高强螺栓扭矩计算
高强螺栓施工扭矩值参考表
高强度螺栓施工扭矩值参考表
1
说明:根据高强度螺栓的实测扭矩系数(检测报告的扭矩系数)调整实测扭矩系数值即可得施工终拧
扭矩
钢结构用大六角高强度螺栓连接副的施工扭矩是根据实测的扭矩系数进行计算而得的,即为了满足规
范中所
规定的预拉力值要求,根据试验所获得的真实的扭矩系数用GB50205-2001附录中的计算公式计算而
得。
详见《钢
结构工程施工质量验收规范》(GB50205-2001)第65页“附录B 紧固件连接工程检验项目”中的第B.0.3
条规定。
其计算公式为:终拧扭矩值=扭矩系数X施工预拉力值标准值X螺栓公称直径。
饱食终日,无所用心,难矣哉。
——《论语•阳货》
2。
高强度螺栓初拧和终拧的计算方法
高强度螺栓初拧和终拧的计算方法
初拧,T0=0.065*pc*d,
终拧Tc=k*pc*d
K---高强螺栓连接副的扭矩系数平均值(大六角高强螺栓施工前,应该出厂批复验高强螺栓连接副的扭矩系数,每批复验5套。
5套扭矩系数的平均值应在0.110~0.150范围之内,其标准偏差应小于或等于0.010)
Pc—高强螺栓施工预应力(kn)见附表,
d--高强螺栓螺栓杆直径(mm)
大六角强螺栓施工预应力(kn)
螺栓性能螺栓公称直径(mm)
等级M16 M20 M24 M30
8.5s 75 120 170 275
10.9s 110 170 250 390
初拧值为终拧值的一半左右
对于扭剪型高强螺栓的拧紧分为初拧、终拧(大型节点应分为初拧、复拧、终拧三次完成)初拧。
复拧扭矩参考下表,终拧时以目测拧掉螺栓尾部梅花头为合格。
扭剪型高强螺栓初拧扭矩值(N*m)
螺栓直径d(mm)M16 M20 M24 M24
初拧扭矩115 220 300 390
高强螺栓的初拧、复拧、终拧三应在同一天完成,连接处的螺栓应按一定的顺序施拧,一般由螺栓群中央顺序向外拧紧。
高强度螺栓初拧和终拧的计算方法
高强度螺栓初拧和终拧的计算方法
初拧,T0=0.065*pc*d,
终拧Tc=k*pc*d
K---高强螺栓连接副的扭矩系数平均值(大六角高强螺栓施工前,应该出厂批复验高强螺栓连接副的扭矩系数,每批复验5套。
5套扭矩系数的平均值应在0.110~0.150范围之内,其标准偏差应小于或等于0.010)
Pc—高强螺栓施工预应力(kn)见附表,
d--高强螺栓螺栓杆直径(mm)
大六角强螺栓施工预应力(kn)
螺栓性能螺栓公称直径(mm)
等级M16 M20 M24 M30
8.5s 75 120 170 275
10.9s 110 170 250 390
初拧值为终拧值的一半左右
对于扭剪型高强螺栓的拧紧分为初拧、终拧(大型节点应分为初拧、复拧、终拧三次完成)初拧。
复拧扭矩参考下表,终拧时以目测拧掉螺栓尾部梅花头为合格。
扭剪型高强螺栓初拧扭矩值(N*m)
螺栓直径d(mm)M16 M20 M24 M24
初拧扭矩115 220 300 390
高强螺栓的初拧、复拧、终拧三应在同一天完成,连接处的螺栓应按一定的顺序施拧,一般由螺栓群中央顺序向外拧紧。
钢结构高强螺栓扭矩标准化作业指导书(结构所)
省公路工程试验检测中心有限公司标准化作业指导书(结构所)一、依据的检测标准及技术要求1.1依据标准《钢结构现场检测技术标准》(GB/T 50621-2010)。
