遗传的分子基础PPT课件
合集下载
遗传的分子基础ppt课件
.
47
.
48
从1857年孟德尔进 行豌豆杂交实验算 起,经过无数科学 家近百年的探索, 蒙在生命遗传奥秘 上的面纱正在一层 层地剥去。
科学探索的道路 是螺旋式的,科学 家们在阶梯上不断 攀登,一个新的螺 旋展现在他们的眼 前,而这将引起一 场生命科学的革命。
.
49
• 最初由孟德尔提出的遗传因子的概念, 通过摩尔根、艾弗里、赫尔希和沃森、 克里克等几代科学家的研究,已经使生 物遗传机制建立在遗传物质DNA的基础 之上。
• 结果: (1)可以破坏、消化蛋白质的胰蛋白酶和糜蛋白酶不影
响转化活性; (2)分解、消化RNA(而不是消化分解DNA)的RNA酶对
转化活性无影响; (3)在加入分解、消化DNA的DNA酶后,转化活性丧失。
这些实验进一步证明了DNA作为遗传信息载体的功能。
.
32
• 发现遗传物质的化学本质是DNA,这是基 因研究上一个重要的里程碑。但在当时, 这项重要的发现并未引起足够的重视。 艾弗里虽曾被提名为诺贝尔奖的候选人, 但当时评奖委员会认为“最好等到DNA的 转化机理更多地为人们所了解的时候再 说”。可是,当争议平息、诺贝尔奖评 选委员会准备授奖之时,他已经去世了。
36
噬菌体感染实验
• 35S标记蛋白质外壳的噬菌体感染细菌 细菌无放射性
• 32P标记DNA内芯的噬菌体感染细菌细 菌有放射性
• 这一结果确凿无疑地证明,进入寄主细胞内 的是噬菌体DNA,而不是蛋白质外壳。噬菌 体的DNA不但包括噬菌体自我复制的信息, 而且包括合成噬菌体蛋白质所需要的全部信 息。
.
42
富兰克林拍摄的DNA晶体的X射线衍射照片,
这张照片正是发现DNA结构的关键
遗传的分子基础PPT课件
13
2、核酸的种类 DNA和RNA
根据组成核苷酸的五碳糖的不同,核酸可以分为
两种:脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA是所有原核生物和真核生物的遗传物质,病
毒只含有RNA或DNA。RNA和DNA的主要区别:
(略)
1953年美国哈佛大学的
Waston和英国剑桥大学理论
物理学者Crick借助于伦敦皇
30
RNA二级结构 : 单链RNA自行盘绕形成局部双螺旋的多“茎”多“环” 结构,螺旋部分称为“茎”或“臂”非螺旋部分称为“ 环”,在螺旋区,A与U配对,G与C配对。
31
tRNA的二级结构: 三叶草形状 RNA三叶草型的二级结构可分为:氨基酸接受区、反密码区 、二氢尿嘧啶区、TΨ C区和可变区。除氨基酸接受区外,其余 每个区都含有一个突环和一个臂。如图所示:
二、RNA合成的一般特点
1、所有的原料为核苷三磷酸;
2、只有一条DNA链被用作模板;
3、RNA链的合成不需要引物的引导; 4、RNA的合成也是从5,向3,端进行;
5、RNA的转录和合成由RNA聚合酶催化, 聚合酶首先在启动子处与DNA结合,形成 转录泡,并开始转录。
6、同样遵循碱基配对原则,只是U代替了
32
tRNA的 三级结构: 倒“L”形,所有的tRNA折叠后形成 大小相似及三 维构象相似的三级结构,这有利于携带 的氨基酸的tRNA进入核糖体的特定部位。 如图所示:
33
第三节 遗传信息的表达与调控
一、中心法则及其发展
遗传信息从DNA→mRNA→蛋白质的转录和翻译的 过程,以及遗传信息从DNA→DNA的复制过程,这 就是分子生物学的中心法则(central dogma)
2、核酸的种类 DNA和RNA
根据组成核苷酸的五碳糖的不同,核酸可以分为
两种:脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA是所有原核生物和真核生物的遗传物质,病
毒只含有RNA或DNA。RNA和DNA的主要区别:
(略)
1953年美国哈佛大学的
Waston和英国剑桥大学理论
物理学者Crick借助于伦敦皇
30
RNA二级结构 : 单链RNA自行盘绕形成局部双螺旋的多“茎”多“环” 结构,螺旋部分称为“茎”或“臂”非螺旋部分称为“ 环”,在螺旋区,A与U配对,G与C配对。
31
tRNA的二级结构: 三叶草形状 RNA三叶草型的二级结构可分为:氨基酸接受区、反密码区 、二氢尿嘧啶区、TΨ C区和可变区。除氨基酸接受区外,其余 每个区都含有一个突环和一个臂。如图所示:
二、RNA合成的一般特点
1、所有的原料为核苷三磷酸;
2、只有一条DNA链被用作模板;
3、RNA链的合成不需要引物的引导; 4、RNA的合成也是从5,向3,端进行;
