高中数学选修2-2 定积分的简单应用

合集下载

人教a版数学【选修2-2】1.7《定积分的简单应用》ppt课件

人教a版数学【选修2-2】1.7《定积分的简单应用》ppt课件

[答案]
1 2
2 3
[解析] 曲线y=x 与y=cx 由题意知
1 1 的交点为c ,c2.
2 1 =3.∴c=2.
典例探究学案
不分割型平面图形面积的求解
如图,求曲线y=x2与直线y=2x所围图形的面 积S.
[分析] 从图形上可以看出,所求图形的面积可以转化为一 个三角形与一个曲边三角形面积的差,进而可以用定积分求 出面积.为了确定出积分的上、下限,我们需要求出直线和 抛物线的交点的横坐标.
(1)(2014· 山东理,6)直线y=4x与曲线y=x3在第一象限内 围成的封闭图形的面积为( A.2 2 C.2 ) B.4 2 D.4
(2)由y=-x2与y=x-2围成图形的面积S=________.
9 [答案] (1)D (2)2
[解析] (1)如图所示
y=4x, 由 3 y = x .
[答案] C
) B.gt2 0 1 2 D.6gt0
[解析] 如果变速直线运动的速度为 v=v(t)(v(t)≥0), 那么
b 从时刻 t=a 到 t=b 所经过的路程是 v(t)dt,

a

故应选 C.
2 4.若两曲线y=x 与y=cx (c>0)围成的图形的面积是 3 ,
2 3
则c=________.
[解析]
y=2x, 解方程组 2 y = x ,
得x1=0,x2=2.
故所求图形的面积为 S= 2xdx- x
2 0 2 0
2
2 2 dx=x 0
1 3 4 2 -3x 0 =3.
[方法规律总结] 利用定积分求平面图形的面积的步骤 (1)画出草图,在直角坐标系中画出曲线或直线的大致图象. (2)将平面图形分割成曲边梯形,并分清在x轴上方与下方的 部分. (3)借助图形确定出被积函数. (4)求出交点坐标,确定积分的上、下限. (5)求出各部分的定积分,并将面积表达为定积分的代数和( 定积分为负的部分求面积时要改变符号处理为正),求出面 积.

人教版A版高中数学选修2-2:定积分的概念教学内容

人教版A版高中数学选修2-2:定积分的概念教学内容
由此,我们得到求曲边梯形面积的第三步为:
求和:求出n个小矩形面积之和,作为曲边梯
n
形面积S的近似值,即S Sn i1
1 f i 1 n n
n
由 Sn
i 1
1 f i 1 n n
n
1
i
1
2
i1 n n
1
0
1
1
2
1
2
2
1
n
1
2
n n n n n n n
1 n3
n
1n2n
1
0.8
0.6
0.4
f(x) = x2
0.2
01
n
0.2
2 3 4 0.5 nn n
i 1 i nn
f (i 1) n
1 n
A
1
f(i) n
f (i 1) n
f(i) n
1 n
1 n
1.5
2
0.4
1.4
以第一种方1.2法为例,可把曲边梯形分割成n个小矩形
1
0.8
0.6
0.4
f(x) = x2
0.2
0
0.5
1
0.2
当分割的小矩形越来越多时,观察所有的矩形面积之 1.4
和与曲边梯形的面积有什么关系
1.2
1
0.8
0.6
n = 10.00
0.4
f(x) = x2
0.2
0
0.5
1
0.2
当分割的1.4小矩形越来越多时,观察所有的矩形面积之 和与曲边梯形的面积有什么关系
1.2
1
0.8
0.6
n = 20.00
即S

高中数学人教A版选修2-2课件 1-7 定积分的简单应用 第13课时《定积分的简单应用》

高中数学人教A版选修2-2课件 1-7 定积分的简单应用 第13课时《定积分的简单应用》

解析:(1)由v(t)=8t-2t2≥0,得0≤t≤4,
即当0≤t≤4时,P点向x轴正方向运动,
当t>4时,P点向x轴负方向运动.
故t=6时,点P离开原点的路程为
s1=4(8t-2t2)dt-6(8t-2t2)dt
0
4
=4t2-23t3|40-4t2-23t3|64=1328.
a
成的曲边梯形的面积.
【练习1】 曲线y=cosx0≤x≤32π与坐标轴所围成的图形面积是
() A.2
B.3
5 C.2
D.4

3

3
解析:S= 2 a
cosxdx+|

2
cosxdx|=

2

0
cosxdx-

2
cosxdx=sinx|

2 0

(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度 在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间, 然后分别计算,否则会出现计算失误.
变式探究2 (1)一物体沿直线以v=3t+2(t单位:s,v单位:m/s)
的速度运动,则该物体在3 s~6 s间的运动路程为( )
A.46 m
3
(3t2-2t+4)dt=()-(8
2
-4+8)=18.
答案:(1)B (2)D
考点三 利用定积分计算变力做功 例3 设有一长25 cm的弹簧,若加以100 N的力,由弹簧伸长到
30 cm,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使 弹簧由25 cm伸长到40 cm所做的功.
∴W=∫00.1250xdx=25x2|00.12=0.36(J). 答案:0.36 J

高中数学选修2-2优质课件:1.7.1 定积分在几何中的应用

高中数学选修2-2优质课件:1.7.1 定积分在几何中的应用

2.曲线 y=cos x(0≤x≤32π)与坐标轴所围图形的面积是( B )
A.2 解析
B.3
C.52
S=π2
0
cos
xdx-32πcos π
xdx=sin
π x2 0
D.4 3π 2
-sin x π 2
2
=sin π2-sin 0- sin 32π+sin π2=1-0+1+1=3.
1234
4 3.由曲线y=x2与直线y=2x所围成的平面图形的面积为__3__.
1234
S=4f(x)dx-7f(x)dx
1
4

S=a[g(x)-f(x)]dx+b[f(x)-g(x)]dx
0
a

A.①③ C.①④
B.②③ D.③④
1234
解析 ①应是 S=b[f(x)-g(x)]dx,②应是 S=82 2xdx-
a
0
8(2x-8)dx,③和④正确.故选 D.
4
答案 D
1234
跟踪演练2 求由曲线y=x2,直线y=2x和y=x围成的图形的面积.
y=x2, y=x2,
解 方法一 如图,由

y=x
y=2x
解出 O,A,B 三点的横坐标分别是 0,1,2.
故所求的面积 S=10(2x-x)dx+12(2x-x2)dx=x2210 + x2-x3321 =12-0+(4-83)-(1-13)=76.
y=2x, x=0, x=2,
解析 解方程组


y=x2, y=0, y=4.
∴曲线y=x2与直线y=2x交点为(2,4),(0,0).
∴S=2(2x-x2)dx= 0
x2-13x320

《定积分的简单应用》教学反思

《定积分的简单应用》教学反思

《定积分的简单应用》教学反思《定积分的简单应用》教学反思《定积分的简单应用》教学反思王利本节课内容是选修2-2中第四章最后一个小节,要求学生在充分认识导数与定积分的概念的基础上,通过运用积分手段解决曲边梯形的面积问题,从而进一步体会到导数与积分的工具性作用,认识到数学知识的实用价值。

新课标要求我们在教学过程中要着重培养学生的探究、发现、创新等方面的能力。

学习的全过程需要学生的参与,学生是学习的主体和中心。

围绕这个宗旨,我在课堂内容的`编排和教学课件的制作上作了一定的思考。

在内容编排上,我基本遵循由易到难的过程,从最基本的,学生所熟知的前课知识开始引入,由浅入深的引导学生加以足够地探究,使学生的发现变得自然而水到渠成。

同时对于学生可能的探究结果留有足够的空间,充分肯定学生的创新发现,对于学生考虑不到的地方加以补充、引导、完善,并留出一定课后思考得余地。

在课件制作方面,考虑到多媒体直观形象的特点,让其承担起引导思考与解释的重任。

我想,一堂好的示范课,不应该只是一次简单的表演与展示,如果在上课之前反复编排到一词一句,会让学生疲惫,听课老师觉得虚假而没有了讨论与交流的兴致,这其实也是对听课老师的一种不尊重的表现。

因此我按照正常的教学进度,以便学生在课堂上有充分的暴露与发现的机会,当然这样一来对于老师的临场应变要求会更高,我想这也应该是一个合格教师的基本素养吧。

当然这节课还有一些不足之处,课堂容量过大,学生板演的次数过多,导致了出现了拖堂的遗憾。

课件的制作也达不到美观的要求,不能更好的发挥其应有的作用。

在今后的教学中我会不断的完善自己的教学技能,提高自己的业务水平。

湖北省巴东一中高二数学教案 选修2-2:1.7定积分的简单应用第1课时

湖北省巴东一中高二数学教案 选修2-2:1.7定积分的简单应用第1课时

§1.7.1 定积分在几何中的应用【学情分析】:在上一阶段的学习中,已经学习了利用微积分基本定理计算单个被积函数的定积分,并且已经理解定积分可以计算曲线与x轴所围面积。

本节中将继续研究多条曲线围成的封闭图形的面积问题。

学生将进一步经历到由解决简单问题到解决复杂问题的过程,这是一个研究问题的普遍方法。

学生能正确的理解定积分的几何意义,是求面积问题的基础。

但是对各种图形分割的技巧以及选择x-型区域或y-型区域计算是比较陌生的。

突破点是一定要借助图形直观,让学生清楚根据曲线的交点划分图形(分块)以及根据曲线的特点(解出变量x还是y简单)选择x-型区域或y-型区域。

【教学目标】:(1)知识与技能:解决一些在几何中用初等数学方法难以解决的平面图形面积问题(2)过程与方法:在解决问题中,通过数形结合的思想方法,加深对定积分几何意义的理解(3)情感态度与价值观:体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力.【教学重点】:(1)应用定积分解决平面图形的面积问题,使学生在解决问题的过程中体验定积分的价值以及由浅入深的解决问题的方法。

(2)数形结合的思想方法【教学难点】:利用定积分的几何意义,借助图形直观,把平面图形进行适当的分割,从而把求平面图形面积的问题转化为求曲边梯形面积的问题.教学环节教学活动设计意图一、例题1(1)师:我们已经看到,定积分可以用来计算曲边梯形的面积,事实上,利用定积分还可以求比较复杂的平面图形的面积。