1.2技术要求检测时机:对高强度螺栓终拧扭矩的施工质量检测,应在终拧1h之后、48h之内完成。
检测数量:高强度大六角头螺栓按节点数抽查10%,且不应少于10个;每个被抽查节点按螺栓数抽查10%,且不应少于2个。
扭剪型高强度螺栓按节点数抽查10%,且不应少于10个节点,被抽查节点中梅花头未拧掉的扭剪型高强度螺栓连接副全数进行终拧扭矩检查。
二、适用范围本作业指导书适合于钢结构高强度螺栓连接副终拧扭矩的检测。
三、试验目的采用扭矩法测定高强度螺栓连接副终拧扭矩值,判定高强度螺栓连接副终拧扭矩是否合格。
四、试验原理扭力扳手通过力与距离控制扭力。
在紧固螺丝螺栓螺母等螺纹紧固件时需要控制施加的力矩大小,以保证螺纹紧固且不至于因力矩过大破坏螺纹,所以用扭矩扳手来操作。
首先设定好一个需要的扭矩值上限,当施加的扭矩达到设定值时,扳手会发出“卡塔”声响或者扳手连接处折弯一点角度,这就代表已经紧固或达到高强螺栓设计扭矩水平。
数显扭力扳手通过高精度扭矩传感器灵敏有效地将施加扭矩转变为电信号,由显示仪表进行智能化处理,LCD显示屏按预先设定的工作模式准确显示扭矩值。
五、仪器设备5.1 检测设备要求1、扭矩扳手示值相对误差的绝对值不得大于测试扭矩值的3%。
扭矩扳手宜具有峰值保持功能。
2、扭矩扳手的最大量程应根据高强度螺栓的型号、规格进行选择。
工作值宜控制在被选用扳手的量限值20%~80%范围内。
5.2 检测设备1、设备型号:SGSX系列数显扭矩扳手,产品参数见表1。
表1 SGSX系列数显扭矩扳手产品参数2、SGSX系列数显扭矩扳手,技术规格见表2。
表2 SGSX系列数显扭矩扳手技术规格六、试验准备1、检测人员在检测前,收集工程使用的高强螺栓的型号、规格、扭矩施加方式等基础资料。
高强螺栓扭矩值计算公式
高强螺栓扭矩值计算公式在工程施工中,高强螺栓扭矩值的计算是非常重要的,它直接影响着螺栓连接的牢固程度和安全性。
高强螺栓是一种特殊材质制成的螺栓,通常用于对连接部位有较高要求的工程,如桥梁、建筑结构等。
在使用高强螺栓时,需要根据实际情况计算正确的扭矩值,以确保连接的可靠性。
高强螺栓扭矩值计算公式高强螺栓扭矩值的计算公式一般遵循以下原则:1.摩擦法:根据螺纹间的摩擦力来计算扭矩值。
2.预紧力法:根据连接件的预紧力和螺纹的摩擦力来计算扭矩值。
3.拉伸法:在螺栓上施加拉伸力达到设计的预紧力来计算扭矩值。
高强螺栓扭矩值的计算公式如下:$$ T = K \\times F \\times D $$式中:•T为高强螺栓的扭矩值,单位为牛顿·米(N·m)。
•K为螺栓的摩擦系数,根据材质和工况确定。
•F为连接件的预紧力,单位为牛顿(N)。
•D为螺栓的公称直径,单位为米(m)。
通常情况下,摩擦系数K的取值范围在0.1~0.2之间,具体数值需要根据实际情况进行调整。
预紧力F的确定可以通过拉伸法或其他测量手段来获取。
公称直径D可以通过测量螺栓直径来确定。
示例假设某工程需要连接一对高强螺栓,其预紧力为1000N,公称直径为0.01m,摩擦系数为0.15。
根据上述公式计算扭矩值:$$ T = 0.15 \\times 1000 \\times 0.01 = 1.5 N·m $$因此,连接这对高强螺栓所需的扭矩值为1.5N·m。
