山大复合材料结构与性能复习题参考答案.doc
研究生复合材料试题及答案
复合材料试题参考答案及评分标准请将所有答案写在答题纸上。
一、判断题(2分×10=20分)1.复合材料的自振频率比单一材料要低, 因此可以避免工作状态下的共振。
2.玻璃陶瓷又称微晶玻璃。
3.纤维与金属类似, 也有时效硬化现象。
4.立方型的BN, 因在结构上类似石墨而具有良好的润滑性。
5.在溶解与润湿结合方式中, 溶解作用是主要的, 润湿作用是次要的。
6.石墨纤维的制造与Al2O3纤维类似, 都是采用直接法。
7.纯金属的表面张力较低, 因此很容易润湿纤维。
8.E-玻璃纤维具有良好的导电性能。
9.良好的化学相容性是指高温时复合材料的组分之间处于热力学平衡, 且相与相之间的反应动力学十分缓慢。
10.(TiB+TiC)/Al是一种混杂复合材料。
二、填空题(1分×18=18分)1.Bf/Al 复合材料的界面结合以()为主。
2.纤维增强CMCs的断裂模式有()、()、和()。
3.非线性复合效应有()、()、()和()。
4.复合材料的设计类型有()、()、()、()和()。
5.CVD法制造B f的芯材通常有()、()、()和()。
原位复合材料中, “原位”是指()。
三、简答题(4分×5=20分)1.池窑拉丝法在那些方面比坩埚法生产玻璃纤维更为先进?2.温度因素是如何影响复合材料中基体对增强体的润湿性?3.Bf表面为什么通常要进行涂层?4.简述现代界面模型的主要观点。
纤维增强ZrO2复合材料的主要增韧机制有哪些, 并简述其增韧原理。
四、问答题1.说明连续纤维增强复合材料的横向弹性模量遵循混合效应(12分)。
2.写出2种液态法制造MMCs的方法, 并简述其工艺过程和优缺点(12分)。
画出CMCs的应力-应变曲线, 将其与低碳钢作比较;简述CMCs在拉伸载荷作用下的断裂过程, 画出示意图。
(20分)一、判断题1×2√3×4×5×6×7×8×9√10√(每小题2分)1.二填空题(每空1分, 共18分)2.机械结合3.脆性断裂韧性断裂混合断裂4.相乘效应诱导效应系统效应共振效应5.安全设计单项性能设计等强度设计等刚度设计优化设计6.钨丝碳丝涂钨的石英纤维涂碳的石英纤维增强体不是采用外加方法进入基体的, 而是通过化学反应的方法在基体内部生成的三简答题1.(1)池窑拉丝法采用的漏板上小孔数目大幅度增加, 提高了拉丝效率;(2)池窑拉丝采用玻璃料直接熔化而不是采用玻璃小球, 提高了原料利用率(3)池窑拉丝的废料可以直接再熔化, 减少了浪费满分4分, (2), (3)共2分。
复合材料10道题答案
复合材料10道题答案1.什么是复合材料,它的特性是什么?结合复合材料的特点解释了其广泛应用的原因。
定义:复合材料是指含有多种成分的新材料,不同成分有机结合,具有新的材料特性。
既能保留原组分或材料的主要特性,又能通过复合效应获得原组分所不具备的性能;通过材料设计,各部件的性能可以相互补充和关联,从而获得新的优异性能。
特点:(1)在特定的基质中填充一种或多种填料。
(2)它既能保留原部件或材料的主要特性,又能通过复合效应获得原部件所不具备的性能。
(3)通过材料设计,各部件的性能可以相互补充和关联,从而获得新的优越性能。
(4)材料可按要求设计和制造。
(5)它可以制成任何形状的产品。
复合材料的形成与产品的形成是同步的,因此避免了多重加工过程。
应用领域:(1)热稳定性好,比强度和比刚度高,可用于航空航天领域。
(2)特殊的减振特性可以减少振动和噪音,抗疲劳性能好,损坏后易于修复,便于整体成型,可用于汽车领域。
(3)碳纤维与树脂基体复合形成的具有良好耐蚀性的人才可用于化工、纺织和机械制造领域。
(4)优异的机械性能和不吸收X射线,可用于医疗领域。
(5)生物相容性和血液相容性,可用于生物医用材料。
此外,复合材料也用于制造运动器材和建筑材料。
2.简要描述RTM过程,解释过程的特征,可以制备什么样的产品,给出实际产品的例子,并解释制备产品的过程和过程条件。
树脂传递模塑法,在这种方法中,增强材料被切割或制成预成型件,然后放入模腔中。
将预成型件放置在合适的位置,以确保模具的密封。
模具闭合后,树脂被注入模腔,流过加强件,排出气体,并润湿纤维(加强件),多余的树脂将从排气孔排出到模腔。
之后,树脂在一定条件下固化并取出,得到产品。
工艺特点:产品尺寸由模具型腔决定,产品尺寸精度高,内外表面精确,不需要额外加工,但工艺难度大,注胶周期长,注胶质量不易控制。
该产品树脂含量高,模具成本高。
操作人员不接触胶液,工作条件良好。
它适用于具有一定厚度和尺寸要求的零件,如飞机机头固体壁结构天线罩、复合材料汽车保险杠、A3XXXX年左右甚至更长时间,而功能基复合材料的开发周期要短得多。
材料结构与性能答案
一、名词解释:1.大分子(macromolecule):由大量原子组成的,具有相对高的分子质量或分子重量聚合物分子:也叫高聚物分子,通常简称为高分子。
就字面上它是一个由许多(poly)部分(mer)组成的分子,然而它的确包含多重重复之意。
它意味着:(1) 这些部分是由相对低分子质量的分子衍生的单元(所谓的单体单元或链节);(2) 并且只有一种或少数几种链节;(3) 这些需要的链节多重重复重现。
