一维信号小波阈值去噪
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一维信号小波阈值去噪
1、小波阈值处理基本理论所谓阈值去噪简而言之就是对信号进行分解,然后对分解后的系数进行阈值处理,最后重构得到去噪信号。
该算法其主要理论依据是:小波变换具有很强的去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却分布于整个小波域内。
因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值。
可以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声。
于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零。
小波阈值收缩法去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的收缩(shrinkage)处理。
最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的信号。
2、阈值函数的选取小波分解阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数不同处理策略,是阈值去噪中关键的一步。
设w表示小波系数,T为给定阈值,sign(*)为符号函数,常见的阈值函数有:
硬阈值函数:(小波系数的绝对值低于阈值的置零,高于的保留不变)
软阈值函数:(小波系数的绝对值低于阈值的置零,高于的系数shrinkage处理)
式(3-8)和式(3-9)用图像表示即为:
值得注意的是:
1)硬阈值函数在阈值点是不连续的,在下图中已经用黑线标出。
不连续会带来振铃,伪吉布斯效应等。
2)软阈值函数,原系数和分解得到的小波系数总存在着恒定的偏差,这将影响重构的精度
同时这两种函数不能表达出分解后系数的能量分布,半阈值函数是一种简单而经典的改进方案。
见下图:
选取的阈值最好刚好大于噪声的最大水平,可以证明的是噪声的最大限度以非常高的概率。