在工程实践中,正确计算高强螺栓的扭矩值是确保连接安全可靠的重要步骤。
工程人员在施工过程中应根据实际情况,合理选择计算公式中的参数,并严格执行扭矩值的要求,以确保工程的质量和安全。
高强螺栓扭矩值
WORD格式
高强螺栓扭矩值计算方法:
Tc=K×Pc×d
Tc-终拧扭矩值(N·m)
Pc-施工预拉力值标准值(KN),见表1;若蓝图中有设计预拉力值则Tc=K×(Pc+ ΔP)×d,ΔP(预拉力损失值,一般设计为预拉力的5~10%)
K-扭矩系数0.11~0.15,详见高强螺栓质保单或高强螺栓连接副试验报告
d-螺栓公称直径(mm)
表1高强度螺栓连接副施工预拉力标准值Pc(kN)
公称直径(mm)性能
等级
M16M20M22M24
8.8s75120150170
10.9s110170210250
表2终拧扭矩值参考范围Tc(N·m)
公称直径(mm)性能
等级
M16M20M22M24
8.8s132-180264-360363-495448.8-612
10.9s193.6-264374-510508.2-693660-900
注:1、Tc原则上要计算获得,取大致值时:k可取0.129,Pc取标准值;
2、初拧扭矩值To可按0.5Tc取值;
3、扭矩法检验方法:在螺尾端头和螺母相对位置划线,将螺母退回60°左
右,用扭矩扳手测定拧回至原来位置时的扭矩值。
该扭矩值与Tc值的
偏差在10%以内为合格;
4、检查数量:按节点数抽查10%,且不应少于10个;每个被抽查节点按螺
栓数抽查10%,且不应少于2个。
专业资料整理。
高强螺栓施工扭矩值参考表
高强度螺栓施工扭矩值参考表
1
说明:根据高强度螺栓的实测扭矩系数(检测报告的扭矩系数)调整实测扭矩系数值即可得施工终拧
扭矩
钢结构用大六角高强度螺栓连接副的施工扭矩是根据实测的扭矩系数进行计算而得的,即为了满足规
范中所
规定的预拉力值要求,根据试验所获得的真实的扭矩系数用GB50205-2001附录中的计算公式计算而
得。
详见《钢
结构工程施工质量验收规范》(GB50205-2001)第65页“附录B 紧固件连接工程检验项目”中的第B.0.3
条规定。
其计算公式为:终拧扭矩值=扭矩系数X施工预拉力值标准值X螺栓公称直径。
饱食终日,无所用心,难矣哉。
——《论语•阳货》
2。
高强螺栓检测的相关标准
1.本标准规定了钢结构用高强度大六角头螺栓、大六角螺母、垫圈及连接副的技术要求、试验方法、检验规则、标志及包装。
本标准适用于铁路和公路桥梁、锅炉钢结构、工业厂房、高层民用建筑、塔桅结构、起重机械及其他钢结构摩擦型高强度螺栓连接连接副扭矩系数试验4.4.1 连接副的扭矩系数试验在轴力计上进行,每一连接副只能试验一次,不得重复使用。
扭矩系数计算公式如下:TK P dg 式中: K 一扭矩系数;T ——施拧扭矩(峰值),单位为牛米(N ·m); P ——螺栓预拉力(峰值),单位为千牛(kN); d ——螺栓的螺纹公称直径,单位为毫米(mm)。
4.4.2 施拧扭矩T 是施加于螺母上的扭矩,其误差不得大于测试扭矩值的2%。
使用的扭矩扳手准确度级别应不低于JJG 707—2003中规定的2级。