2.共聚物:共聚物一词在历史上指由能自身均聚的单体聚合而生成的聚合物3.结晶度(degree of crystallinity):结晶高聚物结晶部分量地多少。
分为质量结晶度和体积结晶度4.等同周期(identity spacing):高分子晶体中分子链方向相同结构重复出现的最短距离,又称高分子晶体的晶胞结构重复单元。
构成高分子晶体的晶胞结构重复单元有时与其化学重复单元不相同。
5.结晶过程:物质从液态(溶液或熔融状态)或气态形成晶体的过程。
二、概念区分:1、微构象(microconformation)与宏构象(macroconformation)微构象:即高分子的主链键构象,即是高分子主链中一个键所涉及的原子或原子团的构象宏构象:沿高分子链的微构象序列导致高分子的宏构象,它决定高分子的形状微构象指高分子主链键构象。
宏构象指整个高分子链的形态。
由于微构象的变化所导致的高分子的宏观形态(morphology)2、应力(stress)与应变(strain)应力(σ)是受力物体截面上内力的集度,即单位面积上的作用力应变(ε):在外力作用下,材料的几何形状和尺寸发生的变化σ=Eε,E是弹性模量。
3、侧基(side group)与端基(end group)侧基:侧基是一个主链上的分支,既不是低聚物的也不是高聚物的。
端基:端基是大分子或低聚物分子末端的结构单元4、初期结晶(primary crystallization)与二次结晶(secondary crystallization)初期结晶:物质从液态(溶液或熔融状态)或气体形成晶体。
材料结构与性能解答(全).doc
材料结构与性能解答(全)1、离子键及其形成的离子晶体陶瓷材料的特征。
答当一个原子放出最外层的一个或几个电子成为正离子,而另一个原子接受这些电子而成为负离子,结果正负离子由于库仑力的作用而相互靠近。
靠近到一定程度时两闭合壳层的电子云因发生重叠而产生斥力。
这种斥力与吸引力达到平衡的时候就形成了离子键。
此时原子的电中性得到维持,每一个原子都达到稳定的满壳层的电子结构,其总能量达到最低,系统处于最稳定状态。
因此,离子键是由正负离子间的库仑引力构成。
由离子键构成的晶体称为离子晶体。
离子晶体一般由电离能较小的金属原子和电子亲和力较大的非金属原子构成。
离子晶体的结构与特性由离子尺寸、离子间堆积方式、配位数及离子的极化等因素有关。
离子键、离子晶体及由具有离子键结构的陶瓷的特性有A、离子晶体具有较高的配位数,在离子尺寸因素合适的条件下可形成最密排的结构;B、离子键没有方向性C、离子键结合强度随电荷的增加而增大,且熔点升高,离子键型陶瓷高强度、高硬度、高熔点;D、离子晶体中很难产生自由运动的电子,低温下的电导率低,绝缘性能优良;E、在熔融状态或液态,阳离子、阴离子在电场的作用下可以运动,故高温下具有良好的离子导电性。
F、吸收红外波、透过可见波长的光,即可制得透明陶瓷。
2、共价键及其形成的陶瓷材料具有的特征。
答当两个或多个原子共享其公有电子,各自达到稳定的、满壳层的状态时就形成共价键。
由于共价电子的共享,原子形成共价键的数目就受到了电子结构的限制,因此共价键具有饱和性。
由于共价键的方向性,使共价晶体不密堆排列。
这对陶瓷的性能有很大影响,特别是密度和热膨胀性,典型的共价键陶瓷的热膨胀系数相当低,由于个别原子的热膨胀量被结构中的自由空间消化掉了。
共价键及共价晶体具有以下特点A、共价键具有高的方向性和饱和性;B、共价键为非密排结构;C、典型的共价键晶体具有高强度、高硬度、高熔点的特性。
D、具有较低的热膨胀系数;E、共价键由具有相似电负性的原子所形成。
材料结构与性能试题及详细答案
《材料结构与性能》试题一、名词解释(20分)原子半径,电负性,相变增韧、Suzuki气团原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。
根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。
通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径(r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。
电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。
相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。
当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。
而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。
Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。
这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。
二、简述位错与溶质原子间有哪些交互作用。
(15分)答:从交互做作用的性质来说,可分为弹性交互作用、静电交互作用和化学交互作用三类。