5、RNA的转录和合成由RNA聚合酶催化, 聚合酶首先在启动子处与DNA结合,形成 转录泡,并开始转录。
6、同样遵循碱基配对原则,只是U代替了
32
tRNA的 三级结构: 倒“L”形,所有的tRNA折叠后形成 大小相似及三 维构象相似的三级结构,这有利于携带 的氨基酸的tRNA进入核糖体的特定部位。 如图所示:
33
第三节 遗传信息的表达与调控
一、中心法则及其发展
遗传信息从DNA→mRNA→蛋白质的转录和翻译的 过程,以及遗传信息从DNA→DNA的复制过程,这 就是分子生物学的中心法则(central dogma)
遗传的分子基础PPT
碱基互)补配对: U-A、A-U
遗传信息流动: mRNA
蛋白质
第二十五页,共27页。
基因的表达
4.相关计算:
(1)基因控制蛋白质合成过程中的几种数量关系:
基因中编码蛋白质的碱基数量: 6m
mRNA上的碱基数量: 3m
mRNA上的密码子数量: m
m 合成的蛋白质中的氨基酸数量:
参与转运氨基酸的tRNA数量: m
种只起终止的作用
不决定为终止密码
子。
遗传密码的特性
通用性
简并性
UU A G A U A UC
mRNA
第二十三页,共27页。
基因的表达
新问题:游离在细胞质中的氨基酸,是怎样运送到合成蛋白质
的“生产线----核糖体”上?
结合氨基 酸的部位
每种tRNA只能识别并转运 一种特定的氨基酸!
反密码子
一共有多少种tRNA?
烟
感染
病 毒 TMV的RNA+RNA酶
感染
草
TMV
烟草未感染 烟草被感染 烟草未感染
第十页,共27页。
人类对遗传物质的探索过程
真核生物
(核 物两有酸的种核细是遗酸胞同一 传生时存物切 物在)生 质物 是原的D核N生遗A,物传所物以质D遗,N传A绝是物大主质多要是D数的NA生遗
传物质。
非细胞生物
(只有一种核酸)
a×2n-1。
第十七页,共27页。
DNA分子的复制
3.与DNA复制相关的计算:
(3)如果DNA分子解旋时,一条链上的碱基发生差错,经n次
复制后,发生差错的DNA分子占 。1/2
第十八页,共27页。
例:如果将1个含有1对同源染色体的精原细胞的DNA分
遗传信息流动: mRNA
蛋白质
第二十五页,共27页。
基因的表达
4.相关计算:
(1)基因控制蛋白质合成过程中的几种数量关系:
基因中编码蛋白质的碱基数量: 6m
mRNA上的碱基数量: 3m
mRNA上的密码子数量: m
m 合成的蛋白质中的氨基酸数量:
参与转运氨基酸的tRNA数量: m
种只起终止的作用
不决定为终止密码
子。
遗传密码的特性
通用性
简并性
UU A G A U A UC
mRNA
第二十三页,共27页。
基因的表达
新问题:游离在细胞质中的氨基酸,是怎样运送到合成蛋白质
的“生产线----核糖体”上?
结合氨基 酸的部位
每种tRNA只能识别并转运 一种特定的氨基酸!
反密码子
一共有多少种tRNA?
烟
感染
病 毒 TMV的RNA+RNA酶
感染
草
TMV
烟草未感染 烟草被感染 烟草未感染
第十页,共27页。
人类对遗传物质的探索过程
真核生物
(核 物两有酸的种核细是遗酸胞同一 传生时存物切 物在)生 质物 是原的D核N生遗A,物传所物以质D遗,N传A绝是物大主质多要是D数的NA生遗
传物质。
非细胞生物
(只有一种核酸)
a×2n-1。
第十七页,共27页。
DNA分子的复制
3.与DNA复制相关的计算:
(3)如果DNA分子解旋时,一条链上的碱基发生差错,经n次
复制后,发生差错的DNA分子占 。1/2
第十八页,共27页。
例:如果将1个含有1对同源染色体的精原细胞的DNA分
普通遗传学第五章遗传的分子基础课件
生物多样性
不同物种间基因突变的积累和 遗传变异,形成了生物多样性。
遗传性疾病
突变可以导致遗传性疾病的发 生,如囊性纤维化、镰状细胞 贫血等。
进化与适应性
自然选择下,突变的有益变异 可被固定并传递给后代,促进 物种的进化与适应性。
生物进化
种群中基因突变的积累和自然 选择作用,推动生物种群的进 化与适应环境变化的能力。
DNA复制的过程
DNA复制过程中,DNA 聚合酶以起始点为起点, 沿着DNA链的5'到3'方向 合成新的DNA链,同时需 要引物、脱氧核糖核苷酸 等基本原料。
DNA复制的调控
DNA复制受到多种因素的 调控,包括细胞周期、环 境因素等,以确保DNA复 制的准确性和完整性。
基因表达与调控
基因表达的概念
02 基因突变与DNA修复
基因突变的类型和机制
点突变
DNA分子中一个或几个碱基对的替换、缺失 或插入,导致基因结构的改变。
染色体变异
