数学《分类加法计数原理》优秀课件
合集下载
第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)
![第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)](https://img.taocdn.com/s3/m/43d28cb8760bf78a6529647d27284b73f342366b.png)
数为A45=120. 故符合题意的四位数一共有960+120=1 080(个). 答案:1 080
角度 涂色、种植问题 [例3] (1)如图,图案共分9个区域,有6 种不同颜色的涂料可供涂色,每个区域只能 涂1种颜色的涂料,其中2和9同色,3和6同 色,4和7同色,5和8同色,且相邻区域的颜色不相同, 则不同的涂色方法有( ) A.360种 B.720种 C.780种 D.840种
1.如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12
D.9
解析:从E点到F点的最短路径有6条,从F点到G点 的最短路径有3条,所以从E点到G点的最短路径有6×3= 18(条),故选B.
4.从0,1,2,3,4,5这六个数字中,任取两个不 同数字相加,其和为偶数的不同取法的种数是______.
解析:从0,1,2,3,4,5六个数字中,任取两数 和为偶数可分为两类,①取出的两数都是偶数,共有3种 方法;②取出的两数都是奇数,共有3种方法,故由分类 加法计数原理得共有N=3+3=6(种).
考点1 分类加法计数原理
1.如图,某货场有两堆集装箱,一
堆2个,一堆3个,现需要全部装运,每
次只能取其中一堆最上面的一个集装箱,则在装运的过
程中不同取法的种数是( )
A.6
B.10
C.12
D.24
解析:将题图中左边的集装箱从上往下分别记为
1,2,3,右边的集装箱从上往下分别记为4,5.分两种
情况讨论:若先取1,则有12345,12453,12435,
答案:D
3.现安排一份5天的工作值班表,每天有一个人值
角度 涂色、种植问题 [例3] (1)如图,图案共分9个区域,有6 种不同颜色的涂料可供涂色,每个区域只能 涂1种颜色的涂料,其中2和9同色,3和6同 色,4和7同色,5和8同色,且相邻区域的颜色不相同, 则不同的涂色方法有( ) A.360种 B.720种 C.780种 D.840种
1.如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12
D.9
解析:从E点到F点的最短路径有6条,从F点到G点 的最短路径有3条,所以从E点到G点的最短路径有6×3= 18(条),故选B.
4.从0,1,2,3,4,5这六个数字中,任取两个不 同数字相加,其和为偶数的不同取法的种数是______.
解析:从0,1,2,3,4,5六个数字中,任取两数 和为偶数可分为两类,①取出的两数都是偶数,共有3种 方法;②取出的两数都是奇数,共有3种方法,故由分类 加法计数原理得共有N=3+3=6(种).
考点1 分类加法计数原理
1.如图,某货场有两堆集装箱,一
堆2个,一堆3个,现需要全部装运,每
次只能取其中一堆最上面的一个集装箱,则在装运的过
程中不同取法的种数是( )
A.6
B.10
C.12
D.24
解析:将题图中左边的集装箱从上往下分别记为
1,2,3,右边的集装箱从上往下分别记为4,5.分两种
情况讨论:若先取1,则有12345,12453,12435,
答案:D
3.现安排一份5天的工作值班表,每天有一个人值
分类加法计数原理与分步乘法计数原理ppt
![分类加法计数原理与分步乘法计数原理ppt](https://img.taocdn.com/s3/m/7eb136605627a5e9856a561252d380eb6394230d.png)
9 × 10 ×10 × 10 × 10 =9 × 104
15
变式6:0---9这十个数一共可以组成多少个数字不重复的 5位数字?
9 × 9 × 8 × 7 × 6 =27216 注意:分步乘法计数关键要算好每一步的方法 数
16
变式7:如图,要给下面A、B、C、D四个区域分别涂上5种
不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必
2、某商场有6个门,如果某人从其中的任意一个门进入商 场,并且要求从其他的门出去,共有多少种不同的进出商场的 方式?
3、如图,要给下面四个区域分别涂上5种不同颜色中的某一 种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不 同的涂色方案有多少种?
19
4、如图,从甲地到乙地有2条路,从乙地到丁地有3条路; 从甲地到丙地有4条路可以走,从丙地到丁地有2条路。从甲 地到丁地共有多少种不同地走法?