弹性交互作用:位错与溶质原子的交互作用主要来源于溶质原子与基体原子间由于体积不同引起的弹性畸变与位错间的弹性交互作用。
形成Cottrell气团,甚至Snoek气团对晶体起到强化作用。
弹性交互作用的另一种情况是溶质原子核基体的弹性模量不同而产生的交互作用。
材料结构与性能复习题答案(仅供参考)
1 钢分类的方法有哪几种钢中常用合金元素有哪些是强碳化物形成元素中强碳化物形成元素钢的分类方法有5种:1)按化学成分,有碳素钢(低碳钢,中碳钢,高碳钢),合金钢;2)按质量,有普通钢,优质钢,高级优质钢;3)按用途,有结构钢,工具钢,特殊钢;4)按炼钢方法,有转炉钢,平炉钢,电炉钢;5)按浇筑前脱氧程度,有镇静钢,沸腾钢,半镇静钢。
强碳化合物形成元素:Hf,Zr,Ti,Ta,Nb,V中强碳化合物形成元素:W,Mo2 合金钢的主要优点是什么常用以提高钢淬透性的元素有哪些强烈阻碍奥氏体晶粒长大的元素有哪些提高回火稳定性的元素有哪些合金钢主要优点:优异的力学性能和其他性能,既有高的强度,又有足够韧性和塑性。
提高钢淬透性的元素:B,Mn,Cr,Mo,Si,Ni强烈阻碍奥氏体晶粒长大的元素:Hf,Zr,Ti,Ta,Nb,V提高回火稳定性的元素:V,Nb,Cr,Mo,W3 解释下列现象:(1)大多数合金钢的热处理温度比相同含碳量的碳素钢高;(2)大多数合金钢比相同含碳量的碳素钢具有较高的回火稳定性;(3)含碳量为%、含铬量为12%的铬钢属于过共析钢,而含碳量为%、含铬量为12%的铬钢属于莱氏体钢;(4)高速钢在热断货热轧后经空冷获得马氏体钢。
>1) 热处理目的是让碳及合金元素充分溶解,合金元素扩散速度慢,另外合金元素形成的碳化物溶解需要更高温度和时间。
2) 由于合金钢中含有较多的碳化物形成元素如,Cr、W、Mo、Ti、V等,它们与碳有较强的亲和力,使碳化物由马氏体向奥氏体溶解时,合金元素扩散困难,加之合金碳化物的稳定性高,使碳化物的溶解比较困难,合金钢在加热时需要较高的温度和较长的时间。
因此,合金钢具有较高的回火稳定性。
3) 按照金相组织来看,含碳量为%、含铬量为12%的铬钢平衡态是渗碳体加珠光体,含碳量为%、含铬量为12%的铬钢平衡态出现莱氏体。
4)由于高速钢的合金元素含量高,C曲线右移,一般合金元素越高临界冷却速度越小,淬透性越好,当空冷的冷却速度大于临界冷却速度时,空冷即可获得马氏体。
大学复合材料-复合材料考卷及答案
20XX年复习资料大学复习资料专业:班级:科目老师:日期:一、选择题1. 纤维增强塑料一词缩写为( A )A.FRPB.CFRPC.GFRPD.GDP2.生产碳纤维的最主要原料是答:聚丙烯纤维、黏胶丝和沥青纤维( B )A. 沥青B. 聚丙烯腈C. 聚乙烯D. 人造丝3. 玻璃钢是答:玻璃纤维增强塑料( B )A. 玻璃纤维增强Al基复合材料B. 玻璃纤维增强热固性塑料C. 氧化铝纤维增强塑料D. 碳纤维增强热固性塑料4. FR-TP是指( D )A. 水泥基体复合材料B. 碳纤维增强树脂基复合材料C. 玻璃钢复合材料D. 玻璃纤维增强热塑性塑料5. 金属基复合材料通常( D )A. 以重金属作基体B. 延性比金属差C. 弹性模量比金属低D. 较基体具有更高使用的温度6. 复合材料中的残余应力主要有下列哪个因素造成的( C )A. 在制备复合材料时,由于冷却速度过快,使应力来不及缓和造成的B. 基体材料与增强材料的化学相容性不好造成的C. 基体材料与增强材料的热膨胀系数的差异性造成的D. 基体材料与增强材料力学性能不同造成的二、填空题1.复合材料中的连续相,称为基体,其它的相分散于连续相中,提高材料的力学性能,称为增强体。
2. 按用途分类,复合材料可分为结构和功能、结构\功能一体化复合材料。
3. E玻璃纤维是指无碱玻璃纤维,A玻璃纤维是指有碱玻璃纤维。
4.聚合物基复合材料中,常见的热塑性树脂基体有聚丙烯、聚氯、聚酰、聚碳酸酯。
5. 在聚合物基复合材料中,常见的热固性树脂基体有环氧树脂,酚醛树脂,不饱和聚酯,呋喃树脂等。
6.比强度是指材料抗拉强度与材料比重之比。
7@比刚度指材料弹性模量与其密度之比。
8. 自生成法是指在复合材料制造过程中,增强材料在基体中生成和生长的方法,解决了复合材料中的相容性和界面反应两个常见问题。
9.制备铝基(金属基)复合材料常见的液态金属法有真空压力浸渍法、挤压铸造法、搅拌复合法、液态金属浸渍法、真空吸铸法、热喷涂法等。
复合材料10道题答案.doc
1、什么是复合材料,复合材料具有哪些特点,并结合复合材料的特点说明其应用领域广泛的原因。
定义:复合材料是指那些含有多个组分,且不同的组分有机地结合在一起、具有新的材料性能的新材料。
既能保留原组分或材料的主要特色,并通过复合效应获得原组分所不具备的性能;可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得新的优越性能。
特点:(1)在一个特定的基体中填充有一种或多种填充体。
(2)既能保留原组分或材料的主要特色,并通过复合效应获得原组分所不具备的性能。
(3)可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得新的优越性能。
(4)可按需要进行材料的设计和制造。
