概率论中几种具有可加性的分布与关系

合集下载

概率论中几种常用的重要的分布

概率论中几种常用的重要的分布

概率论中几种常用的重要的分布概率论中几种常用的重要的分布摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。

其在实际中的应用。

关键词1 一维随机变量分布随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布.下面我们将对这六种分布逐一地进行讨论.随机事件是按试验结果而定出现与否的事件。

它是一种“定性”类型的概念。

为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。

称这种变数为随机变数。

本章内将讨论取实值的这种变数——一维随机变数。

定义1.1 设X 为一个随机变数,令()([(,)])([]),()F x P X x P Xx x=∈-∞=-∞+∞.这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。

它是一个普通的函数。

成这个函数为随机函数X 的分布函数。

有的随机函数X 可能取的值只有有限多个或可数多个。

更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈=称这样的随机变数为离散型随机变数。

称它的分布为离散型分布。

【例1】下列诸随机变数都是离散型随机变数。

(1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。

称这种随机变数的分布为退化分布。

一个退化分布可以用一个常数a 来确定。

(2)X 可能取的值只有两个。

确切地说,存在着两个常数a ,b ,使([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。

如果([])P X b p ==,那么,([])1P X a p ===-。

因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。

特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。

伯努利分布的可加性

伯努利分布的可加性

伯努利分布的可加性伯努利分布是数学领域中最简单、最常用的概率分布之一,它可以用来描述所有真实世界中的随机事件。

它是由20世纪初英国数学哲学家贝尔伯努利(George Boole)提出的,它的典型特征是二元的,即每次实验只有两种可能的结果,比如:发生某种事件或不发生,合格或不合格,成功或失败,买或不买等。

伯努利分布的可加性是指将多个伯努利实验进行组合,求其总体概率,也就是求各个伯努利实验的概率的和。

统计学上有许多关于伯努利分布的可加性的推论,它的可加性表明有一种简单的方法可以计算出多个独立伯努利实验的总体概率。

要理解伯努利分布的可加性,首先需要理解其可加性的本质。

伯努利分布的可加性实质上可以理解为从独立实验中定义了基本的组合性质,而这种组合性质可以通过概率三角法求解。

假设有两个不同伯努利实验,A和B,每个实验有两种可能的结果,即发生或者不发生,也就是0和1.根据概率三角法,这两个实验的总体概率为组合概率的乘积(A * B),而每个实验的概率分别为(A和B)。

要求多个伯努利实验的总体概率,可以把这多个实验的概率求和。

对于N个连续的伯努利实验,例如A,B,C,D,和E,每个实验的概率分别为A,B,C,D,和E,总的概率则为A + B + C + D + E。

此外,伯努利分布的可加性允许我们在求某一特定结果的概率时节约极大的计算量。

假设有5个伯努利实验,它们分别为A,B,C,D,和E,对应的概率为A,B,C,D,和E。

假设要求A,B,C,D,和E发生的概率,而不是求各自的概率的和。

可以使用伯努利分布的可加性以这种方式求解:A * B * C * D * E,这比先求出A,B,C,D,和E五个实验的概率之和,再乘以A,B,C,D,和E五个实验发生的概率,节约了大量的计算量。

通过对伯努利分布及其可加性的分析可以看出,伯努利分布是一种简单易用的概率分布,它具有独立实验,可加性和可统计特征,可以在实际工作中得到广泛应用。

概率论与数理统计【第一到四章】公式

概率论与数理统计【第一到四章】公式

概率论公式!一、随机事件与概率二、随机变量及其分布三、多维随机变量及其分布联合分布函数:对任意的n个实数,,,n个事件同时发生的概率,,,,。

联合分布函数,性质:单调性:对x,y单调非减。

有界性:,,,,,右连续性:对每个变量右连续。

非负性:对任意,,有,,,,,。

二维离散随机变量:只取有限个或可列个数对。

联合分布列:,,i,j=1,2…联合分布列性质:非负性、正则性。

联合密度函数:,,使,,,,。

联合密度函数性质:非负性、正则性、,X的边际分布:,,。

Y的边际分布:,,。

二维指数分布:,,,,其他,是参数其边际分布是一维指数分布。

边际分布列:二维离散随机变量对单个变量求和:,,,边际密度函数:,,,=,为X的边际密度函数。

,,,=,为Y的边际密度函数。

相互独立:多维随机变量的分布函数为,,,边际分布为,对任意n个实数,,:,,称,,相互独立。

可分离:,=,,,,。

①相互独立②非零区域可分解为两个一维区间乘积。

多维离散随机变量函数:,,为n维离散随机变量,则,,为一维离散随机变量。

可加性:同一类分布的独立随机变量和的分布仍属于此类分布。

泊松分布的可加性:,,则.二项分布的可加性:,,,,则,。

连续场合的卷积公式:X和Y独立,密度函数分别为和,则Z=X+Y的密度函数为:正态分布的可加性:,,则。

变量变换法:即数分中求二重积分的变量变换法:的联合密度函数是,,若,,有连续偏导数,且存在唯一反函数,,,其雅可比行列式,,,,二维随机变量,,,则的联合密度函数是:,,,,增补变量法:若,,则可令或。

多维随机变量特征数:数学期望:,的数学期望为,,,在离散场合,,,在连续场合当,,得X的期望。

当,,的X的方差。

期望和方差的性质:和的期望得期望的和:积的期望得期望的积:X和Y独立,则和差的方差得方差的和差:X和Y独立,协方差(相关(中心)矩):,特别的,:正相关;:负相关。

:不相关:①X,Y取值毫无关联②存在某种非线性关系。

概率论中三个重要分布

概率论中三个重要分布
2
其中uα为标准正态分布上的α分为点
例题分析
1. 2. 3.
2 0.05 (12) n=12, α=0.05, 求 2 0.95 (12) n=12, α=0.95, 求 2 2 ) n=18, α=0.95, 求 0.95 (18和 0.05 (18) 使得 2 2 2 P( 0.95 (18) 0.05 (18)) 0.9 2 n=50, α=0.05, 求 0.05 (50)
t (n) u
其中uα为标准正态分布上的α分为点
例题分析
1. 2. 3.
4.
n=9, α=0.05, 求t0.05(9) n=9, α=0.95, 求t0.95(9) n=18, 求t0.025(18)及t0.975(18),使得 P(t0.975(18)≤t≤ t0.025(18))=0.95 n=50, α=0.05,求t0.05(50)
其中Γ( · )为伽玛函数
t分布的统计特性


t(n-1)分布具有对称性,且以t=0为对称 轴,其随机变量取值范围为(-∞,∞) t(n-1)分布期望值为0,方差为(n-1)/(n-3), 即 E (t (n 1)) 0 n 1 D (t (n 1)) , 当n 3 n3
t分布的统计特性(续)
t分布的α分为点