染色体数量或结构的改变,包括染色体易位、 倒位、重复和缺失。
基因扩增
特定基因在染色体上的重复复制,可能导致基因 表达的增加。
转座子插入
DNA片段在基因组中的移动插入,可引起基因表达 的改变或基因结构的破坏。
基因重组
DNA分子的断裂和重新连接,导致基因顺序的改 变。
基因突变机制
DNA复制过程中的错误、化学物质或辐射诱导的损伤、 碱基类似物的掺入等。
DNA损伤修复
直接修复
直接修复DNA碱基 上的损伤,如嘧啶二 聚体的切除修复。
切除修复
识别并切除DNA损 伤部位,然后由 DNA聚合酶填补空 隙,最后由DNA连 接酶封闭缺口。
03 基因重组与转座
遗传的分子基础-PPT课件.ppt
(1)稀有性 (2)重演性 (3)可逆性 (4)多向性 (5)有害性和有利性 (6)突变的时期
稀有性
突变率(mutation rate):指在特定的条件下一
个细胞的某一基因在一个世代中发生突变的概
率。
表3-1人类中某些遗传病的基因突变频率
遗传病
突变频率
白化病 苯丙酮尿症
血友病 色盲 鱼鳞病 肌肉退化症 小眼球症
三、基因突变的类型和遗传效应
(一)碱基替换
➢ 碱基替换发生在编码区可出现的效应: 同义突变(same sense mutation) 错义突变(missense mutation) 无义突变(nonsense mutation)
例:DNA ——ATG → ATT m RNA——UAC → UAA (酪氨酸)(终止信号)
➢ 短分散序列 ➢ 长分散序列
短分散序列
DNA序列长度300-500bp,拷贝数可达105 以上,但无编码作用,散在分布于人类 基因组中,平均间隔距离约2.2kb。
如:Alu家族(Alu family)
Alu家族
长达300bp,在一个基因组中重复30万~50万次。
长分散序列 DNA序列长5-7kb,拷贝数在102-104之间。 如:KpnⅠ家族(KpnⅠ family)
“基因”概念的发展
19世纪60年代初,孟德尔提出“遗传因子”(genetic factor) 1909年,Johansen提出了“基因”(gene) 1910年,摩尔根等证明基因位于染色体上,并呈直线排列。基 因既是一个结构单位,又是一个功能单位(重组单位和突变单 位)——遗传的染色体理论 1941年,Beadle和Tatum提出了“一个基因一个酶”的学说 1944年,Avery证明DNA是遗传物质 1953年,Watson和Crick提出了DNA双螺旋结构模型,明确了 DNA在活体内的复制方式 1957年,Crick提出中心法则,并于1961年提出三联遗传密码
稀有性
突变率(mutation rate):指在特定的条件下一
个细胞的某一基因在一个世代中发生突变的概
率。
表3-1人类中某些遗传病的基因突变频率
遗传病
突变频率
白化病 苯丙酮尿症
血友病 色盲 鱼鳞病 肌肉退化症 小眼球症
三、基因突变的类型和遗传效应
(一)碱基替换
➢ 碱基替换发生在编码区可出现的效应: 同义突变(same sense mutation) 错义突变(missense mutation) 无义突变(nonsense mutation)
例:DNA ——ATG → ATT m RNA——UAC → UAA (酪氨酸)(终止信号)
➢ 短分散序列 ➢ 长分散序列
短分散序列
DNA序列长度300-500bp,拷贝数可达105 以上,但无编码作用,散在分布于人类 基因组中,平均间隔距离约2.2kb。
如:Alu家族(Alu family)
Alu家族
长达300bp,在一个基因组中重复30万~50万次。
长分散序列 DNA序列长5-7kb,拷贝数在102-104之间。 如:KpnⅠ家族(KpnⅠ family)
“基因”概念的发展
19世纪60年代初,孟德尔提出“遗传因子”(genetic factor) 1909年,Johansen提出了“基因”(gene) 1910年,摩尔根等证明基因位于染色体上,并呈直线排列。基 因既是一个结构单位,又是一个功能单位(重组单位和突变单 位)——遗传的染色体理论 1941年,Beadle和Tatum提出了“一个基因一个酶”的学说 1944年,Avery证明DNA是遗传物质 1953年,Watson和Crick提出了DNA双螺旋结构模型,明确了 DNA在活体内的复制方式 1957年,Crick提出中心法则,并于1961年提出三联遗传密码
第三章--遗传物质的分子基础(共73张PPT)
第8页,共73页。
结论:
在加热杀死的 ⅢS型肺炎双球菌 中有较耐高温的 转化物质能够进 入ⅡR型-->ⅡR 型转变为ⅢS型-> 无毒转变为有 毒。