(2)例题1 计算由曲线22,y x y x==所围图形的面积S。

1DC BA1y2=xy=x2O xy生:思考,讨论师(引导,总结):例1是求由两条抛物线所围成的平面图形的面积.第一步,画图并确定图形大致形状、引入课题的面积.师:我们把这个题目提升为一般类型:即求两条曲线所夹面积:若函数()f x 和()g x 在区间[],a b 上连续且在[],a b 上有()()f x g x ≥,那么由y =f (x ),y =g (x ),x =a ,x =b 所围成的有界区域面积为b[()()]d aA f x g x x =-⎰=b()d af x x ⎰-b()d ag x x ⎰-=A y=g(x)baOxyy=f(x)我们看到,尽管我们的证明的示意图中曲线()y f x =与()y g x =的均在x 轴上方,但是,由1.6的学习我们可以知道,曲线()y f x =或()y g x =在x 轴下方也不影响我们的证明,结论仍然是正确的。

高中数学_定积分的简单应用教学设计学情分析教材分析课后反思

高中数学_定积分的简单应用教学设计学情分析教材分析课后反思

《定积分在几何中的简单应用》教学设计(一) 课前准备:复习定积分的概念、定积分的计算、定积分的几何意义. (二) 情景引入:展示精美的大桥油画,讲述古代数学家的故事及伟大发现:拱形的面积 【课件展示】课题:定积分在几何中的简单应用 油画图片问:桥拱的面积如何求解呢? 答:……【学生活动】本环节安排学生讨论,自主发现解决问题方向——定积分跟面积的关系, (三) 新课讲授:(四) 【热身训练】问题1.计算dx x ⎰--2224 2.计算 ⎰-22sin ππdx x【学生活动】思考口答【课件展示】定积分表示的几何图形、练习答案.22222214⨯=-⎰-πdx x0sin =⎰-ππdx x问题2.用定积分表示阴影部分面积培养学生复习的学习习惯。

激发学生们的求知欲和探索欲,设下悬念,以激发学生的探索激情,为后面作开启性的铺垫。

复习定积分的几何意义yx ππ()y f x =ab1.曲边xy o)(1x f y =)(2x f y =abxyo)(1x f y =)(2x f y =ab 0xy)(x f y =a by x∴s s =曲边梯形OABC s -曲边梯形OABDdx x ⎰=10dx x ⎰-1210310233132x x -=313132=-= 【例题实践】例2.计算由4-=x y 与x y 2=所围图形的面积.【师生活动】讨论探究解法的过程1.找到图形----画图得到曲边形.2.曲边形面积解法----转化为曲边梯形,做出辅助线. 3.定积分表示曲边梯形面积----确定积分区间、被积函数. 问题:表示不出定积分.探讨:X 为积分变量表示不到,那换成Y 为积分变量呢? 4.计算定积分.【板书】根据师生探究的思路板书重要分析过程.【课件展示】解答过程 解:作出草图,所求面积为图中阴影部分的面积解方程组⎪⎩⎪⎨⎧==22xy xy 得到交点坐标为(2,-2)及(8,4)选y为积分变量48812044224=+=+--⎰⎰⎰[()]S S S xdx xdx x dx 48844224=+--⎰⎰⎰()()xdx xdx x dx【抽象归纳】解由曲线所围的平面图形面积的解题步骤【学生活动】学生根据例题探究的过程来归纳【教师简单点评】帮助学生修改、提炼,强调注意注意选择y 型积分变量时,要把函数变形成用y 表示x 的函数 .【课件展示】解由曲线所围的平面图形面积的解题步骤:1.画草图,求出曲线的交点坐标.与方法巩固了学生的作图能力,在寻找曲边梯形的过程中提高了学生的想象能力。

北师版高中数学选修2-2课后习题版 第四章 §3 定积分的简单应用

北师版高中数学选修2-2课后习题版 第四章 §3 定积分的简单应用

第四章DISIZHANG定积分§3定积分的简单应用课后篇巩固提升A组1.设f(x)在区间[a,b]上连续,则曲线f(x)与直线x=a,x=b,y=0围成的图形的面积为( )A.∫ba f(x)dx B.|∫f(x)badx|C.∫ba|f(x)|dx D.以上都不对f(x)在区间[a,b]上满足f(x)<0时,∫baf(x)dx<0,排除A;当围成的图形同时存在于x轴上方与下方时,∫baf(x)dx是两图形面积之差,排除B;无论什么情况C都正确.2.下列各阴影部分的面积S不可以用S=∫ba[f(x)-g(x)]dx求出的是( )S=∫ba[f(x)-g(x)]dx的几何意义是求函数f(x)与g(x)之间的阴影部分的面积,必须注意f(x)的图像要在g(x)的图像上方,对照各选项可知,D项中的f(x)的图像不全在g(x)的图像上方.故选D.3.如图,由函数f(x)=e x-e的图像,直线x=2及x轴围成的阴影部分的面积等于( )A.e2-2e-1B.e2-2eC.e 2-e 2D.e2-2e+1S=∫21f(x)dx=∫21(e x-e)dx=(e x-e·x)|12=e2-2e.4.直线y=2x,x=1,x=2与x轴围成的平面图形绕x轴旋转一周得到一个圆台,则该圆台的体积为( )A.28π3B.32π C.4π3D.3πV=∫21π·(2x)2dx=π∫214x2dx=4π·13x3|12=4π3(8-1)=28π3.5.如图所示,在边长为1的正方形OABC中,任取一点P,则点P恰好取自阴影部分的概率为( )A.14B.15C.16D.17{y=√x,y=x,得O(0,0),B(1,1).则S阴影=∫1(√x-x)dx=(23x 32-x 22)|01=23−12=16.故所求概率为S 阴影S 正方形=161=16.6.曲线y=cos x (π2≤x ≤3π2)与x 轴围成的平面图形的面积为 .解析由图可知,曲线y=cosx (π2≤x ≤3π2)与x 轴围成的平面图形的面积S=∫3π2π2cos xdx=-sin xπ23π2=(-sin3π2)−(-sin π2)=2.7.在同一坐标系中,作出曲线xy=1和直线y=x 以及直线y=3的图像如图所示,则阴影部分的面积为 . ∫113(3-1x )dx+∫31(3-x)dx=(3x-lnx)|131+(3x -12x 2)|13=3-(1-ln 13)+(9-12×32)−(3-12)=4-ln3.8.计算由y 2=x,y=x 2所围成图形的面积.,为了确定图形的范围,先求出这两条曲线的交点的横坐标.解方程组{y 2=x ,y =x 2,得出交点的横坐标为x=0或x=1.因此,所求图形的面积S=∫10(√x -x2)dx,又因为(23x 32-13x 3)'=x 12-x 2,所以S=(23x 32-13x 3)|01=23−13=13.9.求由曲线y=x 2+4与直线y=5x,x=0,x=4所围成的平面图形的面积.,如图所示.所求平面图形为图中阴影部分.解方程组{y =x 2+4,y =5x ,得交点为A(1,5),B(4,20).故所求平面图形的面积S=∫1(x 2+4-5x)dx+∫41(5x-x 2-4)dx=(13x 3+4x -52x 2)|01+(52x 2-13x 3-4x)|14=13+4-52+52×42-13×43-4×4-52+13+4=193.10.求抛物线y 2=2x 与直线y=4-x 围成的平面图形的面积.{y 2=2x ,y =4-x得抛物线和直线的交点为(2,2)及(8,-4).方法一:选x 作为积分变量,由图可得S=S A 1+S A 2.在A 1部分:由于抛物线的上部分方程为y=√2x ,下部分方程为y=-√2x ,所以S A 1=∫2[√2x -(-√2x )]dx=2√2∫20x 12dx=2√2·23x 32|02=163.S A 2=∫82[4-x-(-√2x )]dx =(4x -12x 2+2√23x 32)|28=383.所以S=163+383=18.方法二:∵y 2=2x,∴x=12y 2. 由y=4-x.得x=4-y,∴S=∫2-4(4-y -12y 2)dy=(4y -12y 2-16y 3)|-42=18.B 组1.如图,已知曲线y=f(x)与直线y=0,x=-32,x=2围成的图形面积为S 1=1,S 2=3,S 3=32,则∫2-32f(x)dx 等于( )A.112B.12C.-12D.72∫2-32f(x)dx=∫-1-32f(x)dx+∫1-1f(x)dx+∫21f(x)dx=S 1-S 2+S 3=1-3+32=-12.2.设直线y=1与y 轴交于点A,与曲线y=x 3交于点B,O 为原点,记线段OA,AB 及曲线y=x 3围成的区域为Ω.在Ω内随机取一点P,已知点P 取在△OAB 内的概率等于23,则图中阴影部分的面积为( )A.13B.14C.15D.16{y =1,y =x 3,解得{x =1,y =1. 则曲边梯形OAB 的面积为∫1(1-x 3)dx=(x -14x 4) 01=1-14=34.∵在Ω内随机取一个点P,点P 取在△OAB 内的概率等于23, ∴点P 取在阴影部分的概率等于1-23=13,∴图中阴影部分的面积为34×13=14.故选B.3.如图所示,直线y=kx 分抛物线y=x-x 2与x 轴所围成图形为面积相等的两部分,则k 的值为 .y=x-x 2与x 轴两交点横坐标为0,1,∴抛物线与x 轴所围成图形的面积为S=∫1(x-x 2)dx=(x 22-x 33)|01=16,抛物线y=x-x 2与直线y=kx 的两交点横坐标为0,1-k.∴S 2=∫1-k0(x-x 2-kx)dx=(1-k2x 2-x33)|01-k =16(1-k)3.又∵S=16,∴(1-k)3=12.∴k=1-√123=1-√432. 1-√4324.由直线y=x 和曲线y=x 3(x≥0)所围成的平面图形,绕x 轴旋转一周所得旋转体的体积为 .{y =x ,y =x 3(x ≥0),得{x =0,y =0,或{x =1,y =1.故所求体积V=∫1πx 2dx-∫10πx 6dx=π∫10x 2dx-π∫1x 6dx=π(13x 3|01-17x 7|01)=π(13-17)=4π21.5.已知函数f(x)=x 3-x 2+x+1,求其在点(1,2)处的切线与函数g(x)=x 2围成的图形的面积.(1,2)为曲线f(x)=x 3-x 2+x+1上的点,设过点(1,2)处的切线的斜率为k,则k=f'(1)=3×12-2×1+1=2,∴过点(1,2)处的切线方程为y-2=2(x-1),即y=2x.∴y=2x 与函数g(x)=x 2围成的图形如图.由{y =x 2,y =2x可得交点A(2,4). 又S △AOB =12×2×4=4,g(x)=x 2与直线x=2,x 轴围成的区域的面积S=∫20x 2dx=13x3|02=83,∴y=2x 与函数g(x)=x 2围成的图形的面积为S'=S △AOB -S=4-83=43.。