4.4.3 螺栓预拉力P 用轴力计测定,其误差不得大于测定螺栓预拉力的2%。
轴力计的最小示值应在1 kN 以下。
4.4.4 进行连接副扭矩系数试验时,螺栓预拉力值P 应控制在表8所规定的范围内,超出该范围者,所测得扭矩系数无效。
4.4.5 组装连接副时,螺母下的垫圈有倒角的一侧应朝向螺母支承面。
试验时,垫圈不得发生转动,否则试验无效。
4.4.6 进行连接副扭矩系数试验时,应同时记录环境温度。
试验所用的机具、仪表及连接副均应放置在该环境内至少2 h 以上。
5 检验规则出厂检验按批进行。
同一性能等级、材料、炉号、螺纹规格、长度(当螺栓长度≤100 mm 时,长度相差≤15 mm ;螺栓长度>100mm 时,长度相差≤20 mm ,可视为同一长度)、机械加工、热处理工艺、表面处理工艺的螺栓为同批;同一性能等级、材料、炉号、螺纹规格、机械加工、热处理工艺、表面处理工艺的螺母为同批;同一性能等级、材料、炉号、规格、机械加工、热处理工艺、表面处理工艺的垫圈为同批。
分别由同批螺栓、螺母、垫圈组成的连接副为同批连接副。
高强螺栓扭矩值
Tc=K X Pc X d
Tc—终拧扭矩值(N・m
Pc—施工预拉力值标准值(KN),见表1;若蓝图中有设计预拉力值则Tc=K X (Pc+△ P)X d,A P (预拉力损失值,一般设计为预拉力的5~10%
K-扭矩系数~,详见高强螺栓质保单或高强螺栓连接副试验报告
d —螺栓公称直径(mrj)
表1高强度螺栓连接副施工预拉力标准值Pc (kN)
N • m
表2 终拧扭矩值参考范围Tc (
2、初拧扭矩值To可按取值;
3、扭矩法检验方法:在螺尾端头和螺母相对位置划线,将螺母退回60°左
右,用扭矩扳手测定拧回至原来位置时的扭矩值。
该扭矩值与Tc值的
偏差在10%以内为合格;
4、检查数量:按节点数抽查10%且不应少于10个;每个被抽查节点按螺
栓数抽查10%且不应少于2个。
常用高强度螺栓预紧力和拧紧扭矩
常用高强度螺栓预紧力和拧紧扭矩(参考)预紧力Fv(kN)及扭紧力矩MA(N·m)计算方式决定施工高强度螺栓扭矩:Ma=1.1 k Pv d式中: k---扭矩系数,此数据由高强度螺栓制造商提供或在安装前实验得到。
通常k=0.11-0.15,详细数据见供货商的质量报告。
Pv---高强度螺栓预拉力, [kN];d---高强度螺栓直径,mm。
如何确定机螺丝的紧固力矩关于如何紧固螺栓和螺母的文章已经有很多,但如何恰当地紧固机螺丝(Machine Screws)的文章较少。
与如何确保螺栓和螺母的安全连接一样,在紧固机螺丝时,恰当地选择合适的拧紧力矩十分重要。
恰当的、安全的连接直接关系到装配后产品的质量好坏。
因此在紧固机螺丝时,我们应该计算一下合理的拧紧力矩。
紧固机螺丝的这些力矩与紧固螺栓、螺母的力矩相比起来要小得多。
1、机螺丝拧紧力矩的计算常用的计算螺纹紧固件拧紧力矩的公式为:T=D×K×P其中:T:力矩(牛顿?米/英寸?磅1Nm=9 in.1b)D:螺纹的外径(1mm=0.03937 in)K:螺母的摩擦系数(光杆螺栓 K=0.20 镀锌螺栓 K=0.22 上蜡或带润滑螺栓 K=0.10)P:夹紧力(一般是屈服点抗拉强度值的75%)1.1米制机螺丝米制机螺丝(Metric Machine Screws)有不同的强度等级,每个等级都有相应合适的拧紧力矩。