(5)可制成任何形状的制品,复合材料的形成和形成制品形状同步,可避免多次加工工序。
应用领域.•(1)热稳定性好,比强度、比刚度高,可用于航空航天领域。
(2)特殊的振动阻尼特性,可减振和降低噪声、抗疲劳性能好,损伤后易修理,便于整体成型,可用于汽车领域。
(3)有良好耐腐蚀性的碳纤维与树脂基体复合而成的才,可用于化工、纺织和机械制造领域。
(4)优异的力学性能和不吸收X射线特性,可用于医学领域。
(5)生物组织相容性和血液相容性,可用于关于生物医学材料。
此外,复合材料还用于制造体育运动器件和用作建筑材料等。
2、对RTM工艺过程进行简单描述,并说明该工艺的特点,能够制备什么样的制品,并给出实际制品的例子,并说明制备该制品的工艺过程及工艺条件。
RTM:树脂转移成型,是把增强材料切成或制成预成型体,放入模腔之中。
预成型体放置于合适的位置,以保证模具的密封。
合模后,树脂被注射到模腔之内,流经增强体,把气体排出,并润湿纤维(增强体),多余的树脂将从排气孔处排出模腔。
之后,树脂在一定的条件下经固化后,取出是到制品。
工艺特点:制品尺寸由模腔决定,制件尺寸精度高,有精确的A外表面,不需补充加工,但工艺难度大,注胶周期长,注胶质量不易控制;制品树脂含量高,模具赀用高;操作者不与胶液接触,劳动条件好。
[工学]材料结构与性能试题-答案
材料结构与性能试题1、高分子结构特点:包括近程结构和远程结构。
近程包括原子种类和排列、结构单元链接方式、支化与交联、序列结构和构型。
原子种类和排列:碳链高分子、杂链高分子、元素有机高分子、梯形和双螺旋形高分子、端基。
结构单元链接方式:是指结构单元在高分子链中的联结方式,如头—尾、头—头、尾—尾等。
支化与交联:支化破坏了分子的规整性,故结晶度大大降低。
交联是指高分子链之间通过支链连接成一个空间三维网状结构。
序列结构:以A 、B 两种单体单元所构成的共聚物为例,按连接方式可分为:交替共聚物、无规共聚物、嵌段共聚物、接枝共聚物。
构型:指分子中由化学键所固定的原子在空间的几何排列。
远程结构包括高分子链的大小和形态。
高分子链的大小(质量)包括相对分子质量(分子量)和相对分子质量分布(分子量分布)。
高分子链的形态(构象):由于单键内旋转而产生的分子在空间的不同形态。
工程塑料ABS :由丙稀腈,丁二烯和苯乙烯的三元接枝共聚物,因此兼具三种组分的特性:质硬、耐腐蚀、提高制品的拉伸强度和硬度。
SBS 嵌段共聚物:由阴离子聚合法制得的苯乙烯与丁二烯的共聚物。
聚丁二烯(PB )常温下是橡胶,聚苯乙烯(PS )则是硬性塑料,二者不相容,因此是两相结构。
PB 相形成连续的橡胶相,PS 则形成微区分散于树脂中对PB 起交联作用. 丁苯橡胶SBR :是由苯乙烯与丁二烯在BPO 或氧化还原引发剂作用下,按照自由基聚合机理得到的无规共聚物。
2、答:非晶态聚合物典型的热--机械曲线如下图,存在两个斜率突变区,这两个突变区把热-机械曲线分为三个区域,分别对应于三种不同的力学状态,三种状态的性能与分子运动特征各有不同。
在区域I ,温度低,链段运动被冻结,只有侧基、链节、链长、键角等的局部运动,因此聚合物在外力作用下的形变小,具有胡克弹性行为:形变在瞬间完成,当外力除去后,形变又立即恢复,表现为质硬而脆,这种力学状态与无机玻温度形变 III III璃相似,称为玻璃态。
材料结构与性能试题及详细答案
《材料结构与性能》试题一、名词解释(20分)原子半径,电负性,相变增韧、Suzuki气团原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。
根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。
通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径(r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。
电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。
相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。
当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。
而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。
Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。
这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。
二、简述位错与溶质原子间有哪些交互作用。
(15分)答:从交互做作用的性质来说,可分为弹性交互作用、静电交互作用和化学交互作用三类。
弹性交互作用:位错与溶质原子的交互作用主要来源于溶质原子与基体原子间由于体积不同引起的弹性畸变与位错间的弹性交互作用。
形成Cottrell气团,甚至Snoek气团对晶体起到强化作用。
弹性交互作用的另一种情况是溶质原子核基体的弹性模量不同而产生的交互作用。
复合材料复习题精选试题