对于给定的α(0<α<1),称满足条件
P{t t (n)}
的点tα(n)为t分布上的α分为点 由t分布概率密度函数的对称性有
t1 (n) t (n)
t分布α分为点的求法

t分布α分为点的求法:

对于n≤45的α分为点可查表求得; 当n充分大(n>45)时,近似地有

伯努利分布的可加性

伯努利分布的可加性

伯努利分布的可加性
伯努利分布是数学中经典的概率分布,它用简单的理论模型和参数来表示一个
随机变量的分布情况,可以用来解释某一种事件的成功和失败的情况。

伯努利分布的重要特性是其可加性,可加性是指如果满足基本性质,两个独立变量的伯努利概率分布之和也是一个伯努利概率分布。

对于一个随机变量,它满足可加性的前提条件是实验可以成功地实现无相关性,不考虑任何间接因素,它的结果完全取决于单个的原因。

因此,如果两个独立的伯努利变量X和Y之和T=X+Y依然是一个伯努利分布,这一点可以通过下面的定义验证:
P(X+Y=k)=P(X=k-l)*P(Y=l)+P(X=k-2)*P(Y=2)
+···+P(X=k)*P(Y=0)
此外,伯努利分布是一个二进制随机变量,它只有两个可能的取值:0和1。

它可以解释单个事件的成功和失败,并且可加性使得我们可以用伯努利分布来计算多个独立事件的成功和失败的概率。

可以用此方法来分析复杂的组合效应,而不用考虑每个事件的概率之间的内在联系和关联,这就是伯努利分布的可加性特征,同时也是它受到人们广泛重视的一个原因。

概率论几种重要的分布

概率论几种重要的分布

概率论几种重要的分布
概率论中有许多重要的分布,包括以下几种:
1. 正态分布(Normal Distribution):也称为高斯分布,是最常见的分布之一。

它具有钟形曲线,对称,以及均值和方差完全定义。

在许多实际应用中,自然界中许多现象都遵循正态分布。

2. 二项分布(Binomial Distribution):描述了在固定次数的独立重复试验中成功次数的概率分布。

每个试验有两个可能的结果,成功和失败,并且每次试验的成功概率保持不变。

3. 泊松分布(Poisson Distribution):用于描述稀有事件在固定时间或空间上的发生次数的概率分布。

它假设事件发生的概率相等,且事件之间是相互独立的。

4. 均匀分布(Uniform Distribution):也称为矩形分布,是一种概率分布,其中所有可能的结果的概率是相等的。

在定义了一个范围之后,均匀分布将这个范围内的概率均匀地分布。

5. 指数分布(Exponential Distribution):用于描述独立事件发生间隔的概率分布。

它假设事件是以恒定速率独立地发生的,即它具有无记忆性。

6. t分布(Student t-Distribution):用于小样本情况下的统计推断,当样本量较小时,t分布的尾部更加重,与正态分布相比,更容易出现极端值。

以上只是一些重要的分布,概率论还有很多其他的分布,根据实际应用的不同,可以选择合适的分布模型。

卡方分布的可加性

卡方分布的可加性

卡方分布的可加性
卡方分布的可加性
卡方分布是一种概率分布,可以用来描述一组随机变量之间的关系。

它可以用来描述不同变量之间的联系,并且可以用来检验某种假设。

它的可加性是指,当多个随机变量之间都具有某种联系时,它们的总
体分布可以由多个基本的卡方分布加起来得到。

卡方分布的可加性可以用来说明一个重要的统计原理,即“多变量的
分布是由多个独立的单变量分布的叠加而成的”。

这就提示我们,当
构建多变量分布时,可以将多个单变量分布进行叠加,而不是分别构
建每个变量的独立分布,这样可以大大简化分析过程。

此外,卡方分布也可以用来检验某些统计假设。

例如,如果我们想检
验某个统计假设,可以构建一个卡方分布,来表示检验假设的背景。

如果检验结果显示,该假设与背景分布不一致,那么就可以得出结论,该假设是不正确的。

总之,卡方分布的可加性是一种重要的统计原理,可以帮助我们构建
多变量分布,也可以帮助我们检验统计假设。

数学概率多种分布的可加性原理

数学概率多种分布的可加性原理

精心整理精心整理数学概率多种分布的可加性1、0-1分布作为离散变量,0-1分布的变量取值范围是0,1,两个0-1分布相加后取值范围变为0、1、2,显然与原来不一样,所以不满足可加性。

2、二项分布b (n ,p )设()~,X b n p ,()~,Y b m p ,且X ,Y 相互独立,令Z=X+Y 。

由卷积公式,(P Z a =i-,bi a=∑3设X (P Z (P Z i m=(P ∴。

因此,负二项分布有可加性。

4 5设X ()()()Z XYP z P z y P y dy +∞-∞=-⎰,1221max{,},min(,)a z b a b b z a =-=-则1122()()()()()Z X Y b aP z P z y P y dy b a b a +∞-∞-=-=--⎰。

因此,均匀分布没有可加性。

6、指数分布设X、Y分别满足参数为λσ和的指数分布且相互独立,令Z=X+Y,由卷积公式得精心整理精心整理()()()exp{()}Z XYP z P z y P y dy z y dy λσλλσ+∞+∞-∞=-=-+-⎰⎰,这里根据λσ-的符号不同有多种结果。

因此指数分布不满足可加性。

7、2χ分布设X、Y分别满足参数为m和n的2χ分布且相互独立,令Z=X+Y,由卷积公式 (/21/210(/2)(/2)()(()/2)zm n m n z y y dy m n --ΓΓ-=Γ+⎰()/21m n z+-)。

概率分布法

概率分布法


B A

B

A
1.3.2
概率的公理化定义:
概率的定义
实际中,我们在观察一个随机试验的各种事件时,一
般来说,总会发现有些事件出现的可能性大,有些事件出
现的可能性小,而有些事件出现的可能性彼此大致相同。 为此我们希望找到一个合适的数来表征事件在一次试验中
发生的可能性大小。
我们把刻画事件发生可能性大小的数量指标称为事 件的概率,记为P(A)
古典概率的计算公式: 设事件A包含k个基本事件,样本空间为S共包含n个基本事件
k A包含的基本事件总数 则P( A) n S中基本事件总数
例如:将一枚硬币抛掷三次,求A=“恰有一次出现正面” 的概率
A包含的基本事件总数 3 P( A) S中基本事件总数 8
1.3.3
条件概率
定义:在实际问题中,除了要考虑事件A的概率,还要
2. 随机现象:在一定条件下可能出现也可能不出现的现象 实例1 在相同条件下掷一枚均匀的硬币,观察正反两面
出现的情况.
结果: 可能出现正面也可能出现方面.
实例2 用同一门炮向同一目标发 射同一种炮弹多发,观察弹落点的
情况.
结果: 弹落点会各不相同.
实例3 抛掷一枚骰子,观察出现的点数.
结果有可能为:
对客观世界中随机现象的分析产生了概率论; 使概率论成为数学的一个分支的真正奠基人瑞 士数学家J.伯努利
概率论的飞速发展则在17世纪微积分学说建立以后. 第二次世界大战军事上的需要以及大工业与管理 的复杂化产生了运筹学、系统论、信息论、控制论 与数理统计学等学科.
授课内容
概率论基础知识 概率论的起源 概率论的主要研究对象 概率论的一些基本概念 随机变量及其概率分布 随机变量的数字特征

