过程的体积功为:可逆过程特征:(1) 可逆过程由一系列无限接近于平衡态的中间态组成,促使系统发生状态变化的推动力(这里为d P )无限小,整个过程进行的速度无限慢,因而经历的时间无限长; (2) 在恒温可逆过程中,当始、终态确定时,系统对环境作最大功,环境对系统作最小功,两个功数值相等,符号相反。
因此从能量的有效利用来看,可逆过程最经济、效率最高。
(分析:最大功和最小功);**仅讨论可逆相变过程及理想气体的两个特殊可逆过程中体积功的计算: ①对于含有气相的相变过程,且把气相中气体视为理想气体:②理想气体恒温可逆过程:③理想气体绝热可逆过程:1、理想气体绝热可逆过程方程:BABAB B A A BA()d d [d ]d =d d d d III =-−−−→=-=---+≈-∑⎰⎰⎰⎰⎰很多次外系系系(外)V V V V V V V V V V W P V P VP P V P V P V P V详看书上的公式。
应用条件:封闭系统,W /=0,理想气体,绝热可逆过程.2.理想气体绝热可逆过程体积功:但:对理想气体任何单纯PVT 变化过程均有:∆U= nC V ,m(T2-T1)即:理想气体绝热过程体积功均可按下式计算:8、热力学能U .内能——是系统内部所有粒子除整体动能和整体势能外,全部能量的总和。
以U 表示。
焦耳功热当量实验说明,不论做功的方式如何,在绝热过程中使一定量物质(封闭物质系统)升高一定温度所需要的各种形式的功,在数值上是完全相同的。
二、热力学第一定律:第一类永动机是不可能制成功。
第一定律是人类经验的总结。
1、尽管内能的绝对值无法测定,但其增量可由公式表达的能量关系去衡量; 2、功、热虽自身都是与途径有关的量,但它们之和却等于一个状态函数的增量。
3、热力学第一定律用于一些具体情况:1、隔离系统:△U = 0 、 隔离系统能量守恒。
2、循环过程: △U = 0,W = - Q ,若系统得功则全部用于对外散热。
3、绝热过程:Q = 0、 △U = W 、 若系统得功则全部转化为热力学能;若失功则降低内能全部对外做功 。
4、有焦耳定律可得:温度一定时,气体的内能U 具有确定值,而与体积无关。
即 。
{理想气体的内能只是温度的函数: U =f(T ) (理想气体单纯P 、V 、T 变化)}5、恒容热、恒压热及焓(1) 恒容热Q V :d U = đQ + đW 体+ đW /= đQ –P (环)d V (仅作体积功,đW/=0) 恒容过程: d V =0: d U =đQ v 所以∆U = Qv在恒容且无非体积功条件下,系统与环境交换的热Q V 等于系统热力学能的增量∆U 。
∆U 值仅取决于始、终态,所以Q V 值亦必然取决于系统的始、终态,与具体途径无关。
(2)恒压热Q P 及焓H :在恒压且无非体积功条件下,过程的恒压热QP 与系统的焓变∆H 相等。
QP 值也只取决于系统的始、终态,与具体途径无关。
∆U =Q +W 体+W /=Q +W 体、(W ’=0)恒压:d P =0即:P1=P2=P (环)=P=常数 Q P =∆U –W 体=∆U + P (V 2-V 1)=(U 2+P 2V 2)-(U 1+P 1V 1) =H1-H2 (H=U+PV)Q p = ∆HTU 0V ∂⎛⎫= ⎪∂⎝⎭总结:Q V =∆U 、Q P=∆H 则表示,在恒容、恒压且W /=0这两种特定条件下,热只与系统的始末态有关,而与途径无关。
非恒容过程:∆U 要用第一定律或其他方法计算,而不能用∆U =Q V 计算; 非恒压过程:∆H =∆U +∆(PV )计算,而不能用∆H =Q P 计算。
理想气体的热力学能与焓都只是温度的函数 问题:这样写∆H =∆U + P ∆V +V ∆P 正确吗?6、过程热的计算:需要U 、H 两个状态函数、Q V =∆U 、Q P=∆H ,还要用到摩尔热容、(1 即系统温度每升高1度所需要吸收的热量。
J·K-1比热容c =C/m :1 kg 物质温度每升高1度所需要吸收的热量。
J·K-1·kg-1 摩尔热容1度所需要吸收的热量。
J·K-1·mol-1平均热容a 、摩尔定容热容v,m :无相变化、无化学变化时,件下,仅因温度升高 1K 所需的热。
单位:J·K-1·mol-1条件: d V =0、W /=0的单纯PVT 变化若物质量为n 的某系统发生恒容的单纯PVT 变化:-1,(J K )d Q C T ⋅δ= 单位: 12T T Q C ->=<V m m V m V T U dT Q C ⎪⎭⎫ ⎝⎛∂∂==,,δ21,T V V m T Q nC dT=⎰下,仅因温度升高 1K 所需的热。
条件: d P =0、W /=0的单纯PVT 变化。
若物质量为n 的某系统发生恒压、单纯PVT 变化: c.对大多数凝聚态物质:对于理想气体:故:CP ,m -CV ,m= R (1mol 理想气体)(2) 单纯PVT 变化过程:1. 气体或凝聚态物质的恒容或恒压变温过程2.恒容过程∆H 或恒压过程∆U 的计算(利用定义式)21,T V m T U nC dT∆=⎰(理想气体,W /=0,单纯PVT 变化)21,T P m T H nC dT∆=⎰(理想气体,W /=0,单纯PVT 变化)pm m p m p T H dT Q C ⎪⎭⎫⎝⎛∂∂==,,δ21,T P P m T Q nC dT=⎰0m P,m V,m PV C C T ∂⎛⎫≈≈⎪∂⎝⎭ 0m m Pm T U V P R V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭, =4.凝聚态系统的单纯PVT过程:凝聚态系统发生一等温变压过程时,ΔH≈0对凝聚态系统的变温变压过程,在压力变化不大时,可忽略压力对焓变的影响:(3)相变焓a.相变焓:定义: 1mol纯物质于恒定温度下及该温度的平衡压力下发生相变时对应的焓变∆相变H m(T)称为该纯物质在T 下的摩尔相变焓。
单位:kJ.mol-1所以若相变过程为一恒压、无非体积功的过程,应有Qp=∆相变H m(T),也称为相变热。
注意:H为广延性质,系统中物质量为n时:∆相变H (T) = n∆相变H m(T);因∆相变H m(T)是状态函数的改变值,只取决于始末态;相变时的平衡压力随温度T而变。
同一物质的:即升华=熔化+汽化。
!例题:下面以气化焓为例推出T2,P2条件下相变焓的计算公式:由状态函数的性质得:b.可逆相变与不可逆相变:可逆相变——在两相平衡压力和温度下的相变。
不可逆相变——不是在相平衡温度或相平衡压力下的相变。
分别为前者和后者:例1 书上例2.7.1及例2.7.2(4)热力学第一定律对化学变化的应用a.标准摩尔反应焓:反应系统中各物质均处于温度 T 的标准状态下 ,反应进度为1mol 时化学反应 的摩尔焓变。
以△rH m θ(T )表示,下标“r”表示“反应”。
反应焓:在一定温度和压力下,反应中产物的总焓值减去反应物的总焓值,以△r H 表示。
摩尔反应焓:反应焓与反应进度之比。
b. 标准态。