完成这件事情共有多少种不同的方法
3步 不能 3种 2种 4种 3×2×4=24种 8
二、分步计数原理
完成一件事,需要分成n个步骤。做第1步有m1 种不同的方法,做第2步有m2种不同的方法, ……, 做第n步有mn种不同的方法,则完成这件事共有
N= m1×m2×… ×mn种不同的方法
说明
1)各个步骤相互依存,只有各个步骤都完成了,这件事 才算完成,将各个步骤的方法数相乘得到完成这件事的 方法总数,又称乘法原理
说明 N= m1+m2+… + mn 种不同的方法
1)各类办法之间相互独立,都能独立的完成这件事,要 计算方法种数,只需将各类方法数相加,因此分类计数原 理又称加法原理
2)首先要根据具体的问题确定一个分类标准,在分 类标准下进行分类,然后对每类方法计数.
15
变式6:0---9这十个数一共可以组成多少个数字不重复的 5位数字?
9 × 9 × 8 × 7 × 6 =27216 注意:分步乘法计数关键要算好每一步的方法 数
16
变式7:如图,要给下面A、B、C、D四个区域分别涂上5种
不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必
2、某商场有6个门,如果某人从其中的任意一个门进入商 场,并且要求从其他的门出去,共有多少种不同的进出商场的 方式?
3、如图,要给下面四个区域分别涂上5种不同颜色中的某一 种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不 同的涂色方案有多少种?
19
4、如图,从甲地到乙地有2条路,从乙地到丁地有3条路; 从甲地到丙地有4条路可以走,从丙地到丁地有2条路。从甲 地到丁地共有多少种不同地走法?
完成这件事情共有多少种不同的方法
3步 不能 3种 2种 4种 3×2×4=24种 8
二、分步计数原理
完成一件事,需要分成n个步骤。做第1步有m1 种不同的方法,做第2步有m2种不同的方法, ……, 做第n步有mn种不同的方法,则完成这件事共有
N= m1×m2×… ×mn种不同的方法
说明
1)各个步骤相互依存,只有各个步骤都完成了,这件事 才算完成,将各个步骤的方法数相乘得到完成这件事的 方法总数,又称乘法原理
说明 N= m1+m2+… + mn 种不同的方法
1)各类办法之间相互独立,都能独立的完成这件事,要 计算方法种数,只需将各类方法数相加,因此分类计数原 理又称加法原理
2)首先要根据具体的问题确定一个分类标准,在分 类标准下进行分类,然后对每类方法计数.
6.1 分类加法计数原理与分步乘法计数原理第1课时PPT课件(人教版)
![6.1 分类加法计数原理与分步乘法计数原理第1课时PPT课件(人教版)](https://img.taocdn.com/s3/m/04be2a0ca88271fe910ef12d2af90242a995ab48.png)
探究一
探究二
探究三
素养形成
当堂检测
解:(1)分四类:第1类,从一班学生中选1人,有7种选法;第2类,从二班 学生中选1人,有8种选法;第3类,从三班学生中选1人,有9种选法;第4 类,从四班学生中选1人,有10种选法. 由分类加法计数原理知共有不同的选法N=7+8+9+10=34(种). (2)分四步:第1、2、3、4步分别从一、二、三、四班学生中选一 人任组长.
加法计数原理知共有不同的选法
N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.使用两个原理的原则 使用两个原理解题时,一定要从“分类”“分步”的角度入手.“分类”是 对于较复杂应用问题的元素分成互相排挤的几类,逐类解决,用分 类加法计数原理;“分步”就是把问题分化为几个互相关联的步骤,然 后逐步解决,这时可用分步乘法计数原理. 2.应用两个计数原理计数的四个步骤 (1)明确完成的这件事是什么. (2)思考如何完成这件事. (3)判断它属于分类还是分步,是先分类后分步,还是先分步后分类. (4)选择计数原理进行计算.