概率论 常用统计分布

概率论  常用统计分布

由中心极限定理得
n
lim P {
n
2 n n
2n
x}
x
lim P{ i 1
n
2 X i n
n
x}


1 2
t2 e 2 dt
即 2分布的极限分布是正态 分布,也即当 n
很大时,
2 n n
2n
2 服从N (0,1), 进而 n N ( n,2n).
Y12
Y22
~ 2 ( 2)
则C1 1 2 , C2 1 4 .
2. t 分布 历史上,正态分布由于其广泛的应用背景 和良好的性质,曾一度被看作是“万能分布”, 在这样的背景下,十九世纪初英国一位年轻 的酿酒化学技师Cosset. WS, 他在酒厂从事试验 数据分析工作,对数据误差有着大量感性的认 识,我们知道在总体均值和方差已知情况下, 样本均值的分布将随样本量 增大而接近正态分布,
n
x
1 2

e dt .
t2
2
2 证 由假设和定义5.6, n X i2 , 其中X 1 , X 2 ,, X n i 1
2 2 2 独立且每个X i ~ N (0,1),因而X1 , X2 ,, X n 独立同分布,

E( X i2 ) 1, D( X i2 ) 2 (i 1,2,, n)
(3) T的数字特征
E (T ) 0,
n D(T ) n2
( n 2).
例3 设总体X和Y相互独立, 且都服从N(0,9)
X 1 , X 2 ,, X 9和Y1 ,Y2 ,,Y9来自总体X ,Y的样本,
求统计量T的分布,其中
T Xi /

概率分布的重要性质

概率分布的重要性质

概率分布的重要性质概率分布是概率论中的一个重要概念,指的是描述一个随机变量可能取值的概率规律的数学模型。

在统计学、机器学习、工程等领域中,概率分布被广泛应用,其具有许多重要性质,本文将深入探讨概率分布的几个关键特点和性质。

1. 可加性概率分布的可加性是指对于任意两个不相容事件A和B,它们的并集事件的概率等于这两个事件概率之和。

数学表达式为:[ P(A B) = P(A) + P(B) ]这一性质是概率论中最基本的公理之一,也是许多概率推导和计算的基础。

2. 非负性概率分布的非负性要求任何事件的概率值都必须大于等于零,即概率值非负。

这个性质能够确保概率的合理性和可行性,使得概率分布能够被正确应用于实际问题的建模和求解过程中。

3. 规范性概率分布的规范性要求全概率的和等于1,即样本空间中所有可能事件的概率之和为1。

这一性质保证了概率描述的完整性和一致性,使得概率分布能够有效地表达所有可能事件的发生概率。

4. 独立性两个随机变量的独立性是指它们的联合分布等于各自的边缘分布的乘积,即一个随机变量的取值不受另一个随机变量的影响。

独立性是概率分布中重要的性质之一,它使得复杂问题能够被分解为独立事件的乘积,简化了概率计算的过程。

5. 期望和方差概率分布的期望和方差是描述随机变量特征的重要指标。

期望反映了随机变量的平均取值,方差衡量随机变量取值的分散程度。

通过计算期望和方差,可以更好地理解和分析概率分布的特性和规律。

6. 中心极限定理中心极限定理是概率论中的一个重要定理,指出在一定条件下,独立同分布的随机变量经过加和后,其总和的分布趋近于正态分布。

这一定理在实际应用中具有广泛的意义,为统计推断和模型估计提供了重要的理论支持。

综上所述,概率分布的重要性质涵盖了可加性、非负性、规范性、独立性、期望和方差、中心极限定理等多个方面。

这些性质构成了概率论基础,为各领域的应用提供了理论基础和计算工具,对于推动科学研究和实践应用具有重要意义。

正态分布可加性原理

正态分布可加性原理

正态分布的可加性定理是:X+Y-N(3,8)。

即X-N(u1,(q1)^2),Y~N(u2,(q2)^),则
Z=aX+bY-N(a*u1+b*u2,(a^2)*(q1)^2+(b^2)*(q2)^2)。

正态分布也称“常态分布”,又名高斯分布,最早由棣莫弗在求二项分布的渐近公式中得到。

C.F.高斯在研究测量误差时从另一个角度导出了它。

P.S.拉普拉斯和高斯研究了它的性质,是一个在数学、物理及工程等领域都非常重要的概率分布。

概述
正态分布是一种概率分布。

正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。

遵从正态分布的随机变量的概率规律为取μ邻近的值的概率大,而取离μ越远的值的概率越小。

σ越小,分布越集中在μ附近,σ越大,分布越分散。

正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。

它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。

当μ=0,σ2=1时,称为标准正态分布,记为N(0,1)。

μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。

多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

概率论与数理统计:常用统计分布

概率论与数理统计:常用统计分布

0,
x 0, 其它.
F-分布的性质 由F分布定义可得:
F
~
F(n1, n2 )
1 F
~
F(n2, n1)
五、F-分布与t分布的关系
定理3 若X~t(n),则Y=X2~F(1,n)。
证明:X~t(n),X的分布密度p(x)= n 1 2 nπ n 2
1
x2 n
n 1 2
Y=X2的分布函数F(y) =P{Y<y}=P{X<y}。当y≤0时,FY(y)=0,
② X 与 S2相互独立。
二、χ2-分布(卡方分布)
定义 设X1,X2,…,Xn是来自标准正态总体 N(0,1)的样本,称统计量
2
X
2 1
X
2 2
X
2 n
服从自由度为n的 χ2-分布 ,记为 2 ~ 2( n ).
2 (n)-分布的概率密度为
f
(
y
)
2n /
1
2 (
n
/
2
)
y
n 1
2e
服从正态分布,且
i 1
i 1
一、正态分布
定理2 若( X1, X 2 ,, X n )是来自总体X ~ N(,2) 的一个
样本,X 为样本均值,则 (1) X ~ N (, 2 ) ,(由上述结论可知:X 的期望与 X 的期望相同,而 X
n
的方差却比 X 的方差小的多,即 X 的取值将更向 集中.)
p(y)=0;当y>0时,FY(y) =P{-