北师大版高中数学选修2-2第四章《定积分》定积分的简单应用(三)利用定积分求简单几何体的体积 课件

北师大版高中数学选修2-2第四章《定积分》定积分的简单应用(三)利用定积分求简单几何体的体积 课件



五、教后反思:
2013-4-2
2013-4-2
∴所求“冰激凌”的体积为:
12 1 4 224 2 2 (2 x ) dx ( x 6) dx (cm) 3 4 2 3 0
2013-4-2
变式引申:某电厂冷却塔外形如图所示,双曲线的一部分绕 其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A’是双曲 线的顶点,C,C’是冷却塔上口直径的两个端点,B,B’ 是 下底直径的两个端点,已知 AA’=14m,CC’=18m,BB’=22m,塔高20m.
x
2013-4-2
分析:解此题的关键是如何建立数学模型。将 其轴载面按下图位置放置,并建立坐标系。则 A,B坐标可得,再求出直线AB和抛物线方程, “冰激凌”可看成是由抛物线弧OB和线段AB 绕X轴旋转一周形成的。
解:将其轴载面按下图位置放
置,并建立如图的坐标系。则 A(12,0), (4,4) B
(1)建立坐标系,并写出该曲线方程. (2)求冷却塔的容积(精确到10m3塔壁厚度不计, 取3.14) 2 2 x y (1) 1 49 98
8 2 8
C’ A’ A

1 2 ( 2)V x dy ( y 49)dy 12 12 2 B’ 2013-4-2

S侧 2 f ( x) 1 [ f ' ( x)]2 dx
V f
a
b
2
x dx,即可求旋转体体积的值。
(三)、课堂小结:求体积的过程就是对定 积分概念的进一步理解过程,总结求旋转体 体积公式步骤如下:1.先求出 y f x b 的表达式;2.代入公式 V f 2 x dx a ,即可求旋转体体积的值。 (四)、作业布置:课本P90页练习题中2;习题 4-3中6、7

北师大版高中数学选修2-2第四章《定积分》定积分的概念

北师大版高中数学选修2-2第四章《定积分》定积分的概念

y f (x)
a
b
x
5
积分上限
a f ( x )dx I
积分下限
b
lim f (i )xi
n i 1
n
被 积 函 数
被 积 表 达 式
积 分 变 量
6
说明:
(1) 定积分是一个数值, 它只与被积函数及积分区间有关, 而与积分变量的记法无关,即
a f(x)dx a
(3)
b
b
b
f (t)dt a
a
b
f(u)du。
(2)定义中区间的分法和 i 的取法是任意的.
a f(x)dx - b f (x)dx
7
(二)、定积分的几何意义:
当 f(x)0 时,积分a f ( x)dx 在几何上表示由 y=f (x)、 xa、xb与 x轴所围成的曲边梯形的面积。
北师大版高中数学选修2-2第 四章《定积分》
1
一、教学目标:1.通过求曲边梯形的面积和汽 车行驶的路程,了解定积分的背景;2.借助于 几何直观定积分的基本思想,了解定积分的概 念,能用定积分定义求简单的定积分;3.理解 掌握定积分的几何意义. 二、教学重点:定积分的概念、用定义求简单 的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意 义. 三、教学方法:探析归纳,讲练结合 四、教学过程
ba Sn f (i )x f (i ) n i 1 i 1 如果 x 无限接近于 0(亦即 n ) 上述和式 S n 时, 无限趋近于常数 S ,那么称该常数 S 为函数 f ( x) 在区
n n
间 [ a, b] 上的定积分。记为: S