复合材料复习题精选试题复合材料复习题一、判断题1.比强度和比模量是材料的强度和模量与其密度之比√2.混杂复合总是指两种以上的纤维增强体×3.陶瓷复合材料中,连续纤维的增韧效果远高于颗粒的增韧效果√4.层板复合材料主要是指由颗粒增强的复合材料×5.复合材料具有可设计性√6.分散相总是较基体强度和硬度高、刚度大×7.原位复合MMC的增强材料/基体界面具有物理和化学稳定性√8.一般颗粒及晶须增强MMC的疲劳强度及寿命比基体金属/合金高√9.基体与增强体的界面在高温使用过程中不发生变化×10.复合材料是由两个组元以上的材料化合而成×11.界面粘结过强的复合材料容易发生脆性断裂√12.混合法则可用于任何复合材料的性能估算×13.纤维长度l 14.竹、麻、木、骨、皮肤是天然复合材料√15.玻璃陶瓷是含有大量微晶体的陶瓷×16.陶瓷基复合材料的最初失效往往是陶瓷基体的开裂√17.所有天然纤维是有机纤维,所有的合成纤维是无机纤维×18.基体与增强体间界面的模量比增强体和基体高,则复合材料的弹性模量也越高×二、选择题1.短纤维复合材料广泛应用的主要原因是(C:短纤维复合材料总是各相同性)2.金属基复合材料的温度范围为(B:350℃~1100℃)3.玻璃钢是(B:玻璃增强纤维塑料)4.功能复合材料(A:是指由功能体和基体的组成的复合材料)5.材料的比强度和比模量越高(B:制作同一零件时自重越大,刚度越大)6.金属基复合材料通常(D:较基体具有更高的高温强度)7.复合材料界面的作用(B:将整体承受的载荷由基体传送到增强体)8.增强材料与基体的作用是(D:基体起粘结作用并起传递应力和增韧作用)9.混合定律(A:表示复合材料性能随组元材料体积含量呈线性关系)10.通常MMC(B:要比基体金属/合金的塑性和韧性差)11.混杂复合材料(B:是具有混杂纤维或颗粒增强的复合材料)12.浸润性(A:当yc+ys 13.偶联剂是怎样的一种试剂(A:既能与基体反应,又能与纤维反应)14.玻璃纤维(A:由二氧化硅玻璃制成)15.晶须(A:是含有缺陷很少的单晶纤维)三、简答题1.简述复合材料的分类形式。
复合材料期末考试复习题
1.复合材料的分类方法?复合材料的分类方法也很多。
常见的有以下几种。
按基体材料类型分类聚合物基复合材料以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体制成的复合材料。
金属复合材料以金属为基体制成的复合材料,如铝墓复合材料、铁基复合材料等。
无机非金属基复合材料以陶瓷材料(也包括玻璃和水泥)为基体制成的复合材料。
按增强材料种类分类玻璃纤维复合材料。
碳纤维复合材料。
有机纤维(芳香族聚酰胺纤维、芳香族聚酯纤维、高强度聚烯烃纤维等)复合材料。
金属纤维(如钨丝、不锈钢丝等)复合材料。
陶瓷纤维(如氧化铝纤维、碳化硅纤维、翩纤维等)复合材料。
此外,如果用两种或两种以上的纤维增强同一基体制成的复合材料称为“混杂复合材料”。
混杂复合材料可以看对免戈趁两种或多种单一纤维复合材料的相互复合,即复合材料的“复合材料”。
按增强材料形态分类连续纤维复合材料作为分散相的纤维,每根纤维的两个端点都位于复合材料的边界处。
短纤维复合材料短纤维无规则地分散在基体材料中制成的复合材料。
粒状填料复合材料微小颗粒状增强材料分散在基体中制成的复合材料。
编织复合材料以平面二维或立体三维纤维编织物为增强材料与基体复合而成的复合材料。
按用途分类复合材料按用途可分为结构复合材料和功能复合材料。
2.举例说明复合材料在现代工业中的应用?<1>建筑工业中,复合材料广泛应用于各种轻型结构房屋,建筑装饰、卫生洁具、冷却塔、储水箱、门窗及其门窗构件、落水系统和地面等。
<2>化学工业中,复合材料主要应用于防腐蚀管、罐、泵、阀等。
<3>交通运输方面,如汽车制造业中,复合材料主要应用于各种车身结构件、引擎罩、仪表盘、车门、底板、座椅等;在铁路运输中用于客车车厢、车门窗、水箱、卫生间、冷藏车、储藏车、集装箱、逃生平台等。
<4>造船工业中,复合材料用于生产各种工作挺、渔船、摩托艇、扫雷艇、潜水艇、救生艇、游艇以及船上舾装件等。
材料结构与性能答案
材料结构与性能答案1.材料的结构层次有哪些,分别在什么尺度,⽤什么仪器进⾏分析?现在,⼈们通过⼤量的科学研究和⼯程实践,已经充分认识到物质结构的尺度和层次是有决定性意义的。
在不同的尺度下,主要的,或者说起决定性的问题现象和机理都有很⼤的差异,因此需要我们⽤不同的思路和⽅法去研究解决这些问题。
更值得注意的是空间尺度与时间尺度还紧密相关,不同空间尺度下事件发⽣及进⾏的时间尺度也很不相同。
⼀般地讲,空间尺度越⼤的,则描述事件的时间尺度也应越长。
不同的学科关注不同尺度的时空中发⽣的事件。
现代科学则按⼈眼能否直接观察到,且是否涉及分⼦、原⼦、电⼦等的内部结构或机制,⽽将世界粗略地划分为宏观(Macro-scopic)世界和微观(Microscopic)世界。
之后,⼜有⼈将可以⽤光学显微镜观察到的尺度范围单独分出,特别地称作/显微结构(世界)。
随着近年来材料科学的迅速发展,材料科学家中有⼈将微观世界作了更细致地划分。
⽽研究基本粒⼦的物理学家可能还会把尺度向更⼩的⽅向收缩,并给出另外的命名。
对于宏观世界,根据尺度的不同,或许还可以细分为/宇宙尺度/太阳系尺度/地球尺度和/⼯程及⼈体尺度等。