y
y
n
n 2 1 n
Y=X的分布密度p(y)= 2,•
1 n
2 2
<X<

概率论中的伽马分布与

概率论中的伽马分布与

伽马分布的性质
概率密度函数: 具有特定形状的 分布函数
参数:具有特定 的数学意义
随机变量:可以 取正值或负值
数学期望和方差 :具有特定的计 算公式
伽马分布的应用
在统计学中的应用
参数估计:利用伽马分布对未知参数进行估计
假设检验:通过比较实际数据与伽马分布的拟合程度,对假设进行 检验 模型选择:在多种分布模型中选择最适合的模型时,可以考虑伽马分 布
伽马分布的扩展与推广
广义伽马分布
定义:当形状参数α为非负整数时,广义伽马分布就是常见的伽马分布。 性质:具有可加性,即两个广义伽马随机变量的和仍然是广义伽马随机变量。 扩展:通过引入形状参数α的连续取值,广义伽马分布可以扩展到形状参数α为任意实数的情形。 应用:在统计学、信号处理、机器学习等领域有广泛的应用。
伽马分布的拟合优度检验
卡方检验
定义:卡方检验 是一种统计方法, 用于检验观测频 数与期望频数之 间的差异是否显 著。
原理:基于卡方 分布,通过计算 卡方值和自由度, 比较实际观测频 数与期望频数的 差异程度。
步骤:选择适当 的卡方分布和自 由度,计算卡方 值和概率P,根 据概率P的大小 判断拟合优度。
特性:具有偏斜性和厚尾性,常 常用于描述金融数据等复杂数据 集
添加标题
添加标题
添加标题
添加标题
参数:具有两个参数,形状参数 和尺度参数,用于描述分布的形 状和尺度
比较:与正态分布、指数分布等 其他常见分布相比,伽马分布具 有不同的特性,适用于不同的场 景
THANK YOU

汇报人:XX
汇报时间:20XX/XX/XX
在机器学习中的应用
图像识别:用于目标检测和 图像分割

概率论第六章

概率论第六章
通过n次观察,得到一组实数x1,x2, …,xn,它们依次 是随机变量X1,X2, … , Xn的观察值,称为样本值。
对有限总体,采用放回抽样所得到的样本为简单随 机样本。
当样本容量 n 与总体容量N 相比很小时, 可将无放 回抽样近似地看作放回抽样.(n/N<1/10)
对于无限总体,因抽取一个个体不影响它的分布, 所以总是用不放回抽样。
(X 1,X 2, ,X n)是 来 自 总 体 的 样 本 ,求 样 本 (X 1,X 2, ,X n)的 分 布 律 .
解 总体X的分布律P 为 {X x}px(1p )1 (x x 0, 1)
因 X 1 ,为 X 2 , ,X n 相互 ,且与X独 有相立 同的分 , 布
所 (X 以 1,X 2, ,X n)的分布律为
X 1 k ,X 2 k , ,X n k 独立 X k 同 且 分 与 布
E ( X 1 k ) E ( X 2 k ) E ( X n k ) k
由辛钦定理
A
k
1 n
n i 1
X
k i
P k , k
1, 2,
,
说明2
依概率收敛的序列性质知道 g为连续函数
g( A1, A2 ,, Ak ) P g(1, 2 ,, k )
10 i 1
( xi
x )2
390.0
9 10
s2
21
3. 经验分布函数(与总体分布函数F(x)相对应的统计量)
设 X 1 ,X 2 , ,X n 是 总 体 X 的 一 个 样 本 , 用 s (x ) , x 表 示 X 1 ,X 2 , ,X n 中 不 大 于 x 的 随 机 变 量 的 个 数 ,
基本概念: 个体 总体无有限限总总体体 样本 样本值 总体的分布 样本的分布