b
a
f ( x )dx

数学选修2-2定积分的简单应用练习题含答案

数学选修2-2定积分的简单应用练习题含答案

数学选修2-2定积分的简单应用练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 曲线y=sin x与x轴在区间[0, 2π]上所围成阴影部分的面积为()A.−4B.−2C.2D.42. 由直线x=0,x=2,y=0和抛物线x=√1−y所围成的平面图形绕x轴旋转所得几何体的体积为()A.46 15πB.43π C.1615π D.83π3. 由直线x=1,x=2,y=0与抛物线y=x2所围成的曲边梯形的面积为()A.1 3B.53C.73D.1134. 由曲线y=x2+2与y=3x,x=0,x=1所围成的平面图形的面积为()A.5 6B.1C.53D.25. 曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.3π10B.π2C.π5D.7π106. 函数y=sin x,y=cos x在区间(π4,5π4)内围成图形的面积为()A.√2B.2√2C.3√2D.4√27. 一物体在力F(x)=3+e2x(x的单位:m,F的单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到x=1处,力F(x)所做的功为()A.(3+e2)JB.(3+12e2)J C.(52+12e2)J D.(2+e2)J8. 由曲线y=√x,y=x−2及x轴所围成的封闭图形的面积是()A.4B.103C.163D.1549. 下列表示图中f(x)在区间[a, b]上的图象与x 轴围成的面积总和的式子中,正确的是( )A.∫f ba (x)dx B.|∫f ba (x)dx|C.∫f c 1a (x)dx +∫f c 2c 1(x)dx +∫f cc 2(x)dxD.∫f c 1a (x)dx −∫f c 2c 1(x)dx +∫f cc2(x)dx10. 直线y =x 与曲线y =√x 3围成的平面图形的面积是.( ) A.14 B.2 C.1D.1211. 设函数f(x)=ax 2+c(a ≠0),若∫f 10(x)dx =f(x 0),0≤x 0≤1,则x 0的值为________.12. y =cos x 与直线x =0,x =π及x 轴围成平面区域面积为________.13. 由曲线y =|x|,y =−|x|,x =2,x =−2合成的封闭图形绕y 轴旋转一周所得的旋转体的体积为V ,则V =________.14. 两曲线x −y =0,y =x 2−2x 所围成的图形的面积是________.15. 由曲线y =x 2和直线x =0,x =1,以及y =0所围成的图形面积是________. 16.若在平面直角坐标系xOy 中将直线y =x 2与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,则该圆锥的体积V 圆锥=∫π10(x 2)2dx =π12x 3|10=π12据此类比:将曲线y =x 2与直线y =9所围成的图形绕y 轴旋转一周得到一个旋转体,则该旋转体的体积V =________.17. 在直角坐标平面内,由直线x=1,x=2,y=0和曲线y=1所围成的平面区域的x面积是________.18. 在xOy平面上,将抛物线弧y=1−x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0, y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1−y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为________.19. 函数f(x)=x3−x2+x+1在点(1, 2)处的切线与函数g(x)=x2−x围成的图形的面积等于________.2ax2−a2x)dx,则f(a)的最大值为________.20. 已知f(a)=∫(1x2在第一象限内的交点为P.21. 已知曲线C1:y2=2x与C2:y=12(1)求曲线C2在点P处的切线方程;(2)求两条曲线所围成图形的面积S.22. 求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.23. 已知曲线C:y=x2(x≥0),直线l为曲线C在点A(1, 1)处的切线.(1)求直线l的方程;(2)求直线l与曲线C以及x轴所围成的图形的面积.24. 如图一是火力发电厂烟囱示意图.它是双曲线绕其一条对称轴旋转一周形成的几何体,烟囱最细处的直径为10m,最下端的直径为12m,最细处离地面6m,烟囱高14m,试求该烟囱占有空间的大小.(精确到0.1m3)25.(1)已知复数z的共轭复数是z¯,且z⋅z¯−3iz=10,求z;1−3ix所围成的平面图形的面积.(2)求曲线y=√x与直线x+y=2,y=−1326.(1)已知(√x +2√x4)n 展开式的前三项系数成等差数列.求n .(2)如图所示,在一个边长为1的正方形AOBC 内,曲线y =x 2和曲线y =√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),求所投的点落在叶形图内部的概率.27. 求由下列给出的边界所围成的区域的面积: (1)y =sin x(π4≤x ≤π),x =π4,y =0;(2)y =x 2,y =2x 2,x =1;(3)y =x 2,y =√x .28. 求由y =4−x 2与直线y =2x −4所围成图形的面积.29. 已知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0. (1)求S 0.(2)求所围成图形绕ox 轴旋转所成旋转体的体积.30. 已知函数y =f(x)的图形如图所示,给出y =f(x)与x =10和x 轴所围成图形的面积估计值;要想得到误差不超过1的面积估计值,可以怎么做?31. 已知曲线C:y =√x 和直线:x −2y =0由C 与围成封闭图形记为M . (1)求M 的面积;(2)若M 绕x 轴旋转一周,求由M 围成的体积.32. 已知f(x)为一次函数,且f(x)=x ∫f 20(t)dt +1, (1)求函数f(x)的解析式;(2)若g(x)=x ⋅f(x),求曲线y =g(x)与x 轴所围成的区域绕x 轴旋转一周所得到的旋转体的体积.33. 已知圆锥的高为ℎ,底半径为r ,用我们计算抛物线下曲边梯形面积的思路,推导圆锥体积的计算公式. [提示:(1)用若干张平行于圆锥底面的平面把它切成n 块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn ,2r n,3r n…,(n−1)r n,r ;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n 2)×πr 2n 2,当n 越来越大时所趋向的值.].34. 求曲线y =√x(0≤x ≤4)上的一条切线,使此切线与直线x =0,x =4以及曲线y =√x 所围成的平面图形的面积最小.35. 过点(0, 1)作曲线L:y =ln x 的切线,切点为A .又L 与x 轴交于B 点,区城D 由L 、x 轴与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.36. 求曲线y =2x −x 2,y =2x 2−4x 所围成图形的面积.37. 已知∫(103ax +1)(x +b)dx =0,a ,b ∈R ,试求ab 的取值范围.38. 求下列曲线所围成图形的面积:曲线y=cos x,x=π2,x=3π2,y=0.39. 求曲线y=sin x与直线x=−π2,x=5π4,y=0所围成的平面图形的面积.40. 如图,直线y=kx分抛物线y=x−x2与x轴所围图形为面积相等的两部分,求k的值.参考答案与试题解析数学选修2-2定积分的简单应用练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 D【考点】定积分在求面积中的应用 【解析】由积分的几何意义可得,S =2∫sin π0xdx ,即可得出结论. 【解答】解:由积分的几何意义可得,S =2∫sin π0xdx =(−cos x)|0π=4. 故选:D . 2.【答案】 A【考点】用定积分求简单几何体的体积 【解析】由题意此几何体的体积可以看作是∫π20(1−x 2)2dx ,求出积分即得所求体积. 【解答】解:由题意几何体的体积; ∫π20(1−x 2)2dx=π(x −23x 3+15x 5)|02=π(2−23×23+15×25) =4615π 故选A . 3. 【答案】 C【考点】定积分在求面积中的应用 【解析】先根据题意画出区域,然后依据图形利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可. 【解答】解:直线x =1,x =2,y =0与抛物线y =x 2所围成的曲边梯形的面积为S =∫x 221dx =13x 3|12=83−13=73,故选:C .4.【答案】 A【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解,然后求出曲线y =x 2+2与y =3x 的交点坐标,然后利用定积分表示所围成的平面图形的面积,根据定积分的定义解之即可. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x =[13X 3+2X −32X 2]01=56 故选:A 5.【答案】 A【考点】用定积分求简单几何体的体积 【解析】欲求曲线y =x 2和y 2=x 所围成的平面图形绕x 轴旋转一周后所形成的旋转体的体积,可利用定积分计算,即求出被积函数y =π(x −x 4)在0→1上的积分即可. 【解答】解:设旋转体的体积为V ,则v =∫π10(x −x 4)dx =π(12x 2−15x 5)|01=3π10.故旋转体的体积为:3π10. 故选A . 6. 【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,所求面积为S =∫(5π4π4sin x −cos x)dx ,然后利用公式求出sin x −cos x 的原函数F(x),算出F(5π4)−F(π4)的值,即为所求图形的面积. 【解答】解:根据题意,所求面积为S =∫(5π4π4sin x −cos x)dx =(−cos x −sin x +C)|π45π4 (其中C 为常数) ∴ S =(−cos 5π4−sin5π4+C)−(−cos π4−sin π4+C)=(√22+√22+C)−(−√22−√22+C)=2√2 故选B 7.【答案】 C【考点】定积分的简单应用 【解析】先根据题意建立关系式∫(103+e 2x )dx ,然后根据定积分的计算法则求出定积分的值即可. 【解答】解:根据题意可知F(x)所做的功为∫(103+e 2x )dx =(3x +12e 2x )|01=3+12e 2−12=52+12e 2故选C .8.【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,先求出积分的上下限,即可求出所围成的图形的面积 【解答】解:联立直线y =x −2,曲线y =√x 构成方程组,解得{x =4,y =2,联立直线y =x −2,y =0构成方程组,解得{x =2,y =0,如图所示:∴曲线y=√x,y=x−2及x轴所围成的封闭图形的面积S=∫√x40dx−∫(42x−2)dx=2x32|04 −(1x2−2x)|24=163−2=103.故选B.9.【答案】D【考点】定积分在求面积中的应用定积分定积分的简单应用【解析】先根据定积分的几何意义可知将区间[a, b]分成三段,然后利用上方曲线方程减下方的曲线方程,求积分即为面积,从而求出所求.【解答】解:根据定积分的几何意义可知将区间[a, b]分成三段利用上方曲线方程减下方的曲线方程,求积分即为面积S=∫fc1a (x)dx−∫fc2c1(x)dx+∫fcc2(x)dx故选:D10.【答案】D【考点】定积分在求面积中的应用【解析】先画出画出直线y=x与曲线y=√x3围成的平面图形,然后求出交点横坐标得到积分上下限,然后利用定积分表示出图形的面积,根据定积分的运算法则进行求解即可.【解答】解:画出直线y=x与曲线y=√x3围成的平面图形图形关于原点对称,交点的横坐标为−1,1∴直线y=x与曲线y=√x3围成的平面图形的面积是∫(1−1√x3−x)dx=2∫(1√x3−x)dx=2(34x43−12x2)|01=2(34−12−0)=12故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】 √33【考点】定积分的简单应用 【解析】求出定积分∫f 10(x)dx ,根据方程ax 02+c =∫f 10(x)dx 即可求解.【解答】解:∵ f(x)=ax 2+c(a ≠0),∴ f(x 0)=∫f 10(x)dx =[ax 33+cx]01=a3+c .又∵f(x 0)=ax 02+c .∴ x 02=13,∵ x 0∈[0, 1]∴ x 0=√33. 12.【答案】2【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得:曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍, ∴ S =2∫cos π20xdx =2 故答案为2.13.【答案】323π【考点】旋转体(圆柱、圆锥、圆台)用定积分求简单几何体的体积【解析】作出曲线围成的封闭图象,根据旋转得到旋转体的结构即可得到结论.【解答】解:曲线y=|x|,y=−|x|,x=2,x=−2合成的封闭图形绕y轴旋转一周所得的旋转体为底面半径为2,高为4的圆柱,去掉2个底面半径为2,高为2的圆锥,则对应的体积为π×42−2×13π×22×2=16π−16π3=323π,故答案为:323π14.【答案】92【考点】定积分在求面积中的应用【解析】先根据题意画出区域,然后依据图形得到积分上限为3,积分下限为0,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为3,积分下限为0;两曲线x−y=0,y=x2−2x所围成的图形的面积是∫(33x−x2)dx而∫(303x−x2)dx=(32x2−13x3)|03=272−9=92∴曲边梯形的面积是92故答案为92.15. 【答案】13【考点】定积分在求面积中的应用 【解析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y =x 2在区间[0, 1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案. 【解答】解:∵ 曲线y =x 2和直线L:x =1的交点为A(1, 1),∴ 曲线C:y =x 2、直线L:x =1与x 轴所围成的图形面积为 S =∫x 210dx =13x 3|01=13.故答案为:13.16. 【答案】81π2【考点】用定积分求简单几何体的体积 【解析】根据类比推理,结合定积分的应用,即可求出旋转体的体积. 【解答】解:根据类比推理得体积V =∫π90(√y)2dy =∫π90ydy =12πy 2|09=81π2,故答案为:81π2.17.【答案】 ln 2【考点】定积分在求面积中的应用 【解析】先根据所围成图形的面积利用定积分表示出来,然后根据定积分的定义求出面积即可. 【解答】解:由题意,S =∫1x 21dx =ln x|12=ln 2.故答案为:ln 2. 18. 【答案】√34π 【考点】用定积分求简单几何体的体积 【解析】(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即可得出结论. 【解答】解:(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的, 根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等, 即Ω的体积为π⋅√34=√34π. 故答案为√34π. 19. 【答案】92【考点】定积分在求面积中的应用 【解析】求出函数的切线方程,利用积分的几何意义即可求出区域的面积. 【解答】解:函数的导数为f′(x)=3x 2−2x +1,则在(1, 2)处的切线斜率k =f′(1)=3−2+1=2, 则对应的切线方程为y −2=2(x −1),即y =2x , 由{y =x 2−x y =2x,解得x =3或x =0,则由积分的几何意义可得阴影部分的面积S =∫(302x −x 2+x)dx =(32x 2−13x 3)| 30 =92,故答案为:92.20. 【答案】29【考点】定积分的简单应用 【解析】先根据定积分的运算公式求出f(a)的解析式,然后利用二次函数的图象和性质即可求出f(a)的最大值. 【解答】解:f(a)=∫(102ax 2−a 2x)dx =(23ax 3−12a 2x 2)|01=23a −12a 2∴ 当a =23时,f(a)取最大值,最大值为29 故答案为:29三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程 【解析】 此题暂无解析 【解答】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43. 22. 【答案】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1 23. 【答案】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程;(2)根据定积分的几何意义即可求出所围成的图形的面积. 【解答】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.24.【答案】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6),所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 3【考点】用定积分求简单几何体的体积 双曲线的特性【解析】由题意建立坐标系,得到如图的双曲线,烟囱最细处的直径为10m 即2a =10,最下端的直径为12m ,最细处离地面6m ,即双曲线经过(−6, 6),烟囱高14m ,即自变量范围为−6到8,由此利用定积分的值得到体积. 【解答】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6), 所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 325.【答案】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0),直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.【考点】 复数的运算 共轭复数复数代数形式的混合运算 定积分在求面积中的应用 【解析】 此题暂无解析 【解答】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0), 直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.26. 【答案】解:(1)∵ (√x 2x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴ 1+n(n−1)2×14=n ,整理得n 2−9n +8=0,n 1=1(舍) n 2=8…(2)所投的点落在叶形图内记为事件A ,由几何概型的概率公式得: P(A)=叶形图面积AOBC 的面积=∫(10√x−x 2)dx1=(23x 32−13x 3)|01=13…【考点】二项式定理的应用定积分在求面积中的应用 等差数列的性质几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】(1)由题意可得,C n 0+C n 2(12)2=2C n 1⋅12,解关于n 的方程即可;(2)由几何概型的概率公式可知,需求叶形图的面积,利用定积分∫(10√x −x 2)dx 可求叶形图的面积,从而使问题解决. 【解答】解:(1)∵ (√x 2√x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴1+n(n−1)2×14=n,整理得n2−9n+8=0,n1=1(舍)n2=8…(2)所投的点落在叶形图内记为事件A,由几何概型的概率公式得:P(A)=叶形图面积AOBC的面积=∫(1√x−x2)dx1=(23x32−13x3)|01=13…27.【答案】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.【考点】定积分的简单应用【解析】首先求出被积函数的原函数,进一步利用定积分知识求出结果.【解答】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.28.【答案】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x3−x2+8x)|−42=36.【考点】定积分在求面积中的应用【解析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=4−x2与直线y=2x−4所围成图形的面积,即可求得结论.【解答】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x 3−x 2+8x)|−42=36.29. 【答案】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx =π[x2−14sin 2x]0π=π(π2−14×0)=π22【考点】用定积分求简单几何体的体积 定积分在求面积中的应用【解析】(1)根据题意可知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0=∫sin π0xdx ,解之即可;(2)所围成图形绕ox 轴旋转所成旋转体的体积为V =π∫sin 2π0xdx ,根据定积分的定义解之即可. 【解答】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx=π[x 2−14sin 2x]0π=π(π2−14×0)=π2230.【答案】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c , 由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx =(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 【考点】定积分在求面积中的应用 【解析】设f(x)=ax 3+bx 2+cx +d ,利用待定系数法确定函数关系式,利用定积分求出面积估计值;若要误差小可分段求出f(x)的解析式,然后使用定积分求出面积. 【解答】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c ,由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx=(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 31. 【答案】解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43;(2)V =∫[40π(√x)2−π(x2)2]dx =π(x 22−x 312)|04=8π3.【考点】用定积分求简单几何体的体积 旋转体(圆柱、圆锥、圆台)【解析】(1)求得交点坐标,可得积分区间,即可求M 的面积; (2)旋转一周所得旋转体的体积应该用定积分来求.【解答】 解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43; (2)V =∫[40π(√x)2−π(x2)2]dx=π(x 22−x 312)|04=8π3.32.【答案】 解:(1)设f(x)=kx +b , ∵ f(x)=x ∫f 20(t)dt +1, ∴ kx +b =x •(kt 22+bt)|02+1,∴ kx +b =(2k +2b)x +1,∴ k =−2,b =1, ∴ f(x)=−2x +1,;2)g(x)=xf(x)=−2x 2+x , ∴ V =π∫[120xf(x)]2dx =π240. 【考点】用定积分求简单几何体的体积定积分【解析】(1)利用待定系数法,结合定积分的定义求函数f(x)的解析式;(2)求出g(x),应用定积分来求旋转体的体积.【解答】解:(1)设f(x)=kx+b,∵f(x)=x∫f2(t)dt+1,∴kx+b=x•(kt22+bt)|02+1,∴kx+b=(2k+2b)x+1,∴k=−2,b=1,∴f(x)=−2x+1,;2)g(x)=xf(x)=−2x2+x,∴V=π∫[120xf(x)]2dx=π240.33.【答案】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎn⋅16n(n+1)(2n+1)⋅πr2n2=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积【考点】用定积分求简单几何体的体积【解析】利用极限的定义进行分割、近似代换和求极限的方法,进行推到【解答】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎ⋅1n(n+1)(2n+1)⋅πr22=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积34.【答案】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2√x −x0)即y=y02+2√x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022x√x)dx=2y0+x−163=2√x0x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=22+√22.【考点】定积分在求面积中的应用【解析】先根据导数的几何意义求出曲线y=√x(0≤x≤4)上任一点处的切线方程,再求出积分的上下限,然后利用定积分表示出图形面积,最后利用定积分的定义进行求解即可.【解答】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2x −x0)即y=y02+2x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022√x√x)dx=2y0+√x−163=2√x0√x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=2√2+√22.35.【答案】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b ,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx =8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.【考点】用定积分求简单几何体的体积 【解析】求出A 的坐标和切线方程,则所求面积和体积均可用两个定积分的差来表示. 【解答】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx=8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.36. 【答案】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 【考点】定积分在求面积中的应用 【解析】先求出两曲线的交点坐标,利用定积分的应用即可求出对应图形的面积. 【解答】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 37. 【答案】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 【考点】定积分的简单应用 【解析】先根据定积分的运算法则建立a 与b 的等量关系,然后设ab =t 则a +b =−3t+12,再利用构造法构造a ,b 为方程x 2+3t+12x +t =0两根,然后利用判别式可求出a .b 的取值范围. 【解答】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 38.【答案】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x 与直线x =π2,x =π所围成的平面区域的面积的二倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.39. 【答案】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 【考点】定积分在求面积中的应用 【解析】求曲线y =sin x 与直线x =−π2,x =5π4,y =0所围成的平面图形的面积【解答】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 40.【答案】 由 {y =kx y =x −x2 得 {x =1−k y =k −k 2 (0<k <1). 由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112 ∴ (1−k)3=12 ∴ k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.【考点】定积分的简单应用 【解析】先由 {y =kx y =x −x 2 得 {x =1−k y =k −k 2 ,根据直线y =kx 分抛物线y =x −x 2与x 轴所围成图形为面积相等的两个部分得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 下面利用定积分的计算公式即可求得k 值. 【解答】由 {y =kx y =x −x 2得 {x =1−k y =k −k 2 (0<k <1).由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112试卷第31页,总31页 ∴ (1−k)3=12 ∴k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.。