探究二探Leabharlann 三素养形成当堂检测
变式训练2要从教学楼的一层走到三层,已知从一层到二层有4个扶 梯可走,从二层到三层有2个扶梯可走,则从一层到三层有多少种不 同的走法? 解:第1步,从一层到二层有4种不同的走法; 第2步,从二层到三层有2种不同的走法. 根据分步乘法计数原理知,从教学楼的一层到三层的不同走法有
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.分类加法计数原理的推广 分类加法计数原理:完成一件事有n类不同的方案,在第1类方案中 有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n 类方案中有mn种不同的方法,那么完成这件事共有 N=m1+m2+m3+…+mn种不同的方法. 2.能用分类加法计数原理解决的问题具有如下特点 (1)完成一件事有若干种方案,这些方案可以分成n类; (2)用每一类中的每一种方法都可以单独完成这件事; (3)把各类的方法数相加,就可以得到完成这件事的所有方法数.
分类加法计数原理PPT课件
![分类加法计数原理PPT课件](https://img.taocdn.com/s3/m/94f7fa1fa2161479171128d2.png)
1.1 分类加法计数原理与 分步乘法计数原理
思考 用一个大写的英文字母或一个阿拉伯数字 给教室里的座位编号,总共能编出多少种不同的号 码? 因为英文字母共有26个,阿拉伯数字0 ~ 9共有10个, 所以总共可以编出26 10 36种不同的号码.
探究 你能说说这个问题的特征吗?
上述问题中,最重要的特征是"或" 字的出现: 每个座位 可以用一个英文字母或一个阿拉伯数字编号.由于英文 字母、阿拉伯数字各不相同,因此用英文字母编出的号 码与用阿拉伯数字编出的号码也是各不相同的.
这个问题与前一个问题不同.在前一 字 数 得到的
个问题中,用26个英文字母中的任何 母 字 号码
一 个 或10 个 阿 拉 伯 数 字 中 的 任 何一 个,都可以给出一个座位号码.而在这 个问题中,号码必须由一个英文字母 和 一 个 作 为 下 标 的 阿 拉伯 数 字 组 成, 得到一个号码必须经过先确定一个
探究 你能说说这个问题的特征吗?
上 述 问 题 中,最 重 要 的 特 征 是" 和" 字 的 出 现: 每个座位由一个英文字母和一个阿拉伯数 字 构 成, 每 个 英 文 字 母 与 不 同 的数 字 组 成 的 号码是各不相同的.
一 般 地,有 如 下 原 理: 分步乘法计数原理 完 成一件事需 要 两 个 步 骤,做 第1步 有m种 不 同 方 法, 做 第2步 有n种 不 同 方 法,那 么 完 成 这 件 事 共 有N m n 种 不 同 的 方 法.
无论第1步采用哪种方法,都不影响第 2步方法的选取.
例2 设某班有男生30名,女生24 名.现要从中 选出男、女生各一名代表班级参加比赛,共有 多少种不同的选法?
分析 选出一组参赛代表,可分两个步骤.第 1步选男生,第2步选女生. 解 第1步,从30名男生中选出1人,有30种不同 选法; 第2步,从24名女生中选出1人,有24种不同选择; 根据分步乘法计数原理,共有30 24 720 种不同的选取法.