概率论中常见分布之间内在联系的探讨

概率论中常见分布之间内在联系的探讨

概率论中常见分布之间内在联系的探讨
概率论是研究随机现象和不确定性现象相关性联系的一个领域,以及在随机结果中描述该相关性的数学技巧。

概率论中常见的分布比如泊松分布、正态分布、二项式分布等有其内在的联系。

首先,泊松分布是指在一定时间段内,随机独立事件出现次数的统计分布,它是概率论里一种重要的概率分布,且所有的概率分布都要满足泊松分布的性质。

其与正态分布有一定的联系,当时间段增加,随机事件所形成的平均值会慢慢变为满足正态分布,从而形成了联系。

其次,正态分布是指一个统计性数据随机变化的概率分布,传统上认为该分布满足“中位数=众数=平均数”的特点。

正态分布与二项式分布有一定的联系,经常会利用正态分布近似二项式分布,其原理是当事件发生的成功概率较小时,二项式分布会接近正态分布。

最后,二项式分布是指连续的独立试验中发生成功次数的概率分布,这种随机试验是在可能出现恒定两种结果的试验中发生的,而这两种结果事件之间没有先后发生的概念。

它与泊松分布有一定的联系,把泊松概率分布扩展到无限大时,就形成了二项式分布。

概率论中常见的分布之间存在着相互内在联系,即泊松分布与正态分布、二项式分布与泊松分布之间有联系,这些概率分布具有紧密的内在联系。

要研究这些概率分布之间的联系,就应该从各自的特点着手,深入研究数学公式,探究它们的内在联系,为概率论的研究提供重要的物理解释。

随机变量可加性及在概率论与数理统计教学中的应用

随机变量可加性及在概率论与数理统计教学中的应用
ti rb e h sp o lm.I ti p p r Bio a d srb t n、 oso dsrbuin t e n r ld srb t n,h — q ae itiuin F— srb t n、 u h n hs a e n mil itiui P is n iti to 、h oma itiui c i s u r dsrb t Dit ui Ca c y o o o i o
设 - a, ) Ⅳ ,: , 。 相互独立, N(, +r ) / 1 ~ Ⅱ+ t( . = 2 结 论 34 . 分布具有可加性. ( , m) () 则 :。 n , ( n m+ )
尚 未形 成 系 统 、 完 善 的 论 述 , 必 要 对 该 方 面 的 内 容 做 一 些 较 深 入 较 有 的研 究 . 文 给 出 了 二 项 分 布 、 松 分 布 、 态 分 布 、‘ 布 、 一 布 , 本 泊 正 X分 r 分 柯 西 分 布 、 合 泊 松 分 布 以 及 泊 松 过 程 都 具 有 可 加 性 . 后 讨 论 了 随 复 最 机 变 量 可 加 性 在 概 率 论 与 q理 统 计 教 学 中 的 应 用 .
中 的一 个 重 要 概 念 , 于 随 机 变 量 的可 加 性 研 究 , 一 般 的 教 科 书 中 , 关 在
设  ̄ ( , ~ A )且 与 相 互 独 立 , n4 ~ ( 。 ) 尸 A ) 尸( , 则 -, P A .
结 论 33 -Ⅲ 正 态分 布具 有 可 加 性 .
【 ywo d 】 d iv rp r ; d pn e c ; o a dsiuin T ahn Ke r sA dt epo e y I e ed ne N r l irb t ;ec ig i t n m t o
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1 几种常见的具有可加性的分布 (1)1.1 二项分布 (2)1.2 泊松分布(Possion分布) (3)1.3 正态分布 (4)1.4 伽玛分布 (6)1.5 柯西分布 (7)1.6 卡方分布 (7)2 具有可加性的概率分布间的关系 (8)2.1 二项分布的泊松近似 (8)2.2 二项分布的正态近似 (9)2.3 正态分布与泊松分布间的关系 (10)2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11)3 小结 (12)参考文献 (12)致 (13)概率论中几种具有可加性的分布及其关系概率论中几种具有可加性的分布及其关系摘要 概率论与数理统计中概率分布的可加性是一个十分重要的容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词 概率分布 可加性 相互独立 特征函数Several Kinds of Probability Dstribution and its Relationshipwith AdditiveAbstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-square distribution and gamma distribution.Article discusses the nature of all kinds of distribution and its proof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation, Di mo - Laplace's central limit theorem, and so on,has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function引言 概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等.1 几种常见的具有可加性的分布在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]:①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(⋅⋅⋅===ζ和.,,1,0,)(n k b k P k ⋅⋅⋅===ξ则ξζϑ+=的概率分布列可表示为.2,1,0,)()()(0⋅⋅⋅==-====-==∑∑k b a i k P i P k P i k ki i ki ξζϑ②连续场合的卷积公式 设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是)(),(y f x f ξζ,则它们的和ξζϑ+=的密度函数如下.)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ )2(其证明如下:ξζϑ+=的分布函数是dxdy y f x f z f z F zy x )()()()(ξζϑξζ⎰⎰≤+=≤+={}dx x f dy y f xz )()(ζξ⎰⎰+∞∞--∞-=.)()(dx x f x z F ζξ-=⎰+∞∞-其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζϑ+=的密度函数: .)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ 即证.在概率分布可加性的证明中,除了卷积公式,我们常用的证明方法还有利用随机变量的特征函数.下面我们来讨论一下这几种具有可加性的分布及其可加性证明的过程中卷积公式和特征函数的应用. 1.1 二项分布1.1.1 二项分布),(p n B 的概念如果记ζ为n 次伯努利试验中成功(记为事件A )的次数,则ζ的可能取值为0,1,2,……,n.记p 为事件A 发生的概率,则,)(p A p =(p A ),1p -=记为.q 即.1p q -=因n 次伯努利试验的基本结果可以记作 ѡ=(w 1,w 2,…ѡn ),w i 或为A 或为A ,这样的w 共有2n 个,这2n 个样本点w 组成了样本空间Ω.