16后,Avery等用生物化学方法证明这种引起转化的物质 是DNA,他们将SⅢ型细菌的DNA提取物与RⅡ型细菌混合 在一起,在离体培养条件下,成功的使少数RⅡ型细菌定向 转化为SⅢ型细菌。(如图)
(2)大肠杆菌的染色体结构:
染色体DNA 结合物质:
几种DNA结合蛋白、RNA。
第25页,共73页。
二、真核生物染色体
(一)染色质的基本结构
染色质(chromatin)是染色体在细胞分裂的间期所表现的形 态,呈纤细的丝状结构,故亦称为染色质线(chromatin fiber)。
染色质
DNA 占染色质重量的30~40% 组蛋白:H1、H2A、H2B、H3和H4
烟草花叶病毒(TMV)是由RNA与蛋白质组成的管状微粒, 它的中心是单螺旋的RNA,外部是蛋白质的外壳。(如图)
第13页,共73页。
如果将TMV的RNA与蛋白质分开,把提纯的RNA接种到烟叶上, 可以形成新的TMV而使烟草发病; 单纯利用它的蛋白质接种,就不能形成新的TMV,烟草继续保持 健壮。 如果事先用RNA酶处理提纯的RNA,再接种到烟草上,也不能 产生新的TMV。
第21页,共73页。
(二)DNA构型之变异
近来发现DNA的构型并不是固定不变 的,除主要以瓦特森和克里克提出的右手双 螺旋构型存在外,还有许多变型。
瓦特森和克里克提出的双螺旋构型称为B-DNA。 B-DNA是DNA在生理状态下的构型。
当DNA在高盐浓度下时,则以A-DNA形式存在。A-DNA是
DNA的脱水构型,它也是右手螺旋,但每螺圈含有11个核苷酸对。 A-DNA比较短和密。
结论:
在加热杀死的 ⅢS型肺炎双球菌 中有较耐高温的 转化物质能够进 入ⅡR型-->ⅡR 型转变为ⅢS型-> 无毒转变为有 毒。
16后,Avery等用生物化学方法证明这种引起转化的物质 是DNA,他们将SⅢ型细菌的DNA提取物与RⅡ型细菌混合 在一起,在离体培养条件下,成功的使少数RⅡ型细菌定向 转化为SⅢ型细菌。(如图)
(2)大肠杆菌的染色体结构:
染色体DNA 结合物质:
几种DNA结合蛋白、RNA。
第25页,共73页。
二、真核生物染色体
(一)染色质的基本结构
染色质(chromatin)是染色体在细胞分裂的间期所表现的形 态,呈纤细的丝状结构,故亦称为染色质线(chromatin fiber)。
染色质
DNA 占染色质重量的30~40% 组蛋白:H1、H2A、H2B、H3和H4
烟草花叶病毒(TMV)是由RNA与蛋白质组成的管状微粒, 它的中心是单螺旋的RNA,外部是蛋白质的外壳。(如图)
第13页,共73页。
如果将TMV的RNA与蛋白质分开,把提纯的RNA接种到烟叶上, 可以形成新的TMV而使烟草发病; 单纯利用它的蛋白质接种,就不能形成新的TMV,烟草继续保持 健壮。 如果事先用RNA酶处理提纯的RNA,再接种到烟草上,也不能 产生新的TMV。
第21页,共73页。
(二)DNA构型之变异
近来发现DNA的构型并不是固定不变 的,除主要以瓦特森和克里克提出的右手双 螺旋构型存在外,还有许多变型。
瓦特森和克里克提出的双螺旋构型称为B-DNA。 B-DNA是DNA在生理状态下的构型。
当DNA在高盐浓度下时,则以A-DNA形式存在。A-DNA是
DNA的脱水构型,它也是右手螺旋,但每螺圈含有11个核苷酸对。 A-DNA比较短和密。
遗传分子基础ppt.ppt
D组:S型细菌的DNA+DNA酶→水解产物+R型细菌→ 注射到小鼠体内
3.观测小鼠的生活状况
实验结果
A组:存活,B组:死亡,C组:存活,D组:存活
只有B组小鼠死亡,说明B组有S型细菌,说明S型细菌的
实验分析 DNA使R型细菌发生转化变成了S型细菌;S型细菌的其
他物质不能使R型细菌发生转化
12
二、 艾弗里确定转化因子的实验
(1)如果“转化因子”是DNA,那么S型细菌的DNA+R 型细菌→注射到小鼠体内,小鼠死亡。
假设
(2)如果“转化因子”是蛋白质,那么S型细菌的蛋白质 +R型细菌→注射到小鼠体内,小鼠死亡。
(3)如果“转化因子”是多糖,那么S型细菌的多糖+11R 型细菌→注射到小鼠体内,小鼠死亡。
实验材料
S型细菌、R型细菌、小鼠
S型菌的DNA R型细菌
S型菌
R型细菌
S型菌的
R型细菌 蛋白质或荚膜多糖 只长R型菌
S型菌的 R型细菌 DNA+DNA酶
只长R型菌
13
实验结 S型细菌体内只有DNA才是“转化因子”,即DNA 论 是遗传物质,蛋白质不是遗传物质
思考: 你认为在证明DNA是遗传物质还是
蛋白质是遗传物质的实验中最关键的设 计思路是什么?