⼈类的研究尺度已⼩⾄基本粒⼦,⼤⾄全宇宙。
但到⽬前为⽌,关于/世界的认识还在不断深化,因⽽对其划分也就还处于变动之中。
即使是按以上的层次划分,其各界之间的边界也⽐较模糊,有许多现象会在⼏个尺度层次中发⽣。
在材料科学与⼯程领域中,对于材料结构层次的划分尚不统⼀,可以列举出许多种划分⽅法,例如:有的材料设计科学家按研究对象的空间尺度划分为三个层次:(1)⼯程设计层次:尺度对应于宏观材料,涉及⼤块材料的加⼯和使⽤性能的设计研究。
(2)连续模型尺度:典型尺度在1Lm量级,这时材料被看作连续介质,不考虑其中单个原⼦、分⼦的⾏为。
(3)微观设计层次:空间尺度在1nm量级,是原⼦、分⼦层次的设计。
国外有的计算材料学家,按空间和时间尺度划分四个层次〔1〕,即(1)宏观这是⼈类⽇常活动的主要范围,即⼈通过⾃⾝的体⼒,或借助于器械、机械等所能通达的时空。
(完整版)复合材料结构设计(2)
复合材料结构设计基础 练习题1练习题一填空1、复合材料的重要特点是(结构)设计与(材料)设计同时进行。
2、研究复合材料的强度和刚度时的基本假设有:(1) 假设层合板是(连续)的;(2)假设单向层合板是(均匀)的,多向层合板是分段均匀的;(3) 假设限于单向层合板是(正交各向异性)的:即认为单向层合板具有两个相互垂直的弹性对称面;(4) 假设限于层合板是(线弹性)的:即认为层合板在外力作用下产生的变形与外力成正比关系,且当外力移去后,层合板能够完全恢复其原来形状;(5) 假设层合板的变形(很小)。
3、复合材料单层(正交各向异性材料)基本强度指标包括:Xt ——纵向拉伸强度; Xc ——纵向压缩强度;Yt ——横向拉伸强度; Yc ——横向压缩强度;S ——面内剪切强度。
4、对正交各向异性材料,当载荷作用在非材料主方向时,正交各向异性性能常常导致(耦合)效应。
5、单向层合板强度准则包括(最大应力)准则和(最大应变)准则。
6、按照各单层板相对于中面的排列位置,层合板可分为(对称)、(非对称)和(夹心)层合板三大类。
7、层合板的刚度用层合板(刚度)系数,为层合板内力-应变关系的系数、(柔度)系数为层合板应变-内力关系的系数、和(工程弹性)常数三种形式给出。
8、复合材料结构分析就是分析组成复合材料结构的基本元件在(载荷)作用下的力学响应,为(结构)设计提供可靠的依据。
9、复合材料连接,包括复合材料构件之间和复合材料构件与其它材料构件之间的连接,在复合材料结构中对结构的安全与可靠性具有十分重要的作用。
10、AutoCAD 中的编辑命令主要有删除、移动、复制、旋转、缩放、偏移、镜像、 阵列(写出其中五种)。
11、纤维增强复合材料是由(基体)和(增强体)两种基本材料组成的,构成复合材料的基本单元是(层合板)。
12、单层的正轴刚度是指单层在正轴上所显示的刚度性能,表示单层的正轴刚度可以用(工程弹性常数)、(柔量分量)或(模量分量)中的任意一组。
复合材料-复习材料及答案
复合材料第一章1、材料科技工作者的工作主要体现在哪些方面?(简答题)①发现新的物质,测试新物质的结构和性能;②由已知的物质,通过新的制备工艺,改善其微观结构,改善材料的性能;③由已知的物质进行复合,制备出具有优良特性的复合材料。
2、复合材料的定义(名词解释)复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
3、复合材料的分类(填空题)⑴按基体材料分类①聚合物基复合材料;②金属基复合材料;③无机非金属基复合材料。
⑵按不同增强材料形式分类①纤维增强复合材料:②颗粒增强复合材料;③片材增强复合材料;④叠层复合材料。
4、复合材料的结构设计层次(简答题)⑴一次结构:是指由基体和增强材料复合而成的单层复合材料,其力学性能取决于组分材料的力学性能,各相材料的形态、分布和含量及界面的性能;⑵二次结构:是指由单层材料层合而成的层合体,其力学性能取决于单层材料的力学性能和铺层几何(各单层的厚度、铺设方向、铺层序列);⑶三次结构:是指工程结构或产品结构,其力学性能取决于层合体的力学性能和结构几何。
5、复合材料设计分为三个层次:(填空题)①单层材料设计;②铺层设计;③结构设计。
第二章1、复合材料界面对其性能起很大影响,界面的机能可归纳为哪几种效应?(简答题)①传递效应:基体可通过界面将外力传递给增强物,起到基体与增强体之间的桥梁作用。
②阻断效应:适当的界面有阻止裂纹的扩展、中断材料破坏、减缓应力集中的作用。
③不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现的现象。
④散热和吸收效应:光波、声波、热弹性波、冲击波等在界面产生散射和吸收。
⑤诱导效应:复合材料中的一种组元的表面结构使另一种与之接触的物质的结构由于诱导作用而发生变化。
2、对于聚合物基复合材料,其界面的形成是在材料的成型过程中,可分为两个阶段(填空题)①基体与增强体的接触与浸润;②聚合物的固化。
3、界面作用机理界面作用机理是指界面发挥作用的微观机理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、简述构成复合材料的元素及其作用复合材料由两种以上组分以及他们之间的界面组成。