在ISO国际标准中来制机螺丝(Metric Machine Screws)有两个主要的强度等级:4.8级(类似SAE 60M)和8.8级(类似SAE 120M)。
强度等级4.8表示最小的抗拉强度是480MPa,这约等于每英寸70,000磅(即70,000 Psi)。
强度等级8.8表示最小的抗拉强度是880MPa,约等于每英寸127,000磅(127,000Psi)。
米制电镀锌机螺丝拧紧力矩见表1。
1.2 英制机螺丝对于英制机螺丝(Inch Machine Screws)也有不同的强度等级,每个等级都有相应合适的拧紧力矩。
高强螺栓终凝扭矩计算公式
高强螺栓终凝扭矩计算公式引言。
在工程施工中,高强螺栓是一种常见的连接件,它具有承载能力强、安装方便等优点,因此被广泛应用于桥梁、建筑、机械设备等领域。
在螺栓的安装过程中,终凝扭矩是一个重要的参数,它直接影响着螺栓的紧固质量和安全性。
因此,准确计算高强螺栓的终凝扭矩是非常重要的。
高强螺栓的终凝扭矩计算公式。
高强螺栓的终凝扭矩计算公式可以用以下公式表示:T=K×F×d。
其中,T为螺栓的终凝扭矩,单位为N·m;K为螺栓的摩擦系数;F为螺栓的预紧力,单位为N;d为螺栓的公称直径,单位为mm。
螺栓的摩擦系数K。
螺栓的摩擦系数K是指在螺栓紧固过程中,由于螺栓和螺母之间的摩擦力而产生的阻力系数。
一般情况下,螺栓的摩擦系数K可以根据螺栓和螺母的材料和表面处理情况进行选择。
常见的螺栓摩擦系数K值为0.15~0.25。
螺栓的预紧力F。
螺栓的预紧力F是指在螺栓紧固过程中,施加在螺栓上的拉力。
螺栓的预紧力F可以通过螺栓的拉伸力来计算,通常情况下,螺栓的预紧力F可以根据设计要求和实际情况来确定。
螺栓的公称直径d。
螺栓的公称直径d是指螺栓的直径尺寸,一般情况下,螺栓的公称直径d可以根据设计要求和实际情况来确定。
终凝扭矩计算实例。
假设一根高强螺栓的摩擦系数K为0.2,预紧力F为10000N,公称直径d为20mm,那么该螺栓的终凝扭矩可以通过公式T=K×F×d来计算:T=0.2×10000N×20mm=2000N·m。
终凝扭矩的重要性。
高强螺栓的终凝扭矩是保证螺栓紧固质量和安全性的重要参数。
如果螺栓的终凝扭矩过小,会导致螺栓松动,从而影响设备的安全运行;如果螺栓的终凝扭矩过大,会导致螺栓过紧,从而影响设备的拆卸和维护。
因此,准确计算高强螺栓的终凝扭矩对于工程施工具有重要意义。
结论。
高强螺栓的终凝扭矩是保证螺栓紧固质量和安全性的重要参数,它可以通过公式T=K×F×d来计算。
高强螺栓初终拧扭矩值Tc
UDC中华人民共和国国家标准P GB 50205—2001 钢结构工程施工质量验收规范Code for acceptance of construction quality of steel structures 2002—01—10发布2002—03—01实施附录B 坚固件连接工程检验项目B.0.3 高强度螺栓连接副施工扭矩检验。
高强度螺栓连接副扭矩检验含初拧、复拧、终拧扭矩的现场无损检验。
检验所用的扭矩扳手其扭矩精度误差应不大于3%。
高强度螺栓连接副扭矩检验分扭矩法检验和转角法检验两种,原则上检验法与施工法应相同。