第三章 遗传的分子基础
第一节 探索遗传物质的过程
1
生物亲代与子代之间,在形态、结构和生理功能上 常常相似,这就是遗传现象。
生物的遗传特性,使生物界的物种能够保持相对稳 定。
生物的各项生命活动都有 它的物质基础。生物遗传的物 质基础是什么呢?
根据现代细胞学和 遗传学的研究得知,控 制生物性状的主要遗传 物质是脱氧核糖核酸 (DNA)。
《遗传的分子基础》PPT课件
三、烟草花叶病毒的感染和重建实验
1.烟草花叶病毒对烟草叶细胞的感染实验
(1)实验过程及现象:
蛋白质 感染 烟草叶不出现病斑 烟草
烟草花 提 叶病毒 取
RNA 感染 烟草叶出现病斑 烟草
(2)结论:
RNA+RNA酶 感染 烟草叶不出现病斑 烟草
__R_N_A_是烟草花叶病毒的遗传物质,_蛋__白_质__不是遗传物质。
放射性同位素 标记对象
_3_5_S _
噬菌体
被标记物 蛋白质
放射性的出现 位置
_悬__浮__液__中__
_3_2_P_
噬菌体
_D_N_A__
_沉__淀__中___
4.实验结论:__D_N_A_是__遗__传__物__质___ 由于噬菌体营寄生生活,标记噬菌体时不能用含标记物的培养 基直接培养噬菌体,需先标记细菌,然后用不含标记物的噬菌 体去侵染被标记的细菌。
肺炎双球菌转化实验 1.肺炎双球菌活体和离体转化实验的比较
活体转化实验
离体转化实验
培养细菌
用小鼠(体内)
用培养基(体外)
实验结论 联系
S型菌体内有“转化 因子”
S型菌的DNA是遗 传物质
(1)所用材料相同,都是R型和S型肺炎双球菌; (2)两实验都遵循对照原则、单一变量原则
活体转化实验注射R型菌和加热杀死的S型菌后,小鼠体内分离 出的细菌和“离体S型菌DNA+R型活菌”培养基上生存的细菌都 是R型和S型都有,但是R型多。
3.结果及分析
分组
结果
结果分析
含32P噬 悬浮液中无32P,32P主要
菌体+细 分布在宿主细胞内,在
菌
子代噬菌体中检测到32P
遗传的分子基础(遗传学基础课件)
转录(transcription):在RNA聚合酶的催化下,以 的反编码链为模板,按照碱基互补配对原则, dNTPs为原料合成RNA的过程。
编码链:5' - ATG AAA CGA GTC TTA TGA -
反编码链: 3'- TAC TTT GCT CAG AAT ACT mRNA: 5'- AUG AAA CGA GUC UUA UGA -
2、侧翼序列与调控序列
每个结构基因的第一个和最后一个外显子的 侧,都有一段不被转录的非编码区,称为侧翼序 (Flanking sequence)。
它是基因的调控序列,对基因的有效表达起调 作用,包括:启动子、增强子、终止子等。
二、基因复制
1. 复制子(replicon) 2. 半保留复制(semiconservative replication) 3. 半不连续复制
的分子机制。
第三节、基因的结构特征和功能
一、基因的结构
enhancer CAAT box TATA box
exon
GC box
intron
HGCAoCgAbnToesxbsobxGoGxGGTTCG—GACTGTAGCAGAlATaAwATATC A
AATA
1、外显子和内含子
• 在结构基因中,编码序列称为外显子(exon), 多肽链部分。非编码序列称为内含子(Intron 称插入序列。
授课提纲
第一节: 基因的概述 概念;类别;一般特性;DNA结构。
第二节:人类基因组DNA 单一序列;重复序列;多基因家族,假基因。
第三节:基因的结构和功能 基因的结构;基因的复制,基因表达。
第四节:基因突变 概念;特性;突变的结构;诱发突变的因素;
突变的分子机制。
编码链:5' - ATG AAA CGA GTC TTA TGA -
反编码链: 3'- TAC TTT GCT CAG AAT ACT mRNA: 5'- AUG AAA CGA GUC UUA UGA -
2、侧翼序列与调控序列
每个结构基因的第一个和最后一个外显子的 侧,都有一段不被转录的非编码区,称为侧翼序 (Flanking sequence)。
它是基因的调控序列,对基因的有效表达起调 作用,包括:启动子、增强子、终止子等。
二、基因复制