即构成复合材料的元素包括基体相、增强相、界面相。
基体相作用:具有支撑和保护增强相的作用。
在复合材料受外加载荷时,基体相一剪切变形的方式起向增强相分配和传递载荷的作用,提高塑性变形能力。
增强和作用:能够强化基体和的材料称为增强体,增强体在复合材料中是分散相, 在复合材料承受外加载荷时增强相主要起到承载载荷的作用。
界面相作用:界面相是使基体相和增强相彼此相连的过渡层。
界面相具有一定厚度,在化学成分和力学性质上与基体相和增强相有明显区别。
在复合材料受外加载荷时能够起到传递载荷的作用。
2、简述复合材料的基本特点(1)复合材料的性能具有可设计性材料性能的可设计性是指通过改变材料的组分、结构、工艺方法和工艺参数来调节材料的性能。
显然,复合材料中包含了诸多影响最终性能、可调节的因素,赋予了复合材料的性能可设计性以极大的自由度。
⑵ 材料与构件制造的一致性制造复合材料与制造构件往往是同步的,即复合材料与复合材料构架同时成型,在采用某种方法把增强体掺入基体成型复合材料的同时•,通常也就形成了复合材料的构件。
(3)叠加效应叠加效应指的是依靠增强体与基体性能的登加,使复合材料获得一•种新的、独特而又优于个单元组分的性能,以实现预期的性能指标。
(4)复合材料的不足复合材料的增强体和基体可供选择地范围有限;制备工艺复杂,性能存在波动、离散性;复合材料制品成本较高。
3、说明增强体在结构复合材料中的作用能够强化基体的材料称为增强体。
增强体在复合材料中是分散相。
复合材料中的增强体,按几何形状可分为颗粒状、纤维状、薄片状和由纤维编制的三维立体结构。
喑属性可分为有机增强体和无机增强体。
复合材料中最主要的增强体是纤维状的。
对于结构复合材料,纤维的主要作用是承载,纤维承受载荷的比例远大于基体;对于多功能复合材料,纤维的主要作用是吸波、隐身、防热、耐磨、耐腐蚀和抗震等其中一种或多种,同时为材料提供基本的结构性能;对于结构陶瓷复合材料,纤维的主要作用是增加韧性。
4、说明纤维增强复合材料为何有最小纤维含量和最大纤维含量在复合材料中,纤维体积含量是一个很重要的参数。
纤维强度高,基体韧性好,若加入少量纤维,不仅起不到强化作用反而弱化,因为纤维在基体内相当于裂纹。
所以存在最小纤维含量,即临界纤维含量。
若纤维含量小于临界纤维量,则在受外载荷作用时,纤维首先断裂,同时基体会承受载荷,产生较大变形,是否断裂取决于基体强度。
纤维量增加,强度下降。
当纤维量大于临界纤维量时,纤维主要承受载荷。
纤维量增加强度增加。
总之,含量过低,不能充分发挥复合材料中增强材料的作用;含量过高,由于纤维和基体间不能形成一定厚度的界面过渡层, 无法承担基体对纤维的力传递,也不利于复合材料抗拉强度的提高。
5、如何设才计复合材料材料设计是指根据对•材料性能的要求而进行的材料获得方法与工程途径的规划。
复合材料设计是通过改变原材料体系、比例、配置和复合工艺类型及参数,来改变复合材料的性能,特别是是器有各向异性,从而适应在不同位置、不同方位和不同环境条件下的使用要求。
复合材料的可设计性赋予了结构设计者更大的自由度,从而有可能设计出能够充分发掘与应用材料潜力的优化结构。
复合材料制品的设计与研制步骤可以归纳如下:1)通过论证明确对于材料的使用性能要求,确定设计目标2)选择材料体系(增强体、基体)3)确定组分比例、几何形态及增强体的配置4)确定制备工艺方法及工艺参数5)以上主要为设计步骤,在完成复合材料设计方案后,应结合市场供应情况和研制单位的已有条件,采购原材料,购置或改造工艺设备,完成制造工艺条件准备6)测试所制得样品的实际性能,检验是否达到使用性能要求和设计目标7)在总结设置经验与成果的基础上,调整设计方案,组织制品生产6、如何改善复合材料界面相容问题相容性是指亮哥相互接触的组分是否相互容纳。
在复合材料中是指纤维与基体之间是否彼此协调、匹配或是否发生化学反应。
复合材料界面相容性包括:物理相容性和化学相容性复合材料界面的物理相容性主要包括润湿性、热膨胀匹配性和组分之间元素的相互溶解性。
1)纤维与基体之间的润湿性在复合材料工艺过程中,液态基体与纤维最好能发生润湿,以免复合材料界面结合太弱,使其传递载荷的功能不能充分发挥。
2)热残余应力热残余应力是由于复合材料组分之间的热膨胀系数不同,当使用或制造过程中所处的温度偏离复合材料成型温度时,在组元界面处产生的结构内应力。
这种残余应力与复合材料所承受的外载荷产生的应力相叠加,将影响复合材料的承载能力。
甚至在复合材料中造成微裂纹使复合材料丧失承载能力。
良好的复合材料界面化学相容性是指在高温时复合材料中的两组分之间处于热力学平衡且两相反应动力学十分缓慢。
但是,出共晶复合材料和原位生长复合材料外,一般复合材料都不属于组分之间能够处于热力学平衡的体系。
为了改善复合材料界面化学相容性,在选材时不能只单纯考虑力学平衡,还要查阅相关的热力学和动力学资料以获得达到某种平衡状态时的信息。
7、说明复合材料的结合方式,如何提高复合材料界面结合强度界面结合的方式大致可分为机械结合和化学结合两类。
化学结合乂可分为溶解与润湿结合和反应结合。