高中数学选修2-2-定积分的概念及其简单应用

高中数学选修2-2-定积分的概念及其简单应用

定积分的概念及其简单应用知识集结知识元定积分的应用知识讲解1.定积分的应用【应用概述】正如前面定积分的概念哪里所说,定积分表示的是一个面积,是一个大于零的数.那么它在实际当中的应用也就和求面积相关.例1:定积分|sin x|dx的值是.解:|sin x|dx==﹣cos x+cos x=1+1+0﹣(﹣1)=3.这个题如果这样子出,|sin x|在区间(0,)上与x轴所围成的面积,那么就成了一个应用题.如何解这类应用题呢?其实就是构建一个定积分,找到区间和要积分的函数即可.【定积分在求面积中的应用】1、直角坐标系下平面图形的面积2、极坐标系下平面图形的面积由连续曲线r=r(θ)及射线θ=α,θ=β所围成的平面图形的面积(图6)为3、用定积分求平面图形的面积的步骤a)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;b)解方程组求出每两条曲线的交点,以确定积分的上、下限;c)具体计算定积分,求出图形的面积.例题精讲定积分的应用例1.直线x=1,x=e与曲线y=围成的面积是()A.B.C.D.例2.由曲线,直线y=x所围成的封闭图形的面积是()A.B.C.D.1例3.抛物线y=x2-1与直线y=x+1所围成的平面图形的面积是()A.B.C.5D.用定积分研究简单几何体的体积知识讲解1.用定积分求简单几何体的体积【知识点的知识】1、已知平行截面面积的立体的体积2、旋转体的体积例题精讲用定积分研究简单几何体的体积例1.祖暅原理也称祖氏原理,是我国数学家祖暅提出的一个设计集合求积的著名命题:“幂势既同,则积不容异”,“幂”是截面积,“势”是几何体的高,意思是两个同高的立体,如在等高处截面积相等,则体积相等.由曲线x2=4y,x2=-4y,x=4,x=-4围成图形绕y轴旋转一周所得为旋转体的体积为V1:满足x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转一周所得旋转体的体积为V2,则()A.V1=V2B.V1=V2C.V1=V2D.V1=2V2例2.曲线y=e x,直线x=0,x=与x轴围成的平面图形绕x轴旋转一周得到旋转体的体积是()A.B.C.D.例3.曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.B.C.D.。

高中数学选修2-2同步练习题库:定积分的简单应用(填空题:容易)

高中数学选修2-2同步练习题库:定积分的简单应用(填空题:容易)

定积分的简单应用(填空题:容易)1、若,则实数的值是 .2、由曲线所围成的封闭图形的面积为________3、如图所示,在边长为1的正方形中任取一点,则点恰好取自阴影部分的概率为___________.4、已知,则函数的单调递减区间是______.5、定积分的值为.6、_____________.7、曲线与直线及所围成的封闭图形的面积为 .8、曲线与所围成的封闭图形的面积s=9、已知,则.10、曲线和曲线围成的图形面积是11、的值等于 .12、曲线与直线围成的封闭图形的面积是 .13、在平面直角坐标系内,由曲线所围成的封闭图形的面积为.14、二项式的展开式的第二项的系数为,则的值为.15、.16、由直线与曲线所围成的封闭图形的面积为______________.17、定积分.18、计算定积分:.19、已知函数,则。

20、= .21、计算= .22、计算:= .23、等于.24、________.25、定积分___________;26、=。

27、求曲线,所围成图形的面积.28、由曲线,直线所围图形面积S= .29、定积分= .30、定积分的值为____________.31、计算定积分(x2+sinx)dx=.32、求曲线y=,y=2-x,y=-x所围成图形的面积为_______。

33、已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为________.34、dx + .35、曲线=x与y=围成的图形的面积为______________.36、=________________。

37、设.若曲线与直线所围成封闭图形的面积为,则______.38、一物体在力(单位:)的作用下沿与力相同的方向,从处运动到(单位:)处,则力做的功为焦.39、由直线,,曲线及轴所围成的图形的面积是.40、计算定积分 .41、已知求 .42、曲线与直线所围成的封闭图形的面积为.43、在的展开式中的常数项为p,则 .44、设=,则二项式展开式中含项的系数是。