扭矩检验应在施拧1h后,48h内完成。
1扭矩法检验。
检验方法:在螺尾端头和螺母相对位置划线,将螺母退回600左右,用扭矩板手测定拧回至原来时的扭矩值。
该扭矩值与施工扭矩值的偏差在10%以内为合格。
高强度螺栓连接副终拧扭矩值按下列式计算:T c=K·P c·d (B.0.3-1)式中Tc—终拧扭矩值(N·m);Pc—施工预拉力值(KN),见表B.0.3;d—螺栓公称直径(mm);K—扭矩系数,按附录B.0.4的规定试验确定。
高强度大六角头螺栓连接副初拧扭矩值T o可按0.5T c取值。
扭剪型高强度螺栓连接副初拧扭矩值To可按下式计算:To=0. 065Pc·d (B.0.3-2)式中To—初拧扭矩值(N·m);Pc—施工预拉力标准值(KN),见表B.0.3;d—螺栓公称直径(mm);2转角法检验。
检验方法:1)检查初拧后在螺母与相对位置所画的终拧起始线和终止线所夹的角是否达到规定值。
2)在螺尾端头和螺母相对位置画线,然后全部缷松螺母,在按规定的初拧扭矩和终拧角度重新拧紧螺栓,观察与原划线是否重合。
终拧转角偏差在10o以内为合格。
终拧转角与螺栓的直径、长度等因素有关,应由试验确定。
3扭剪型高强度螺栓施工扭矩检验。
检验方法:观察尾部梅花头拧掉情况。
高强螺栓扭矩系数平均值
高强螺栓扭矩系数平均值高强螺栓的扭矩系数是指在紧固螺栓时,需要施加的扭矩与螺栓的规格和材料特性有关。
高强度螺栓常用于要求紧固力大、结构强度高的领域,如桥梁、建筑、机械等。
扭矩系数的平均值是指在实际应用中,同一规格和材料的高强螺栓在紧固时需要施加的扭矩的平均值。
下面将从高强螺栓的特点、扭矩系数的作用、计算方法及影响因素等几个方面来进行探讨。
首先,高强螺栓的特点使其具有很高的强度和抗剪力能力。
相比于普通螺栓,高强螺栓的强度更高,承载能力更大。
这意味着在设计和使用高强螺栓时,我们需要对其施加的扭矩有严格的要求,以确保其紧固效果和结构的稳定性。
其次,扭矩系数是高强螺栓设计和使用中的重要参数。
扭矩系数是指施加在螺栓上的转矩与其轴线上所受的拉力之间的比值。
通过调整扭矩来调整螺栓的紧固力,以满足工程需求和标准要求。
扭矩系数的选择需要结合实际应用情况以及螺栓的规格、材料等因素进行合理确定。
高强螺栓的扭矩系数是由标准制定机构和专业技术机构进行研究和规定的。
在实际使用过程中,我们可以根据螺栓的规格和要求,通过参考和测量,选择合适的扭矩系数进行紧固。
一般来说,扭矩系数的范围是给定的,可以在标准或相关技术文件中找到。
根据实际情况,我们可以选择离中值靠近的系数来满足需求。
影响高强螺栓扭矩系数的因素有很多,其中主要包括螺栓的规格、质量等。
螺纹的规格是指螺纹的直径、纹距等参数,这些参数直接影响到螺栓的扭矩系数。
较大的螺纹直径和较小的纹距将导致扭矩系数增大。
此外,螺栓的质量也是影响扭矩系数的重要因素。
质量差的螺栓可能会出现磨损、变形等问题,从而导致扭矩系数的变化。
因此,在选择和使用高强螺栓时,我们需要注意螺栓的质量检验和保证。
在实际工程中,我们一般使用扭矩扳手或电动扳手来进行高强螺栓的紧固。
这些设备可以提供可靠的扭矩参考值,并保证螺栓正确地被紧固。
通过合理选择扭矩系数和合适的工具,我们可以确保高强螺栓的紧固效果,避免因扭矩过大或过小而导致的问题。