1. 复制子(replicon) 2. 半保留复制(semiconservative replication) 3. 半不连续复制
的分子机制。
第三节、基因的结构特征和功能
一、基因的结构
enhancer CAAT box TATA box
exon
GC box
intron
HGCAoCgAbnToesxbsobxGoGxGGTTCG—GACTGTAGCAGAlATaAwATATC A
AATA
1、外显子和内含子
• 在结构基因中,编码序列称为外显子(exon), 多肽链部分。非编码序列称为内含子(Intron 称插入序列。
授课提纲
第一节: 基因的概述 概念;类别;一般特性;DNA结构。
第二节:人类基因组DNA 单一序列;重复序列;多基因家族,假基因。
第三节:基因的结构和功能 基因的结构;基因的复制,基因表达。
第四节:基因突变 概念;特性;突变的结构;诱发突变的因素;
突变的分子机制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 基因和多肽成线性对应的一个可能的理由:DNA核 苷酸顺序规定该基因编码蛋白质的氨基酸顺序; DNA中的遗传信息就是碱基序列;并存在某种遗传 密码(genetic code),将核苷酸序列译成蛋白质氨基 酸顺序。
在其后的几十年中,科学家们沿着这两条途径前进, 探明了DNA复制、遗传信息表达与中心法则等内容。
RNA二级结构 : 单链RNA自行盘绕形成局部双螺旋的多“茎”多“环” 结构,螺旋部分称为“茎”或“臂”非螺旋部分称为“ 环”,在螺旋区,A与U配对,G与C配对。
tRNA的二级结构: 三叶草形状 RNA三叶草型的二级结构可分为:氨基酸接受区、反密码区 、二氢尿嘧啶区、TΨC区和可变区。除氨基酸接受区外,其余 每个区都含有一个突环和一个臂。如图所示:
tRNA的 三级结构: 倒“L”形,所有的tRNA折叠后形成 大小相似及三 维构象相似的三级结构,这有利于携带 的氨基酸的tRNA进入核糖体的特定部位。 如图所示:
第三节 遗传信息的表达与调控
一、中心法则及其发展
遗传信息从DNA→mRNA→蛋白质的转录和翻译的 过程,以及遗传信息从DNA→DNA的复制过程,这 就是分子生物学的中心法则(central dogma)
现在还发现,某些DNA序列可以以左 手螺旋的形式存在,称为Z- DNA(图)。
当某些DNA序列富含G-C,并且在 嘌呤和嘧啶交替出现时,可形成Z- DNA。Z-DNA除左手螺旋外,其每 个螺圈含有12个碱基对。分子直径为 18Å,并只有一个深沟。现在还不知 道,Z-DNA在体内是否存在。
DNA分子构型的多态性
胞嘧啶(C)
胸腺嘧啶(T)
尿嘧啶(U)
美妙的DNA双螺旋
1、DNA分子是由两条多核苷酸链以右手螺旋的形 式,彼此以一定的空间距离,平行于同一轴上, 很像一个扭曲的梯子。
2、DNA分子中的脱氧核糖和磷酸交替连接(手拉 手)构成基本骨架,也就是梯子的两扶手。
3、两扶手的走向为反向平行。
• DNA是遗传物质的直接证据
1. 噬菌体的感染 2. 烟草花叶病毒的重建 3、 肺炎双球菌的转化
噬菌体T2结构示意图
结论:
DNA是生物主要的遗传物质;
在缺少DNA的生物中,RNA为主要 的遗传物质。
三、遗传信息的保存者和传递者--核酸
核酸是一类高分子有机物,以核苷酸为基本结构 单位组成。核酸存在于所有的原核生物、真核生 物的细胞中,作为遗传物质的核酸,含有可以传 递的遗传信息。
第二节 核酸的化学结构
一、两种核酸及其分布 核酸:一种高分子化合物,核苷酸的多
聚体。有脱氧核糖核酸(DNA)和核糖核 酸(RNA)两类。 核苷酸的构成: (1)五碳糖; (2)磷酸; (3)环状含氮碱基
二、碱基的种类:
(1)双环结构的嘌呤:
腺嘌呤(A)
鸟嘌呤(G)
(2)单环结构的嘧啶:
当DNA在高盐浓度下时,则以A-DNA 形式存在(图)。
A-DNA是DNA的脱水构型,它也是右 手螺旋,但每螺圈含有11个核苷酸对。A -DNA比较短和密,其平均直径为23Å。
大沟深而窄,小沟宽而浅。在活体内 DNA并不以A构型存在,但细胞内DNA -RNA或RNA-RNA双螺旋结构,却与 A-DNA非常相似。
DNA分子构型的多态性