下求ζ的分布列,即求事件{ζk =}的概率.若某个样本点 ѡ=(w 1,w 2,…ѡn )∈{k =ζ},意味着w 1,w 2,…ѡn 中有k 个A ,k n -个A ,由独立性即可得:P (ζ).)1(k n k p p --=而事件{ζ=k }中这样的w 共有⎪⎭⎫⎝⎛n k 个,所以ζ的分布列为)(k P =ζ=⎪⎭⎫ ⎝⎛n k p k(1-p )k n -,.,1,0n k ⋅⋅⋅⋅⋅⋅=此分布即称为二项分布,记作),(~p n B ζ.且我们易验证其和恒为.1.也就是概率论中几种具有可加性的分布及其关系kn k nk n k p p -=-⎪⎭⎫ ⎝⎛∑)1(0=[]n p p )1(-+1=. n=1时,二项分布),(p n B 称为两点分布,有时也称之为10-分布. 二项分布的图像具有以下特点:①二项分布的图像形状取决于n 和p 的大小,随着p 的增加,分布图高峰逐渐右移. ②当5.0=p 时,图像是对称的. 1.1.2 二项分布的可加性定理 1.1.1设),,(~),,(~p m B p n B ξζ而且ξζ,相互独立,记,ξζϑ+=则有).,(~p m n B +ϑ证明 因,ξζϑ+=所以易知ϑ可以取m n +⋅⋅⋅2,1,0等1++m n 个值.根据卷积公式)1(,事件{}k =ϑ的概率可以表示为 )()()(0i k P i P k P ki -====∑=ξζϑi k m i k mi k i n i ki n i p p p p +----=-⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛=∑)1()1(0.)1(0⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=-=-+∑m i k ki n i km n k p p 又因.0⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=∑mn k m i k ki n i 所以.,1,0,)1()(m n k p p k P k m n km n k +⋅⋅⋅=-⎪⎭⎫ ⎝⎛==-++ϑ也就是说,).,(~p m n B +ϑ即证! 1.2 泊松分布(Possion 分布)与二项分布一样,泊松分布也是一种离散分布,许多随机现象,特别是社会现象与物理学中的一些随机现象都服从于泊松分布.泊松分布可作为描述大量试验中稀有事件出现次数的概率分布的数学模型.1.2.1 泊松分布的概率分布列泊松分布的概率分布如下所示:2,1,0,!)(===-k e k k P k λλζ…,其中λ大于0,记作)(~λζP .对于泊松分布而言,它的参数λ即是期望又是它的方差:λλλλλλλλλλ==-==-+∞=---+∞=∑∑e e k e e k k E k k k k 110)!1(!)(. 又因,λλλλλ-+∞=-+∞=∑∑-==e k k e k k E k k k k 1022)!1(!)( =[]λλ-+∞=-+-∑e k k kk )!1(1)1(1=∑∑+∞=--+∞=---+-11222)!1()!2(k k k k k e k eλλλλλλ=λλ+2故ζ的方差为22))(()()(ζζζE E Var -==λλλλ=-+22 1.2.2泊松分布的可加性定理 1.2.1 设随机变量)(~),(~2211λζλζP P ,且21,ζζ相互独立,则).(~2121λλζζ++P 证明 此处⋅⋅⋅=====--,2,1,0,!)(,!)(212211k e k k P ek k P k k λλλζλζ根据卷积公式)1(,有 21)!(!)(20121λλλλζζ---=-⋅==+∑e i k ei k P i k ki iik i ki i k i k k e -=+-∑-=210)()!(!!!21λλλλ .,1,0,!)()(2121⋅⋅⋅=+=+-k e k k λλλλ 所以).(~)(2121λλζζ++P 即证!同样我们可以利用特征函数对其进行证明,此处不再赘述. 1.3 正态分布1.3.1 正态分布的定义[6]定义1.3 对于已经给定的两个常数μ和σ>0,定义函数222/)(,21)(σμσμπσ--=x e x p ),(+∞-∞∈x )1( 它含有两个参数μ和σ.显然的,)(,x p σμ取正值.我们称密度函数为)(,x p σμ的分布为正态分布,记作),(2σμN ,它的分布函数记为dt ex F xt ⎰∞---=222)(,21)(σμσμπσ ),(+∞-∞∈x正态分布的密度函数的图像是一条钟形曲线,中间高两边低,而且关于μ=x 对称,在此处)(,x p σμ取最大值.21πσ我们称μ为该正态分布的中心,在μ=x 附近取值的可能性比较大,在σμ±=x 处有拐点.若将μ固定,改变σ的取值,则σ越大,曲线峰顶越低,图像较为平坦;σ越小,曲线封顶越高,图像较为陡峭.因此正态密度函数的尺度由σ确定,故称σ为尺度参数.同样的,将σ固定,而去改变μ的值,会发现图像沿x 轴平移而并不改变形状,也就说明该函数的位置由μ决定,故称其为位置参数.当1,0==σμ时的正态分布称为标准正态分布,记作)1,0(N .它的密度函数记为)(u ϕ,分布函数记为)(u Φ.则有),(,21)(2/2+∞-∞∈=-u e u u πϕ概率论中几种具有可加性的分布及其关系),(,21)(2/2+∞-∞∈=Φ⎰∞--u dt e u utπ1.3.2 一般正态分布的标准化对于正态分布族{},0),,(;),(2>+∞-∞∈=℘σμσμN标准正态分布)1,0(N 只是其中一个成员.其实在应用中很少有随机变量恰好服从标准正态分布,可是一般正态分布均可以利用线性变换转变成标准正态分布.所以一切与正态变量有关的事件的概率均可通过标准正态分布分布求取.定理1.3.1 如果随机变量),(~σμN Y ,则)1,0(~/)(N Y X σμ-=,其中X 为标准正态变量.证明 记Y 与X 的分布函数分别为)(y F Y 和)(x F X ,易知).()()()(x F x Y P x Y P x X P x F Y X σμσμσμ+=+≤=⎩⎨⎧⎭⎬⎫≤-=≤=因为正态分布函数严格递增而且处处可导,所以如果记Y 和X 的密度函数分别是)(y p Y 和)(x p X ,会有,21)()()(2/2μπσσμσμ-=⋅+=+=e x p x F dx d x p Y Y X 由此即得,).1,0(~N Y X σμ-= 即证. 对于标准正态随机变量),1,0(~N X X 的数学期望为,21)(2/2dx xe X E x ⎰+∞∞--=π 因被积函数2/2)(x xe x h -=为奇函数,故上述积分值为0,也就是说.0)(=X E而对于一般正态变量),(~2σμN Y ,如果满足X Y σμ+=,由数学期望的线性性质则可得到.0)(μσμ=⨯+=Y E所以我们可以知道正态分布),(2σμN 的数学期望即为其参数μ. 因为dx e x X E X E X Var x ⎰+∞∞--=-=2/222221))(()()(π⎰+∞∞---=)(212/2x e xd π}{⎰+∞∞--∞+∞--+-=dx e xe x x 2/2/22|21π.1221212/2===⎰+∞∞--πππdx e x 且X Y σμ+=,由方差的性质.)()(2σσμ=+=x Var Y Var也就是说,正态分布的方差即是其另一个参数.2σ 1.3.3 正态分布的可加性定理1.3.2 设随机变量而且X 和Y 彼此独立,且),,(~),,(~222211σμσμN Y N X 则有).,(~222121σσμμ+++N Y X证明 知Y X ,服从于正态分布,且它们的密度函数分别是).2ex p(),2ex p(22222211tt i t t i Y X σμϕσμϕ-=-=又因Y X ,彼此独立,所以)()()(t t t Y X Y X ϕϕϕ=+.)