高中数学第四章定积分3定积分的简单应用教材习题点拨北师大版选修2-2

高中数学第四章定积分3定积分的简单应用教材习题点拨北师大版选修2-2

高中数学 第四章 定积分 3 定积分的简单应用教材习题点拨 北师大版选修2-2练习(P 85) 1.解:(1)定积分⎰01e xdx 中,被积函数为y=e x.被积函数的一个原函数为y=e x, 由牛顿—莱布尼茨公式可得⎰01e x dx=ex|1=e 1-e 0=e-1.(2)定积分⎰ππ2cosxdx 中,被积函数为y=cosx.被积函数的一个原函数为y=sinx, 由牛顿—莱布尼茨公式可得⎰ππ2cosxdx=sinx|2ππ=sinπ-sin2π=-1. (3)定积分⎰01x 3dx 中,被积函数为y=x 3.被积函数的一个原函数为y=41x 4, 由牛顿—莱布尼茨公式可得⎰01x 3dx=41x 4|10=41×14-41×04=41.2.解:(1)导函数为y′=(x 2)′=2x,⎰012xdx=x2|1=12-02=1;(2)导函数为y′=(x 2+5)′=2x,⎰012xdx=(x 2+5)|1=(12+5)-(02+5)=1;(3)导函数为y′=(x 2-π)′=2x,⎰012xdx=(x 2-π)|1=(12-π)-(02-π)=1;(4)导函数为y′=(x 2-a)′=2x,⎰012xdx=(x 2-a)|1=(12-a)-(02-a)=1.3.解:(1)定积分⎰01(x 3-1)dx 中,被积函数为y=x 3-1.被积函数的一个原函数为y=41x 4-x,由牛顿—莱布尼茨公式可得⎰01(x 3-1)dx=(41x 4-x)|10=(41×14-1)-(41×04-0)= 43-.(2)定积分⎰24x 1dx 中,被积函数为y=x1. 被积函数的一个原函数为y=ln|x|, 由牛顿—莱布尼兹公式可得⎰24x1dx=ln|x||42=ln4-ln2=ln2. (3)定积分⎰40πx 2cos 1dx 中,被积函数为y=x2cos 1. 被积函数的一个原函数为y=tanx,由牛顿—莱布尼茨公式可得⎰4π0x2cos 1dx=tanx |40π=tan 4π-tan0=1. 习题42(P 85) 1.解:⎰01x e 21dx=21x e 21|10=2121e -21e 0=2121e -21.2.解:⎰01f(x)dx=11+x |10=111+101+-=-21. 3.解:⎰0πf(x)dx=sinxcosx |0π=sinπcosπ-sin0cos0=0.4.解:(1)(sinx)′=cosx,(sinx+2)′=cosx,(sinx+c)′=cosx.(2)⎰2πcosxdx=sinx|20π=sin2π-sin0=1. 5.解:(1)f(x)=1+2x 的一个原函数是F(x)=x+x 2,所以f(x)=1+2x 在区间[0,1]上的定积分为⎰01f(x)dx=⎰01(1+2x)dx=(x+x 2) |1=(1+12)-(0+02)=2.(2)f(x)=3sinx+cosx 的一个原函数是F(x)=-3cosx+sinx,所以f(x)=3sinx+cosx 在区间[0,1]上的定积分为⎰01f(x)dx=⎰01(3sinx+cosx)dx=(-3cosx+sinx)|1=(-3cos1+sin1)-(-3cos0+sin0)=-3cos1+sin1+3.6.解:(1)函数y=2x-7的一个原函数为F(x)=x 2-7x, 所以⎰01(2x-7)dx=(x 2-7x)|1=(12-7×1)-(02-7×0)=-6.(2)函数y=23x +x2的一个原函数为F(x)=x 3-+2ln|x|, 所以⎰12(23x +x2)dx=(x 3-+2ln|x|)|21=(-23+2ln2)-(13-+2ln1)=23+2ln2. (3)函数y=3x的一个原函数为F(x)=3ln 13x,所以,⎰133x dx=(3ln 13x )|31=(3ln 133)-(3ln 131)=3ln 24. (4)函数y=sinx 的一个原函数为F(x)=-cosx, 所以,⎰-ππsinxdx=-cosx |ππ-=(-cosπ)-[-cos(-π)]=0.(5)函数y=lnx 的一个原函数为F(x)=x(lnx-1), 所以,⎰1elnxdx=x(lnx-1)|1e =e(lne-1)-1×(ln1-1)=1. (6)函数y=112+x 的一个原函数为ln(x+12+x ),所以,⎰01112+x dx=ln(x+12+x )|1=ln(1+2)-ln(0+1)=ln(1+2).(7)函数y=x 2-2x+3的一个原函数为F(x)=31x 3-x 2+3x, 所以,⎰01(x 2-2x+3)dx=(31x 3-x 2+3x)|10=(31×13-12+3×1)-(31×03-02+3×0)=231.(8)函数y=(x-1)2=x 2-2x+1的一个原函数为F (x )=31x 3-x 2+x, 所以,⎰13(x-1)2dx=(31x 3-x 2+x)|31=(31×33-32+3)-(31×13-12+1)=232.(9)函数y=2x+x 2的一个原函数为F(x)=33122ln 1x x +, 所以⎰-11(x 2+2x )dx=(2ln 12x +31x 3)|11-=(2ln 121+31×13)-(2ln 12-1+31×(-1)3)=32ln 23+x . (10)函数y=x 21+x x 的一个原函数为F(x)=21ln|x|+52x 2x, 所以,⎰12(x 21+x x )dx=(21ln|x|+52x 2x )|21=(21ln2+52×222)-(21ln1+52×121)=21ln2+258-52. 7.解:设汽车在5~10 s 这段时间走过的路程为s,则s=⎰510(2t+t+2)dt=[3423t +22t +2t ]|105=10340-3205+295(m). 答:汽车在5~10 s 这段时间走过的路程为10340-3205+295m. 8.解:设弹簧弹力在这一过程中所做的功为W,则W=⎰8.06.0(-0.5x)dx=0.07(焦耳).答:这一过程中弹簧弹力所做的功为0.07焦耳.B 组1.解:⎰-22ππf(x)dx=⎰20πf(x)dx+⎰-2πf(x)dx=⎰20π-sinxdx+⎰-2πxdx=cosx |2π+21x 2|02π=cos 2π-cos0+21×02-21×(-2π)2=-82π-1.思路分析:将区间[-2π,2π]拆分成[0,2π]和[-2π,0],函数f(x)在区间[-2π,2π]的积分等于函数在区间[0,2π]和[-2π,0]的积分之和.2.解:(1)定积分⎰01x 2dx 中,被积函数为y=x 2.被积函数的一个原函数为y=31x 3, 由牛顿—莱布尼茨公式可得⎰01x 2dx=31x 3|10=31×13-31×03=31.用图像表示为: (2)定积分⎰12(x-1)2dx 中,被积函数为y=(x-1)2=x 2-2x+1.被积函数的一个原函数为y=31x 3-x 2+x, 由牛顿—莱布尼茨公式可得⎰12(x 2-2x+1)dx=(31x 3-x 2+x)|21=(31×23-22+2)-(31×13-12+1)=31. 用图像表示为: (3)定积分⎰-10(x+1)2dx 中,被积函数为y=(x+1)2=x 2+2x+1. 被积函数的一个原函数为y=31x 3+x 2+x, 由牛顿—莱布尼茨公式可得⎰-10(x 2+2x+1)dx=(31x 3+x 2+x)|01-=(31×03-02+0)-[31×(-1)3+(-1)2-1]=31. 通过计算可以看出:以上积分的结果相同.从图像中不难看出:三种情况下曲边梯形的面积相等,故积分值相等. 练习(P 88) 1.解:曲线y=x1,直线x=1,x=2以及x 轴围成的平面图形的面积为⎰12x 1dx=ln|x||21=ln2-ln1=ln2.2.解:曲线y=e x 与y 轴的交点为(0,1),曲线y=e x,直线x=1以及x 轴、y 轴围成的平面图形的面积为⎰01e x dx=ex|1=e 1-e 0=e-1.练习(P 90)1.解:直线x=y,直线x=1,x=2围成的平面图形绕x 轴旋转一周得到的圆台体积为⎰12πx 2dx=31πx 3|21=31π×23-31π×13=37π. 2.解:曲线y=1+x x+1,x 轴,y 轴和直线x=1围成的区域绕x 轴旋转一周得到的旋转体的体积为:⎰01π(x+1)dx=(21πx 2+πx)|10|10=(21π×12+π×1)-(21π×02+π×0)=23π.习题43(P 90)1.解:⎩⎨⎧+==,2,2x y x y 解方程组得⎩⎨⎧=-=⎩⎨⎧==1,14,2y x y x 或. 所求平面图形的面积为⎰-12(x+2-x 2)dx=(22x +2x-33x )|21-=8-621.2.解:如图所示:所求的阴影部分的面积分为两部分:一部分是x 轴上方的面积,一部分是x 轴下方的面积.x 轴上方的面积S 1=⎰-22ππcosxdx=sinx|22ππ-=sin2π-sin(-2π)=2, x 轴下方的面积S 1=S 2=2,所求的阴影部分的面积为S=S 1+S 2=2+2=4. 3.解:所求的面积为S=⎰20πsinxdx=-cosx|20π=-cos2π-(-cos0)=1. 4.解:所求的面积为S=⎰12(x+x 1)dx=(21x 2+ln|x|)|21=(21×22+ln2)-( 21×12+ln1)=23+ln2.5.解:所求旋转体的体积为 V=⎰12π(x 1)2dx=-π·x1|21=(-π×21)-(-π×11)=2π. 6.解:所求旋转体的体积为 V=⎰01π(x )2dx=π·21x 2|10=(π×21×12)-(π×21×02)=2π. 7.解:由题意知⎪⎩⎪⎨⎧==xy x y ,2解此方程组得⎩⎨⎧==0,0y x 或⎩⎨⎧==1,1y x .所求平面图形的面积为:⎰01x dx-⎰01x 2dx=32x x|10-31x 3|10=32×1×1-32×0×0-(31×13-31×03)=31.该平面图形绕x 轴旋转一周所得旋转体的体积为:⎰01π(x )2dx-⎰01π(x 2)2dx=21πx 2|10-51πx 5|10=21π×12-21π×02-(51π×15-51π×05)=103π. STS浅淡微积分(二)微积分是数学中的基础分支.内容主要包括函数、极限、微分学、积分学及其应用.函数是微积分研究的基本对象,极限是微积分的基本概念,微分和积分是特定过程特定形式的极限.17世纪后半叶,英国数学家I.牛顿和德国数学家G.W.莱布尼茨,总结和发展了几百年间前人的工作,建立了微积分,但他们的出发点是直观的无穷小量,因此尚缺乏严密的理论基础.19世纪,柯西和K.魏尔斯特拉斯把微积分建立在极限理论的基础上;加之19世纪后半叶实数理论的建立,又使极限理论有了严格的理论基础,从而使微积分的基础和思想方法日臻完善.微分学的基本概念是导数.导数是从速度问题和切线问题抽象出来的数学概念.牛顿从苹果下落时越落越快的现象受到启发,希望用数学工具来刻画这一事实.