近来发现DNA的构型并不是固定不变的,除 主要以瓦特森和克里克提出的右手双螺旋构型
存在外,还有许多变型。所以现在一般将瓦特 森和克里克提出的双螺旋构型称为B-DNA。 B-DNA是DNA在生理状态下的构型。生活 细胞中极大多数DNA以B-DNA形式存在。 但当外界环境条件发生变化时,DNA的构型 也会发生变化。实际上在生活细胞内,B- DNA一螺圈也并不是正好10个核苷酸对,而 平均一般为10.4对。
第一节 DNA作为主要遗传物质的证 一据、遗传物质应具备的三种基本功能:
1、复制功能 遗传物质必须贮存遗传信息,并 能将其复制且一代一代精确地传递下去。
2、表达功能 遗传物质必须控制生物体性状的 发育和表达。
3、变异功能 遗传物质必须发生变异,以适应 外界环境的变化,没有变异就没有进化。
二、DNA作为主要遗传物质的证据
1、核酸的化学组成和结构
核酸以核苷酸为基本 结构单位组成。每个核 苷酸包括一个碱基、一 份磷酸、一个五碳糖。
2、核酸的种类 DNA和RNA
根据组成核苷酸的五碳糖的不同,核酸可以分为
两种:脱氧核糖核酸(DNA)和核糖核酸(RNA)。 DNA是所有原核生物和真核生物的遗传物质,病 毒只含有RNA或DNA。RNA和DNA的主要区别: (略) 1953年美国哈佛大学的 Waston和英国剑桥大学理论 物理学者Crick借助于伦敦皇 家学院Wilkins实验室的 Franklin拍摄的DNA分子X光 射线衍射照片提出了DNA的 双螺旋结构模型。
4、梯子的横档为排列在内侧的碱基,碱基通过 氢结合,并以互补配对原则配对,A-T,C-G,
DNA双螺旋结构模型的意义
DNA双螺旋模型结构同时表明:
– DNA复制的明显方式——半保留复制。Waston和 Crick在1953年就指出:DNA可以按碱基互补配对 原则进行半保留复制。而在此之前对复制方式人们 对一无所知。
染色体
DNA(27%)
蛋白质(66%) RNA(6%)
组蛋白 非组蛋白• DN来自是遗传物质的间接证据⒈ 每个物种不同组织的细胞不论其大小和功能如何。 它们的DNA含量是恒定的,而且配子中的DNA含量 正好是体细胞的一半。
⒉ DNA在代谢上是比较稳定的。
⒊ DNA是所有生物的染色体所共有。
4. 用不同波长的紫外线诱发各种生物突变时,其最 有效的波长均为2600埃。这与DNA所吸收的紫外线 光谱是一致的。
三、RNA的分子结构
至于RNA的分子结构,就其化学组成上看,也 是由四种核苷酸组成的多聚体。它与DNA的不 同,首先在于以U代替了T,其次是用核糖代替 了脱氧核糖,此外,还有一个重要的不同点, 就是绝大部分RNA以单链形式存在,但可以折 叠起来形成若干双链区域。在这些区域内,凡 互补的碱基对间可以形成氢键(图)。但有一些以 RNA为遗传物质的动物病毒含有双链RNA。
在其后的几十年中,科学家们沿着这两条途径前进, 探明了DNA复制、遗传信息表达与中心法则等内容。
RNA二级结构 : 单链RNA自行盘绕形成局部双螺旋的多“茎”多“环” 结构,螺旋部分称为“茎”或“臂”非螺旋部分称为“ 环”,在螺旋区,A与U配对,G与C配对。
tRNA的二级结构: 三叶草形状 RNA三叶草型的二级结构可分为:氨基酸接受区、反密码区 、二氢尿嘧啶区、TΨC区和可变区。除氨基酸接受区外,其余 每个区都含有一个突环和一个臂。如图所示:
tRNA的 三级结构: 倒“L”形,所有的tRNA折叠后形成 大小相似及三 维构象相似的三级结构,这有利于携带 的氨基酸的tRNA进入核糖体的特定部位。 如图所示:
第三节 遗传信息的表达与调控
一、中心法则及其发展
遗传信息从DNA→mRNA→蛋白质的转录和翻译的 过程,以及遗传信息从DNA→DNA的复制过程,这 就是分子生物学的中心法则(central dogma)
现在还发现,某些DNA序列可以以左 手螺旋的形式存在,称为Z- DNA(图)。
当某些DNA序列富含G-C,并且在 嘌呤和嘧啶交替出现时,可形成Z- DNA。Z-DNA除左手螺旋外,其每 个螺圈含有12个碱基对。分子直径为 18Å,并只有一个深沟。现在还不知 道,Z-DNA在体内是否存在。
DNA分子构型的多态性
胞嘧啶(C)
胸腺嘧啶(T)
尿嘧啶(U)
美妙的DNA双螺旋