()(exp 2222121⎥⎦⎤⎢⎣⎡+-+=t t i σσμμ这正是数学期望为,21μμ+方差为2221σσ+的正态分布的特征函数,即证!我们同样可以使用连续场合的卷积公式进行证明,详见文献[5],此处不再赘述. 1.4 伽玛分布在讨论伽玛分布之前,我们先来看一下伽玛函数:我们称dx e x x -+∞-⎰=Γ01)(αα )0(>α为伽玛函数,α为其参数.它的性质如下:①;)21(,1)1(π=Γ=Γ②).()1(αααΓ=+Γα取自然数n 的时候,有 !.)()1(n n n n =Γ=+Γ 1.4.1 伽玛分布的定义定义1.4 如果随机变量X 的密度函数为⎪⎩⎪⎨⎧<≥Γ=--,0,0;0,)()(1x x e x x p xλαααλ 就称作X 服从伽玛分布,记为),,(~λαGa X 且λα,的值均大于0.α为伽玛分布的形状参数,λ为其尺度参数.当10<<α时,)(x p 为严格单调递减的函数,在0=x 处取得奇异点;当1=α时,)(x p 亦严格单调减,且0=x 时有;)0(λ=p 当21≤<α时,)(x p 为单峰函数,先上凸然后下凸;当2>α时,先下凸再上凸,最后下凸.而且随着α的增大,)(x p 逐渐接近于正态分布的密度函数.1.4.2 伽玛分布的可加性定理 1.4.1 设随机变量),,(~),,(~21λαλαGa Y Ga X 且X 和Y 彼此独立,则).,(~21λαα++Ga Y X证明 知 ,)1()(,)1()(21ααλϕλϕ---=-=itt it t Y X且X 与Y 彼此独立,所以,)1()()()()(21ααλϕϕϕ+-+-==itt t t Y X Y X此即为)(21αα+Ga 的特征函数,根据惟一性定理则可知).,(~21λαα++Ga Y X 结论得证!概率论中几种具有可加性的分布及其关系如正态分布,对于伽玛分布,我们同样可以利用连续场合的卷积公式对其可加性进行证明,详见文献[5]; 1.5 柯西分布[4]1.5.1 柯西分布的密度函数柯西分布是几个常见的连续分布之一.它的密度函数为).,(,)(1),,(22+∞-∞∈-+=x x x p μλλπμλ 0,1==μλ时的柯西分布密度函数称为标准柯西分布密度函数,即).,(,111)(2+∞-∞∈+=x xx p π 为方便起见,往后我们分别记这两类密度函数为),(μλp 和).1,0(p 对于柯西分布的数学期望和方差,因.)(1),,(22+∞=-+⋅=⎰⎰+∞∞-+∞∞-dx x x dx x p x μλλπμλ 所以dx x p x ),,(μλ⎰+∞∞-不收敛,故柯西分布的数学期望与方差均不存在.1.5.2 柯西分布的可加性定理 1.5.1 设随机变量),,(~),,(~2211μλμλp Y p X 且Y X ,彼此独立,则有).,(~2121μμλλ+++p Y X证明 因Y X ,均服从于柯西分布,且Y X ,的特征函数分别是 ,)(11tt i X e t λμϕ-=.)(22tt i Y et λμϕ-=又因Y X ,彼此独立,所以)()()(t t t Y X Y X ϕϕϕ⋅=+.)()(2121tt i e λλμμ+-+=这恰好就是参数为2121,μμλλ++的柯西分布的特征函数,所以).,(~2121μμλλ+++p Y X 即证! 1.6 卡方分布(2χ分布)1.6.1卡方分布(2χ分布)的定义及密度函数定义 1.6[7] 设n X X X ⋅⋅⋅,,21独立同分布与标准正态分布分布),1,0(N 则称222212n X X X +⋅⋅⋅++=χ所服从的分布为自由度为n 的卡方分布,记为).(~22n χχ卡方分布的密度函数为⎪⎪⎩⎪⎪⎨⎧≤>Γ=--.0,0;0,)2(21)(1222x x x e nx p n x n1.6.2 卡方分布可加性卡方分布密度函数的图像是一个只取非负值的偏态图像.它的图像随着自由度的增加而逐渐趋于对称,当自由度∞→n 时,其图像趋于正态分布的图像.这也从另一个侧面告诉我们,卡方分布是由其自由度决定的,不同的自由度对应了不同的卡方分布.由1.6.1,我们可以知道卡方分布即伽玛分布的一个特例,所以由伽玛分布的可加性我们易知卡方分布亦满足可加性定理,即定理1.6.1[5]设),(~),(~22221n m χχχχ且2221,χχ彼此独立,则有).(~22221n m ++χχχ 证明 由卡方分布的定义,设,,22221222222121n m m m m X X X X X X ++++⋅⋅⋅++=+⋅⋅⋅++=χχ 且,,,2,1),1,0(~n m i N X i +⋅⋅⋅=j i X X ,彼此独立.则有,,22221222212221n m m m m X X X X X X ++++⋅⋅⋅++++⋅⋅⋅++=+χχ从从卡方分布的定义,因此).(~22221n m ++χχχ即证! 2 具有可加性的概率分布间的关系2.1 二项分布的泊松近似[4]当n 的取值很大时,二项分布),(p n B 的计算是令人头疼的.这里介绍了泊松分布的一个十分有用的特性,我们可利用泊松分布作为二项分布的一种特殊近似,即二项分布的泊松近似.下面我们来看泊松定理,当n 取值较大,而p 取值偏小的情况下使用泊松定理,可大大减小二项分布的计算量.定理 2.1[8](Possion 定理) 在n 重伯努利试验中,记事件A 在每次试验中发生的概率为,n p 它与试验发生的次数n 有关,若当0>n 时,有,λ→n np 即,lim λ=+∞→n n np 则对任意给定的k (k 为非负整数),有.!)1(lim λλ--+∞→=-⎪⎭⎫ ⎝⎛e k p p kk n n kn n k n证明 设,n n np =λ则有,np nn λ=所以k n n kn kn kn n k nn k k n n n n p p ---+-⋅⋅⋅--=-⎪⎭⎫ ⎝⎛)1()(!)1()2)(1()1(λλ.)1(!)11()21)(11(k n n kn nk n k n n --⋅⋅--⋅⋅⋅--=λλ .)1()1(!)11()21)(11(k n n n kn nn k n k n n ---⋅⋅--⋅⋅⋅--=λλλ 由已知有,,lim λλ=+∞→n n 则对于给定的k 值,有;lim k kn n λλ=+∞→且+∞→n lim 1)11()21)(11(=--⋅⋅⋅--nk n n ; ;)1(lim )1(lim )(λλλλλ--⋅-+∞→+∞→=-=-e nn n n nn n n n n .1)1(lim =--+∞→k n n nλ所以有.!)1(lim λλ--+∞→=-⎪⎭⎫ ⎝⎛e k p p k kn n k n n k n 即证!因Possion 定理的条件之一为,lim λ=+∞→n n np 所以在二项分布的计算中,若n 值很大,p的值却很小,且λ=np 的大小适中时(一般认为当,1.0,100≤≥p n 且10≤=np λ时),二概率论中几种具有可加性的分布及其关系项分布),(p n B 可以使用参数为λ的泊松分布来做近似,即有,2,1,0,!)1(⋅⋅⋅=≈-⎪⎭⎫ ⎝⎛--k e k p p np kk n n kn n k λ此即为二项分布),(p n B 的泊松近似,而且n 的值应尽可能的大,这样计算结果才能更精确.二项分布),(p n B 的泊松近似经常被用于稀有事件(即每次试验中事件发生的概率很小)的研究中,大量实例表明,一般情况下概率1.0<p 时,泊松近似非常好用,甚至n 的取值不必很大. 2.2 二项分布的正态近似定理 2.2[7](棣莫佛-拉普拉斯(De Laplace Moivre -)极限定理) 设随机变量),(~p n B X (⋅⋅⋅=<<,2,1,0,10n p ),则对任意的实数x ,有()).