公开课分类加法计数原理与分步乘法计数原理课件
![公开课分类加法计数原理与分步乘法计数原理课件](https://img.taocdn.com/s3/m/104366d2dc88d0d233d4b14e852458fb770b38bf.png)
公开课分类加法计数 原理与分步乘法计数 原理课件
• 分类加法计数原理 • 分步乘法计数原理 • 分类加法计数原理与分步乘法计
数原理的比较 • 公开课总结与展望
目录
01
分类加法计数原理
定义与理解
定义
分类加法计数原理是指将一个问题分成若干个互斥的子问题,每个子问题有一 个明确的解决策略,然后将这些子问题的解合并起来得到原问题的解。
分类加法计数原理的实例
实例1
在组合数学中,将一个复杂组合问题 分解为若干个简单的组合问题,然后 分别计算这些简单问题的解,最后将 这些解相加得到原问题的解。
实例2
在统计学中,将一个复杂统计问题分 解为若干个简单的统计问题,然后分 别计算这些简单问题的解,最后将这 些解相加得到原问题的解。
02
分步乘法计数原理
解析
根据分步乘法计数原理,学生可以选择不同的交通方式有$m_1$种方法,选择不 同的住宿方式有$m_2$种方法,因此总共有$m_1 times m_2$种不同的春游方 案。
03
分类加法计数原理与分步乘
法计数原理的比较
两者之间的联系
分类加法计数原理和分步乘法计数原 理都是基本的计数原理,用于解决组 合数学中的计数问题。
定义与理解
定义
分步乘法计数原理是指完成一件事情,需要分成$n$个步骤,做第$1$步有$m_1$种不同的方法,做第$2$步有 $m_2$种不同的方法,……,做第$n$步有$m_n$种不同的方法,则完成这件事情有$m_1 times m_2 times ldots times m_n$种不同的方法。
理解
理解
分类加法计数原理的核心思想是将复杂问题分解为简单问题,然后分别解决这 些简单问题,最后将结果合并。
• 分类加法计数原理 • 分步乘法计数原理 • 分类加法计数原理与分步乘法计
数原理的比较 • 公开课总结与展望
目录
01
分类加法计数原理
定义与理解
定义
分类加法计数原理是指将一个问题分成若干个互斥的子问题,每个子问题有一 个明确的解决策略,然后将这些子问题的解合并起来得到原问题的解。
分类加法计数原理的实例
实例1
在组合数学中,将一个复杂组合问题 分解为若干个简单的组合问题,然后 分别计算这些简单问题的解,最后将 这些解相加得到原问题的解。
实例2
在统计学中,将一个复杂统计问题分 解为若干个简单的统计问题,然后分 别计算这些简单问题的解,最后将这 些解相加得到原问题的解。
02
分步乘法计数原理
解析
根据分步乘法计数原理,学生可以选择不同的交通方式有$m_1$种方法,选择不 同的住宿方式有$m_2$种方法,因此总共有$m_1 times m_2$种不同的春游方 案。
03
分类加法计数原理与分步乘
法计数原理的比较
两者之间的联系
分类加法计数原理和分步乘法计数原 理都是基本的计数原理,用于解决组 合数学中的计数问题。
定义与理解
定义
分步乘法计数原理是指完成一件事情,需要分成$n$个步骤,做第$1$步有$m_1$种不同的方法,做第$2$步有 $m_2$种不同的方法,……,做第$n$步有$m_n$种不同的方法,则完成这件事情有$m_1 times m_2 times ldots times m_n$种不同的方法。
理解
理解
分类加法计数原理的核心思想是将复杂问题分解为简单问题,然后分别解决这 些简单问题,最后将结果合并。
6.1分类加法计数原理与分步乘法计数原理课件(人教版)
![6.1分类加法计数原理与分步乘法计数原理课件(人教版)](https://img.taocdn.com/s3/m/89ef2f93bb0d4a7302768e9951e79b8968026835.png)
第六章 计数原理
6.1 分类加法计数原理 与分步乘法计数原理
1.理解分类加法计数原理与分步乘法 计数原理.(重点) 2.会用这两个原理分析和解决一些简 单的实际计数问题.(难点)
1.核糖核酸(RNA)分子有碱基按一定顺序排列而成。 已知碱基有4种,但由成百上千个碱基组成的RNA分 子的种数非常巨大。为什么?
B 果将这 2 个新节目插人节目单中,那么不同的插法种数为( )
A.12
B.20
C.36
D.120
解析:利用分步计数原理,第一步插入第一个新节目,有 4 种方法,第二步插 入第二个新节目,此时有 5 个空,故有 5 种方法.因此不同的插法共有 45 20 种.故选 B.
2.如图,用 4 种不同的颜色对 A,B,C,D 四个区域涂色,要求相邻的两个区
工程学
如果这名同学只能选一个专业,那么他共有多少种选择?
解:这名同学可以选择 A,B 两所大学中的一所. 在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法. 因为没有一个强项专业是两所大学共有的, 所以根据分类加法计数原理, 这名同学可能的专业选择种数为 N 5 4 9 .
完成一件事需要两个步骤,做第 1 步有 m 种不同的方
法,做第 2 步有 n 种不同的方法,那么完成这件事共有 N
=m×n种不同的方法.