机械结合:基体与增强体之间仅仅依靠纯粹的粗糙表面相互嵌入作用进行连接溶解与润湿结合:在复合材料制造的过程中基体与增强体之间首先发生润湿,然后相互溶解,这种结合方式即为溶解与润湿结合反应结合:基体与纤维间发生化学反应,在界面上形成一•种新的化合物而产生结合的结合方式8、说明复合材料界面的作用及其有关力学和物化要求界面相是使基体相和增强相彼此相连的过渡层。
界而相具有一定厚度,在化学成分和力学性质上与基体相和增强相有明显区别。
在复合材料受外加载荷时能够起到传递载荷的作用。
对界面的要求主要包括力学和物理化学两个方面。
力学方面:力学方面要求儿面能够传递载荷。
复合材料在服役期间必需保持自己的形状和承担外界及相邻构件施加的载荷,这就要求复合材料是一个力学上的连续体,即复合材料中各组分之间通过界面实现完整的结合。
从力学观点看,界面作用就是将复合材料的各组分连接成为力学连续体,因此对界面的力学要求是界面应具有均匀、恒定的强度,保证能在相邻组分之间有效的传递载荷,是他们能够在复合材料承载肘发挥各自的功能。
物理化学方面:从物理化学角度出发,理想界面应是化学非连续体,即各组元间不发生元素间相互扩散或化学反应。
只有各组分保持各自的化学成分和晶体结构,且在界面处不存在相互联系的过度向,界面才能有效地阻止裂纹的传播和扩展;两组分拣不发生化学作用,才能避免界面形成脆性层,从而避免在脆性层中产生的裂纹所诱发的纤维破坏;元素间不发生扩散,才不致使基体塑性变差或使增强体产生凹陷和不平整等缺陷。
9、连续纤维和非连续纤维复合材料的应力状态有何不同(1)连续纤维复合材料在纵向载荷下的应力状态在弹性范围内:在简单拉伸时,纤维、基体和界面均产生三向应力状态。
在施加外力初期,纤维和基体均处于弹性变形范围内。
由于纤维与基体的弹性模量不同,故纤维比基体的轴向应力高,界面处的轴向应力最高;横向应力与轴向应力相比其值很小。
在塑性变形范围内:继续增加外力值至基体发生屈服,而纤维仍然处于弹性变形范围。
基体与纤维的泊松比之差进一•步增大,故横向应力增大。
轴向应变越大,则横向应力增大幅度也越大。
(2)连续纤维复合材料在横向载荷下的应力状态在受横向载荷时,界面的应力分布用应力集中系数来描述。
在横向载荷作用下围绕界面的应力与载荷方向的夹角°有关。
当°=0时,界面正应力弓•具有最大值。
然后随°增加而减小;当°=70。
〜90。
正应力有拉伸应力变成压缩应力。
剪应力%在。
=45。
时最大;当^<45°或。
>45°时切减小。
因此,在横向载荷下, 界面所受最大应力不是剪应力,而是拉伸或压缩正应力。
(3)非连续纤维复合材料的应力状态在一定的纵向外加拉伸载荷作用下,非连续纤维和基体同肘发生弹性变形, 由于纤维的弹性模量远大于基体的弹性模量,故纤维对与之相邻区域基体的变形产生约束,造成基体的弹性变形不均匀;界而剪切应力和纤维拉伸应力弓.在纤维长度方向上呈不均匀分布。
10、纤维增强复合材料为何存在纤维临界长度和临界长径比(2)维临界长度〉和临界长径比也/山)采用图4-31所示的醉切套筒模型分析在非连续纤维微段dz上力的平衡。
图4-31乾切套筒模型(兀/4)d"d( j) = Ttdfudz (4-9)式中,d(%)为dz的纤维两端上的止应力之差;八为d定微段纤维上的剪切应力。
为简化分析,可以将乾切应力看成均勾分布。
当微段纤维中点的正应力值达到q时,可对上式积分〕。
”(穴/公匕电言* ) = f 0//2ircZfrj(dz )(n/4)d f2af = Tcd{ri(l /2)H/(2 印所以,当L"时l c/d i=a fll/(2r t)(4-10)11、金属基复合材料界面有何特点金属基复合材料的界面包括固溶体和金属间化合物。
金属基复合材料界面结合方式包括:机械结合、溶解与润湿结合、交换反应结合、氧化物结合和混合结4口O1)机械结合基体与增强体之间仅仅依靠纯粹的粗糙表面相互嵌入作用进行连接。
2)溶解与润湿结在复合材料制造的过程中基体与增强体之间首先发生润湿,然后相互溶解,这种结合方式即为溶解与润湿结合。
3)交换反应结合汽增强体或基体成分含有两种或两种以上元素时,除发生界面反应外,在增强体、基体与反应产物之间还会发生元素交换。
所产生的结合称为交换反应结合。
4)氧化物结合氧化物结合是指当采用的增强体是某种氧化物时,其与基体间发生反应生成另一种氧化物,所产生的结合。
5)混合结合当由增强体和基体金属组成复合材料时.,某些金属基体表面存在致密的氧化膜。
此氧化膜常常逐渐被某种工艺因素或化学反应破坏,使增强体与基体之间的界面从非化学结合向化学结合过渡,在过渡过程中,界面既存在机械结合又存在化学结合,成为混合结合。
一般情况下,金属基复合材料是以界面化学结合为主,有时也会有两种或两种以上界面结合方式并存的现象。
另外,即使对于相同的组分、相同的工艺制备的复合材料,对应于不同的部位其界面结构也有较大差别。
通常将金属基复合材料界面分成1、11、III三种类型:I型界面包括机械结合和氧化物结合,代表增强体与基体金属既不溶解也不反应;II型界面即溶解与润湿结合,代表增强体与基体金属之间可以溶解但不反应;III型界面包括交换反应结合和混合结合,表示增强体与基体之间发生反应并形成化合物12、说明纤维增强陶瓷基复合材料的增韧机制陶瓷不具备金属那样的塑性变形能力,在断裂过程中除了除了产生新的断裂表面需要吸收表面能之外,儿乎没有其他吸收能量的机制,这就是陶瓷脆性的本质原因。