(211lim 2/2x dt e x p np np X P x t n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--+∞→π证明 因随机变量X 服从二项分布),(p n B ,所以X 可看做是n 个相互独立的且服从于同一参数p 的两点分布的随机变量n X X X ,,,21⋅⋅⋅的和,即,1∑==ni i X X 而且⋅⋅⋅⋅⋅⋅=-==,2,1),1()(,)(i p p X Var p X E i i 根据Levy Lindeberg -中心极限定理,有).(21)1(lim 2/12x dt e x p np np X P x t n i i n Φ==⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤--⎰∑∞--=+∞→π 定理得证! De Laplace Moivre -中心极限定理说明,n 相当大时,服从二项分布),(p n B 的随机变量X 的概率的计算服从正态分布))1(,(p np np N -的随机变量的计算.也就是说,二项分布可以用正态分布来近似计算.比如k n kn k p p k X P --⎪⎭⎫ ⎝⎛==)1()(,在n 比较大的时候的计算量时十分大的.根据De Laplace Moivre -中心极限定理,因 )1(np np npX --近似服从于标准正态分布,或者说是X 近似服从于))1(,(p np np N -分布,也就是说k n k nk p p k X P --⎪⎭⎫⎝⎛==)1()(≈.)1()1(1)1(21)1(2)(2⎪⎪⎭⎫ ⎝⎛---=----p np np k p np ep np p np np x ϕπ 对于,)1()(k n kb k a n k p p b X a P -≤≤-⎪⎭⎫ ⎝⎛=≤≤∑有))1()1()1(()(2121p np npa p np np X p np np a P a X a P --≤--≤--=≤≤ ))1(())1((12p np npa p np np a --Φ---Φ≈ )(* 我们只需查一下标准正态分布表,就可以求出我们需要的相当精确的值.但是,当p 较大或者较小时近似效果可能差一些,利用公式时p 的值最好满足9.01.0≤≤p .另外,因二项分布是离散分布,正态分布是连续分布,所以在我们实际的应用中,为减小误差, 常常使用≈≤≤)(21a X a P ))1(5.0())1(5.0(12p np npa p np np a --+Φ---+Φ来替换)(*式.2.3 正态分布与泊松分布之间的关系[9]由上面的定理2.1和定理2.2我们可以知道,二项分布),(p n B 可以用泊松分布来做近似,同样也可以用正态分布来近似.所以,从某个方面来说,泊松分布与正态分布也具有某种近似的关系,首先我们来看特征函数的连续性定理.定理 2.3.1[11] 分布函数列{})(x F n 弱收敛于分布函数)(x F 的充分必要条件是它的相应的特征函数列{})(t n ϕ收敛于)(x F 的特征函数).(t ϕ定理2.3.2[11] 设随机变量),(~λλP X 则有.21lim 22dt ex X P xt ⎰∞--∞→=⎪⎭⎫⎝⎛<-πλλλλ证明 知λX 服从泊松分布,则λX 的特征函数为.)()1(-=it e e t λλϕ所以λλμλλ-=X 的特征函数是.)(1t i e ti et λλλλψ-⎪⎪⎪⎭⎫ ⎝⎛-=对于任何一个,t 我们有.,1!212∞→⎪⎭⎫⎝⎛+-+=λλολλλt ite ti所以有.,212122∞→-→⎪⎭⎫ ⎝⎛⋅+-=-⎪⎪⎭⎫ ⎝⎛-λλολλλλt t t i eti因此对于任意的点列,∞→n λ有.)(lim 22t et n n -∞→=λλψ又知22t e-是标准正态分布)1,0(N 的特征函数,因此由连续性定理可以得到,.21lim 22dt ex X P xt nn nn ⎰∞--∞→=⎪⎪⎭⎫⎝⎛<-πλλλλ由n λ的任意性,所以有dt ex X P xt ⎰∞--∞→=⎪⎭⎫⎝⎛<-2221lim πλλλλ成立.我们来看泊松分布的正态逼近. 定理2.3.3[8] 对于任意的,21a a <有,21!lim2122/⎰∑-<<-+∞→=a a x k k dx ek e βαλλπλ其中.,21λλβλλα-=-=a a 其证明见文献[8].由前可知,),(p n B 的正态近似与泊松近似的条件是不同的,当p 的取值特别小时,哪怕n 的值不是太大,用泊松分布来近似二项分布也是可以的.但在这种情况下,用正态近似却是不合理的.我们可以想象,若p 值很小,但n 的值也不是太大,则np =λ的值概率论中几种具有可加性的分布及其关系肯定不会很大,而由定理2.3.1,我们可知,此时正态分布就不可能很好的进行泊松近似.2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布之间的关系 首先来看正态分布与柯西分布的关系.定理 2.4.1 设).1,0(~),1,0(~N Y N X 且X 与Y 独立同分布,记Y X Z /=,则)1,0(~N Z .证明 易知Z 的取值围是),(+∞-∞,所以对于),(+∞-∞∈z ,我们利用商的公式,可以得到⎰⎰∞+∞+∞-⎭⎬⎫⎩⎨⎧+-==0222)1(exp 1)()()(dt z t t dt t t p zt p z p Y X Z π .)1(12z +=π 这正是1,0==μλ时的柯西分布的密度函数,所以结论得证!正态分布与卡方分布的关系如下:定理2.4.2 若随机变量),1,0(~N X 则).1(~22χX定理证明见文献[10].这说明了标准正态分布与自由度为1的卡方分布之间的关系.若().,2,1,1,0~n i N X i ⋅⋅⋅=且i X 彼此独立,记222212n X X X +⋅⋅⋅++=χ,根据卡方分布的定义,我们知2χ服从自由度为n 的卡方分布.对于伽玛分布,当其参数21,2==λαn 时即为自由度为n 的卡方分布,记为).()21,2(2n n Ga χ=3 小结文章第一部分我们讨论了六种具有可加性的分布以及它们的简单性质,上述分布的可加性均可利用卷积公式或者特征函数进行证明.正态分布是概率论中最重要的分布,一般地,如果某个数量指标受到大量随机因素影响,而每一因素起的作用很小,则这个数量指标就近似服从正态分布.在第二部分里研究了二项分布、正态分布与泊松分布的关系,从此处我们可以知道二项分布不仅可以用泊松分布近似,同样也可由正态分布来近似. 参考文献[1] 罗建华.卷积公式的应用注记[J].中南林业科技大学学报,2007年,第27卷,第1期:152页. [2] 贤平,崇生,子毅.概率论与数理统计[M].:复旦大学,2003.5:221-231.[3]唐玲,徐怀.复合泊松分布和泊松过程的可加性[J].建筑工业学院学报,2007.05:83页. [4] 郭彦.对柯西分布性质的进一步讨论[J].工学院学报,2005.05:12页.[5] 茆诗松,程依明,濮晓龙.概率论与数理统计教程[M].:高等教育,2004.7:155-160; [6] 王梓坤.概率论基础及应用[M].:师大学,1996.3:61-64. [7] 宋立新.概率论与数理统计[M].:人民大学,2003.9:176-177.[8]于洋.浅析二项分布、泊松分布和正态分布之间的关系[J].《企业科技与发展》,2008 年第20期:120页.[9]宗舒等.概率论与数理统计教程[M].:高等教育,1983.10:208-211.[10]孟凡华.浅谈几种概率分布之间的相互关系[J].农专学报,1992年第3卷第2期:63-65.[11]王淑云.特征函数及其应用[J].学院学报,2008年第18卷第3期:52-56.。

相关文档
最新文档