导数作为一个数学工具无论在理论上还是在实际应用中,都起着基础而重要的作用.例如在求极大、极小值问题中的应用.积分学的基本概念是一元函数的不定积分和定积分.主要内容包括积分的性质、计算,以及在理论和实际中的应用.不定积分概念是为解决求导和微分的逆运算而提出来的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[学习目标] 1.理解定积分的几何意义,会通过定积分求由两条或多条曲线围成的图形的面积.2.掌握利用定积分求曲边梯形面积的几种常见题型及方法.3.通过具体实例了解定积分在物理中的应用,会求变速直线运动的路程和变力做功的问题.知识点一 定积分在求几何图形面积方面的应用1.求由一条曲线y =f (x )和直线x =a ,x =b (a <b )及y =0所围成的平面图形的面积S . (1)如图①,f (x )>0,⎠⎛a b f (x )d x >0,所以S =⎠⎛ab f (x )d x .(2)如图②,f (x )<0,⎠⎛ab f (x )d x <0,所以S =⎪⎪⎪⎪⎠⎛ab f (x )d x=-⎠⎛ab f (x )d x .(3)如图③,当a ≤x ≤c 时,f (x )≤0,⎠⎛a c f (x )d x <0;当c ≤x ≤b 时,f (x )≥0,⎠⎛ab f (x )d x >0.所以S =⎪⎪⎪⎪⎠⎛ac f (x )d x+⎠⎛cb f (x )d x =-⎠⎛ac f (x )d x +⎠⎛cb f (x )d x .2.求由两条曲线f (x )和g (x )(f (x )>g (x )),直线x =a ,x =b (a <b )所围成平面图形的面积S . (1)如图④,当f (x )>g (x )≥0时,S =⎠⎛ab [f (x )-g (x )]d x .(2)如图⑤,当f (x )>0,g (x )<0时,S =⎠⎛ab f (x )d x +⎪⎪⎪⎪⎠⎛ab g (x )d x=⎠⎛ab [f (x )-g (x )]d x .3.当g (x )<f (x )≤0时,同理得S =⎠⎛ab [f (x )-g (x )]d x .思考 (1)怎样利用定积分求不分割型图形的面积? (2)当f (x )<0时,f (x )与x 轴所围图形的面积怎样表示?答案 (1)求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来表示面积,然后计算定积分即可.(2)如图,因为曲边梯形上边界函数为g (x )=0,下边界函数为f (x ),所以 S =⎠⎛a b (0-f (x ))d x =-⎠⎛ab f (x )d x .4.利用定积分求平面图形面积的步骤:(1)画出图形:在平面直角坐标系中画出曲线或直线的大致图象;(2)确定图形范围,通过解方程组求出交点的横坐标(或纵坐标),确定积分上、下限; (3)确定被积函数;(4)写出平面图形面积的定积分表达式;(5)利用微积分基本定理计算定积分,求出平面图形的面积,写出答案. 知识点二 定积分在物理中的应用 1.在变速直线运动中求路程、位移路程是位移的绝对值之和,从时刻t =a 到时刻t =b 所经过的路程s 和位移s ′分别为: (1)若v (t )≥0,则s =⎠⎛a b v (t )d t ,s ′=⎠⎛ab v (t )d t .(2)若v (t )≤0,则s =-⎠⎛a b v (t )d t ,s ′=⎠⎛ab v (t )d t .(3)若在区间[a ,c ]上v (t )≥0,在区间[c ,b ]上v (t )<0, 则s =⎠⎛a c v (t )d t -⎠⎛c b v (t )d t ,s ′=⎠⎛ab v (t )d t .2.定积分在物理中的应用(1)做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即s =⎠⎛ab v (t )d t .(2)一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s (单位:m),则力F 所做的功为W =Fs ;而若是变力所做的功W ,等于其力函数F (x )在位移区间[a ,b ]上的定积分,即W =⎠⎛ab F (x )d x .思考 下列判断正确的是 .(1)路程是标量,位移是矢量,路程和位移是两个不同的概念; (2)利用定积分求变速直线运动的路程和位移是同一个式子⎠⎛t 1t 2v (t )d t ;(3)利用定积分求变速直线运动的路程和位移不是同一个式子⎠⎛t 1t 2v (t )d t .答案 (1)(3)解析 (1)显然正确.对于(2)(3)两个判断,由于当v (t )≥0时,求某一时间段内的路程和位移均用⎠⎛t 1t 2v (t )d t 求解;当v (t )<0时,求某一时间段内的位移用⎠⎛t 1t 2v (t )d t 求解,这一时段的路程是位移的相反数,即路程为 -⎠⎛t 1t 2v (t )d t .所以(2)错(3)正确.题型一 利用定积分求平面图形的面积问题例1 求由抛物线y 2=x5,y 2=x -1所围成图形的面积.解 在同一个平面直角坐标系上画出两个抛物线的大致图形,如图.方法一 以x 为积分变量.由⎩⎪⎨⎪⎧y 2=x 5,y 2=x -1,得两个抛物线的两个交点坐标分别为A ⎝⎛⎭⎫54,12,B ⎝⎛⎭⎫54,-12. 设点P (1,0),则所求面积S =2⎝ ⎛⎭⎪⎫⎠⎜⎛054x 5d x -⎠⎜⎛154x-1d x=2()355324420312x x ⎤--⎥⎢⎥⎣⎦=23. 方法二 以y 为积分变量.由⎩⎪⎨⎪⎧y 2=x 5,y 2=x -1,可得两个抛物线的两个交点坐标分别为A ⎝⎛⎭⎫54,12,B ⎝⎛⎭⎫54,-12. 设点P (1,0),则所求面积S =2⎠⎜⎛012 (y2+1-5y 2)d y=2⎝⎛⎭⎫y -43y 3⎪⎪⎪⎪120=23. 反思与感悟 若以x 为积分变量,则被积函数的原函数不易确定,而且计算也比较麻烦;若以y 为积分变量,则可以避免这种情况.选取积分变量有时对解题很关键.跟踪训练1 在曲线y =x 2(x ≥0)上的某一点A 处作一切线,使之与曲线以及x 轴所围成图形的面积为112.试求:切点A 的坐标和过切点A 的切线方程.解 如图所示,设切点A (x 0,y 0),由y ′=2x 得过A 点的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20.令y =0,得x =x 02即C ⎝⎛⎭⎫x 02,0. 设由曲线和过A 点的切线及x 轴所围成图形的面积为S ,则S =S 曲边△AOB -S △ABC . S 曲边△AOB =x ⎰x 2d x =13x 3⎪⎪⎪x 00=13x 30,S △ABC =12|BC |·|AB |=12⎝⎛⎭⎫x 0-x 02·x 20=14x 30, 即S =13x 30-14x 30=112x 30=112,所以x 0=1. 从而切点为A (1,1),切线方程为y =2x -1 题型二 运用定积分求解物理问题例2 一点在直线上从时刻t =0(s)开始以速度v =t 2-4t +3(m/s)运动,求: (1)此点在t =4 s 时的位置; (2)此点在t =4 s 时运动的路程.解 因为位置决定于位移,所以它是v (t )在[0,4]上的定积分,而路程是位移的绝对值之和,所以需要判断在[0,4]上哪些时间段的位移为负. (1)在t =4 s 时,该点的位移为⎠⎛04(t 2-4t +3)d t =⎝⎛⎭⎫13t 3-2t 2+3t ⎪⎪⎪40=43(m).即在t =4 s 时该点在距出发点43 m 处.(2)∵v (t )=t 2-4t +3=(t -1)(t -3), ∴在区间[0,1]及[3,4]上,v (t )≥0,在区间[1,3]上,v (t )≤0, ∴该点在t =4 s 时的路程为S =⎠⎛01(t 2-4t +3)d t +⎪⎪⎪⎪⎠⎛13(t 2-4t +3)d t+⎠⎛34(t 2-4t +3)d t=⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =4(m).反思与感悟 解决此类问题的一般步骤:(1)求出每一时间段上的速度函数;(2)根据定积分的物理意义,求出对应时间段上的定积分.跟踪训练2 有一辆汽车以每小时36 km 的速度沿平直的公路行驶,在B 处需要减速停车.设汽车以2 m/s 2的加速度刹车,问:从开始刹车到停车,汽车行驶了多远? 解 设从开始刹车到停车,汽车经过了t s. v 0=36 km /h =10 m/s ,v (t )=v 0-at =10-2t . 令v (t )=0,解得t =5.所以从开始刹车到停车,汽车行驶的路程为s =⎠⎛05(10-2t )d t =(10t -t 2)⎪⎪⎪50=25(m).故从开始刹车到停车,汽车行驶了25 m. 题型三 用定积分解决变力做功问题例3 设有一个长为25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,求使弹簧由25 cm 伸长到40 cm 所做的功.解 设x 表示弹簧伸长的长度,f (x )表示加在弹簧上的力,则f (x )=kx (其中常数k 为比例系数).因为当f (x )=100时,x =5,所以k =20. 所以f (x )=20x .弹簧由25 cm 伸长到40 cm 时,弹簧伸长的长度x 从0 cm 变化到15 cm ,故所做的功W =⎠⎛01520x d x =10x 2⎪⎪⎪150=2 250(N·cm)=22.5(J).反思与感悟 (1)根据物理学知识,求出变力f (x )的表达式;(2)由功的物理意义知,物体在变力f (x )的作用下,沿力的方向做直线运动,使物体由一个位置移到另一个位置,因此,求功之前应先求出位移的起始位置和终止位置;(3)根据变力做功的公式W =⎠⎛ab f (x )d x 求出变力所做的功.跟踪训练3 如图所示,设气缸内活塞一侧存在一定量气体,气体做等温膨胀时推动活塞向右移动一段距离,若气体体积由V 1变为V 2,求气体压力所做的功.解 由物理学知识知,气体膨胀为等温过程,所以气体压强为P =CV (V 表示气体体积,C 为常数),而活塞上的压力为F =PQ =CQ V =CL (Q 表示截面积,L 表示活塞移动的距离,V =LQ ).记L 1,L 2分别表示活塞的初始位置和终止位置,于是有W =⎠⎛L 1L 2F (L )d L =⎠⎛L 1L 2C L d L =C ⎠⎛V 1V 21V d V=C (ln V )⎪⎪⎪V 2V 1=C (ln V 2-ln V 1).所以气体体积由V 1变为V 2,气体压力所做的功为C (ln V 2-ln V 1).用定积分求平面图形面积时,因对图形分割不当致误例4 求由抛物线y 2=8x (y >0)与直线x +y -6=0及y =0所围成图形的面积. 