1、DNA分子是由两条多核苷酸链以右手螺旋的形 式,彼此以一定的空间距离,平行于同一轴上, 很像一个扭曲的梯子。
2、DNA分子中的脱氧核糖和磷酸交替连接(手拉 手)构成基本骨架,也就是梯子的两扶手。
3、两扶手的走向为反向平行。
• DNA是遗传物质的直接证据
1. 噬菌体的感染 2. 烟草花叶病毒的重建 3、 肺炎双球菌的转化
噬菌体T2结构示意图
结论:
DNA是生物主要的遗传物质;
在缺少DNA的生物中,RNA为主要 的遗传物质。
三、遗传信息的保存者和传递者--核酸
核酸是一类高分子有机物,以核苷酸为基本结构 单位组成。核酸存在于所有的原核生物、真核生 物的细胞中,作为遗传物质的核酸,含有可以传 递的遗传信息。
第二节 核酸的化学结构
一、两种核酸及其分布 核酸:一种高分子化合物,核苷酸的多
聚体。有脱氧核糖核酸(DNA)和核糖核 酸(RNA)两类。 核苷酸的构成: (1)五碳糖; (2)磷酸; (3)环状含氮碱基
二、碱基的种类:
(1)双环结构的嘌呤:
腺嘌呤(A)
鸟嘌呤(G)
(2)单环结构的嘧啶:
当DNA在高盐浓度下时,则以A-DNA 形式存在(图)。
A-DNA是DNA的脱水构型,它也是右 手螺旋,但每螺圈含有11个核苷酸对。A -DNA比较短和密,其平均直径为23Å。
大沟深而窄,小沟宽而浅。在活体内 DNA并不以A构型存在,但细胞内DNA -RNA或RNA-RNA双螺旋结构,却与 A-DNA非常相似。
DNA分子构型的多态性
近来发现DNA的构型并不是固定不变的,除 主要以瓦特森和克里克提出的右手双螺旋构型
存在外,还有许多变型。所以现在一般将瓦特 森和克里克提出的双螺旋构型称为B-DNA。 B-DNA是DNA在生理状态下的构型。生活 细胞中极大多数DNA以B-DNA形式存在。 但当外界环境条件发生变化时,DNA的构型 也会发生变化。实际上在生活细胞内,B- DNA一螺圈也并不是正好10个核苷酸对,而 平均一般为10.4对。
第一节 DNA作为主要遗传物质的证 一据、遗传物质应具备的三种基本功能:
1、复制功能 遗传物质必须贮存遗传信息,并 能将其复制且一代一代精确地传递下去。
2、表达功能 遗传物质必须控制生物体性状的 发育和表达。
3、变异功能 遗传物质必须发生变异,以适应 外界环境的变化,没有变异就没有进化。
二、DNA作为主要遗传物质的证据
1、核酸的化学组成和结构
核酸以核苷酸为基本 结构单位组成。每个核 苷酸包括一个碱基、一 份磷酸、一个五碳糖。
2、核酸的种类 DNA和RNA
根据组成核苷酸的五碳糖的不同,核酸可以分为
两种:脱氧核糖核酸(DNA)和核糖核酸(RNA)。 DNA是所有原核生物和真核生物的遗传物质,病 毒只含有RNA或DNA。RNA和DNA的主要区别: (略) 1953年美国哈佛大学的 Waston和英国剑桥大学理论 物理学者Crick借助于伦敦皇 家学院Wilkins实验室的 Franklin拍摄的DNA分子X光 射线衍射照片提出了DNA的 双螺旋结构模型。
4、梯子的横档为排列在内侧的碱基,碱基通过 氢结合,并以互补配对原则配对,A-T,C-G,
DNA双螺旋结构模型的意义
DNA双螺旋模型结构同时表明:
– DNA复制的明显方式——半保留复制。Waston和 Crick在1953年就指出:DNA可以按碱基互补配对 原则进行半保留复制。而在此之前对复制方式人们 对一无所知。
染色体
DNA(27%)
蛋白质(66%) RNA(6%)
组蛋白 非组蛋白• DN来自是遗传物质的间接证据⒈ 每个物种不同组织的细胞不论其大小和功能如何。 它们的DNA含量是恒定的,而且配子中的DNA含量 正好是体细胞的一半。
⒉ DNA在代谢上是比较稳定的。
⒊ DNA是所有生物的染色体所共有。
4. 用不同波长的紫外线诱发各种生物突变时,其最 有效的波长均为2600埃。这与DNA所吸收的紫外线 光谱是一致的。
三、RNA的分子结构
至于RNA的分子结构,就其化学组成上看,也 是由四种核苷酸组成的多聚体。它与DNA的不 同,首先在于以U代替了T,其次是用核糖代替 了脱氧核糖,此外,还有一个重要的不同点, 就是绝大部分RNA以单链形式存在,但可以折 叠起来形成若干双链区域。在这些区域内,凡 互补的碱基对间可以形成氢键(图)。但有一些以 RNA为遗传物质的动物病毒含有双链RNA。