错解 由题意,作出图形如图由⎩⎪⎨⎪⎧ y 2=8x (y >0),x +y -6=0得⎩⎪⎨⎪⎧x =2,y =4,所以抛物线y 2=8x (y >0)与直线x +y -6=0的交点坐标为(2,4),所以所求面积为S =⎠⎛04(6-x -8x )d x=324201262223x x x ⎛⎫-- ⎪⎝⎭=24-8-423×324=16-3223.错因分析 S =⎠⎛04(6-x -8x )d x =⎠⎛04(6-x )d x -⎠⎛048x d x .⎠⎛04(6-x )d x 表示由直线y =6-x 与直线x =0,直线x =4,直线y =0围成的图形的面积,⎠⎛048x d x 表示由抛物线y 2=8x (y >0)与直线x =0,直线x =4,直线y =0围成的图形的面积.上述S 显然不是所求图形的面积.正解 S =⎠⎛028x d x +⎠⎛26(6-x )d x=3223x ⎫⎪⎭⎪⎪⎪ 20+⎝⎛⎭⎫6x -12x 2⎪⎪⎪62=163+⎣⎡⎦⎤⎝⎛⎭⎫6×6-12×62-⎝⎛⎭⎫6×2-12×22 =163+8=403. 防范措施 合理划分积分上、下限及正确选择积分变量,最好结合图形进行处理.1.在下面所给图形的面积S 及相应表达式中,正确的有( )S =⎠⎛ba [f (x )-g (x )]d x S =⎠⎛08(22x -2x +8)d x① ②S =⎠⎛14f (x )d x -⎠⎛47f (x )d x S =⎠⎛0a [g (x )-f (x )]d x +⎠⎛ab [f (x )-g (x )]d x③ ④A.①③B.②③C.①④D.③④答案 D解析 ①应是S =⎠⎛ab [f (x )-g (x )]d x ,②应是S =⎠⎛0822x d x -⎠⎛48(2x -8)d x ,③和④正确.故选D.2.曲线y =cos x (0≤x ≤32π)与坐标轴所围图形的面积是( )A.2B.3C.52 D.4答案 B解析 S =⎠⎜⎛0π2cos x d x -⎠⎜⎜⎛π23π2cos x d x =sin x ⎪⎪⎪⎪π20- sin x⎪⎪⎪3π2π2=sin π2-sin 0- sin 3π2+sin π2=1-0+1+1=3.3.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t ,则列车刹车后前进多少米才能停车( )A.405B.540C.810D.945 答案 A解析 停车时v (t )=0,由27-0.9t =0,得t =30, ∴s =⎠⎛30v (t )d t =⎠⎛030 (27-0.9t )d t =(27t -0.45t 2)⎪⎪30=405.4.由曲线y =x 2+4与直线y =5x ,x =0,x =4所围成平面图形的面积是 . 答案193解析 由图形可得S =⎠⎛01(x 2+4-5x )d x +⎠⎛14(5x -x 2-4)d x=⎝⎛⎭⎫13x 3+4x -52x 2⎪⎪⎪ 10+⎝⎛⎭⎫52x 2-13x 3-4x ⎪⎪⎪41 =13+4-52+52×42-13×43-4×4-52+13+4 =193. 5.一个弹簧压缩x cm 可产生4x N 的力,把它从自然长度压缩到比自然长度短5 cm ,求弹簧克服弹力所做的功. 解 设F (x )=kx ,∵弹簧压缩x cm 可产生4x N 的力,∴k =4. ∴弹簧克服弹力所做的功为W =4⎠⎛05x d x =4×⎝⎛⎭⎫12x 2⎪⎪⎪50=50(N·cm)=0.5(J).1.利用定积分求平面图形面积的一般步骤:(1)在平面直角坐标系中画出图形;(2)通过解方程求出交点坐标;(3)写出平面图形面积的定积分表达式,当被求平面区域较复杂时,可分割求和;(4)运用微积分基本定理计算定积分,求出平面图形的面积. 2.路程问题.(1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算. 3.变力做功问题.(1)变力做功问题,首先要将变力用其方向上的位移表示出来,这是关键一步.(2)根据变力做功的公式,将其转化为求定积分的问题.一、选择题1.用S 表示图中阴影部分的面积,则S 的值是( )A. ⎠⎛ac f (x )d xB.⎪⎪⎪⎪⎠⎛ac f (x )d xC. ⎠⎛ab f (x )d x +⎠⎛bc f (x )d xD.⎠⎛b c f (x )d x -⎠⎛ab f (x )d x答案 D解析 ∵x ∈[a ,b ]时, f (x )<0,x ∈[b ,c ]时,f (x )>0,∴阴影部分的面积S =⎠⎛b c f (x )d x -⎠⎛ab f (x )d x .2.一物体沿直线以v =2t +1 (t 的单位:s ,v 的单位:m/s)的速度运动,则该物体在1~2 s 间行进的路程为( ) A.1 m B.2 m C.3 m D.4 m答案 D 解析 s =⎠⎛12(2t +1)d t =(t 2+t )⎪⎪⎪21=4(m). 3.一物体从A 处向B 处运动,速度为1.4t m /s(t 为运动的时间),到B 处时的速度为35 m/s ,则AB 间的距离为( ) A.120 m B.437.5 m C.360 m D.480 m答案 B解析 从A 处到B 处所用时间为25 s.所以|AB |=⎠⎛251.4t d t =0.7t 2⎪⎪⎪25=437.5 (m). 4.若y =f (x )与y =g (x )是[a ,b ]上的两条光滑曲线的方程,则这两条曲线及直线x =a ,x =b 所围成的平面区域的面积为( ) A.⎠⎛ab [f (x )-g (x )]d xB.⎠⎛a b [g (x )-f (x )]d xC.⎠⎛ab |f (x )-g (x )|d xD.⎪⎪⎪⎪⎠⎛ab [f (x )-g (x )]d x答案 C解析 当f (x )>g (x )时,所求面积为⎠⎛a b [f (x )-g (x )]d x ;当f (x )≤g (x )时,所求面积为⎠⎛ab [g (x )-f (x )]d x .综上,所求面积为⎠⎛ab |f (x )-g (x )|d x .5.以初速度40 m/s 竖直向上抛一物体,t s 时速度v =40-10t 2,则此物体达到最高时的高度为( ) A.1603 m B.803 m C.403 m D.203m 答案 A解析 v =0时物体达到最高, 此时40-10t 2=0,则t =2 s. 又∵v 0=40 m/s ,∴t 0=0 s. ∴h =⎠⎛2(40-10t 2)d t =⎝⎛⎭⎫40t -103t 3⎪⎪⎪20=1603(m). 6.如果1 N 的力使弹簧伸长1 cm ,在弹性限度内,为了将弹簧拉长10 cm ,拉力所做的功为( )A.0.5 JB.1 JC.50 JD.100 J答案 A解析 由于弹簧所受的拉力F (x )与伸长量x 成正比,依题意,得F (x )=x ,为了将弹簧拉长10 cm ,拉力所做的功为W =⎠⎛010F (x )d x =⎠⎛010x d x = 12x 2⎪⎪⎪100=50 (N·cm)=0.5 (J). 二、填空题7.由曲线y =x 与y =x 3所围成的图形的面积可用定积分表示为 .答案 ⎠⎛01(x -x 3)d x 解析 画出y =x 和y =x 3的草图,所求面积为如图所示阴影部分的面积,解方程组⎩⎨⎧ y =x ,y =x3得交点的横坐标为x =0及x =1.因此,所求图形的面积为S =⎠⎛01(x -x 3)d x .8.有一横截面的面积为4 cm 2的水管控制往外流水,打开水管后t 秒末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6).则t =0到t =6这段时间内流出的水量为 cm 3.答案 144解析 由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4 ⎠⎛06(6t -t 2)d t =4⎝⎛⎭⎫3t 2-13t 3⎪⎪⎪60=144 (cm 3).故t =0到t =6这段时间内流出的水量为144 cm 3. 9.如图所示,将一弹簧从平衡位置拉到离平衡位置l m 处,则克服弹簧力所做的功为 J.答案 12kl 2 解析 在弹性限度内,拉伸(压缩)弹簧所需的力与弹簧拉伸(压缩)的长度成正比,即F (x )=kx ,其中k 为比例系数.由变力做功公式得W = ⎠⎛0l kx d x =12kx 2⎪⎪⎪10=12kl 2(J). 10.由两条曲线y =x 2,y =14x 2与直线y =1围成平面区域的面积是 .答案 43解析 如图,y =1与y =x 2交点A (1,1),y =1与y =x 24交点B (2,1),由对称性可知面积 S =2⎝ ⎛⎭⎪⎫⎠⎛01x 2d x +⎠⎛121d x -⎠⎛0214x 2d x =43.三、解答题11.求抛物线y =-x 2+4x -3与其在点A (1,0)和点B (3,0)处的切线所围成图形的面积.解 由y ′=-2x +4得在点A 、B 处切线的斜率分别为2和-2,则两直线方程分别为y =2x -2和y =-2x +6,由⎩⎪⎨⎪⎧y =2x -2,y =-2x +6,得两直线交点坐标为C (2,2), ∴S =S △ABC -⎠⎛13(-x 2+4x -3)d x =12×2×2- ⎝⎛⎭⎫-13x 3+2x 2-3x ⎪⎪⎪31=2-43=23. 12.物体A 以速度v A =3t 2+1(米/秒)在一直线上运动,同时物体B 也以速度v B =10t (米/秒)在同一直线上与物体A 同方向运动,问多长时间物体A 比B 多运动5米,此时,物体A ,B 运动的距离各是多少?解 依题意知物体A ,B 均做变速直线运动.设a 秒后物体A 比B 多运动5米,则A 从开始到a 秒末所走的路程为s A =⎠⎛0a v A d t =⎠⎛0a (3t 2+1)d t =a 3+a ; B 从开始到a 秒末所走的路程为s B =⎠⎛0a v B d t =⎠⎛0a 10t d t =5a 2. 由题意得s A =s B +5,即a 3+a =5a 2+5,得a =5.此时s A =53+5=130(米),s B =5×52=125(米).故5秒后物体A 比B 多运动5米,此时,物体A ,B 运动的距离分别是130米和125米.13.定义F (x ,y )=(1+x )y ,x ,y ∈(0,+∞).令函数f (x )=F (1,log 2(x 2-4x +9))的图象为曲线C 1,曲线C 1与y 轴交于点A (0,m ),过坐标原点O 作曲线C 1的切线,切点为B (n ,t )(n >0),设曲线C 1在点A 、B 之间的曲线段与OA 、OB 所围成图形的面积为S ,求S 的值.解 ∵F (x ,y )=(1+x )y , ∴f (x )=F (1,log 2(x 2-4x +9))=2log 2(x 2-4x +9)=x 2-4x +9,故A (0,9),f ′(x )=2x -4. 又∵过O 作C 1的切线,切点为B (n ,t )(n >0),∴⎩⎪⎨⎪⎧ t =n 2-4n +9,t n=2n -4,解得B (3,6). ∴S =⎠⎛03(x 2-4x +9-2x )d x = ⎝⎛⎭⎫13x 3-3x 2+9x ⎪⎪⎪ 30=9.。

相关文档
最新文档