例 1 在填写高考志愿表时,一名高中毕业生了解到,A,B
两所大学各有一些自己感兴趣的强项专业,如下表.
A 大学
B 大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学Biblioteka 例5 给程序模块命名,需要用3个字符,其中首字符要求用字母 A~G或U~Z,后两个字符要求用数字1~9,最多可以给多少个程 序模块命名?
6.1 分类加法计数原理 与分步乘法计数原理
1.理解分类加法计数原理与分步乘法 计数原理.(重点) 2.会用这两个原理分析和解决一些简 单的实际计数问题.(难点)
1.核糖核酸(RNA)分子有碱基按一定顺序排列而成。 已知碱基有4种,但由成百上千个碱基组成的RNA分 子的种数非常巨大。为什么?
B 果将这 2 个新节目插人节目单中,那么不同的插法种数为( )
A.12
B.20
C.36
D.120
解析:利用分步计数原理,第一步插入第一个新节目,有 4 种方法,第二步插 入第二个新节目,此时有 5 个空,故有 5 种方法.因此不同的插法共有 45 20 种.故选 B.
2.如图,用 4 种不同的颜色对 A,B,C,D 四个区域涂色,要求相邻的两个区
工程学
如果这名同学只能选一个专业,那么他共有多少种选择?
解:这名同学可以选择 A,B 两所大学中的一所. 在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法. 因为没有一个强项专业是两所大学共有的, 所以根据分类加法计数原理, 这名同学可能的专业选择种数为 N 5 4 9 .
完成一件事需要两个步骤,做第 1 步有 m 种不同的方
法,做第 2 步有 n 种不同的方法,那么完成这件事共有 N
=m×n种不同的方法.
例 1 在填写高考志愿表时,一名高中毕业生了解到,A,B
两所大学各有一些自己感兴趣的强项专业,如下表.
A 大学
B 大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学Biblioteka 例5 给程序模块命名,需要用3个字符,其中首字符要求用字母 A~G或U~Z,后两个字符要求用数字1~9,最多可以给多少个程 序模块命名?
分类加法计数原理和分步乘法计数原理 课件
![分类加法计数原理和分步乘法计数原理 课件](https://img.taocdn.com/s3/m/933c898b77eeaeaad1f34693daef5ef7bb0d1248.png)
问题 5 若还有 C 大学,其中强项专业为:新闻学、金融学、 人力资源学,那么,这名同学可能的专业选择共有多少种? 答 这名同学可以选择 A、B、C 三所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方 法,在 C 大学中有 3 种专业选择方法.又由于三所大学没有 共同的强项专业,因此根据分类加法计数原理,这名同学可 能的专业选择种数为 5+4+3=12. 小结 如果完成一件事有 n 类不同方案,在第 1 类方案中 有 m1 种不同的方法,在第 2 类方案中有 m2 种不同的方 法,……,在第 n 类方案中有 mn 种不同的方法,那么完成 这件事共有 m1+m2+m3+…+mn 种不同的方法.
小结 解两个计数原理的综合应用题时,最容易出现不知道应 用哪个原理解题的情况,其思维障碍在于没有区分该问题是 “分类”还是“分步”,突破方法在于认真审题,明确“完成 一件事”的含义.具体应用时灵活性很大,要在做题过程中不 断体会和思考,基本原则是“化繁理:完成一件事有两类不同方案,在第 1
类方案中有 m 种不同的方法,在第 2 类方案中有 n 种不 同的方法,那么完成这件事共有 N= m+n 种不同的方法. 2.分步乘法计数原理:完成一件事需要两个步骤,做第 1 步 有 m 种不同的方法,做第 2 步有 n 种不同的方法,那么 完成这件事共有 N= m×n 种不同的方法.
例 1 在填写高考志愿表时,一名高中毕业生了解到 A、B 两
所大学各有一些自己感兴趣的强项专业,具体情况如下:
A 大学
B 大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学
工程学
如果这名同学只能选一个专业,那么他共有多少种选择呢?
6.1分类加法计数原理与分步乘法计数原理2课件(人教版)
![6.1分类加法计数原理与分步乘法计数原理2课件(人教版)](https://img.taocdn.com/s3/m/1dc872128f9951e79b89680203d8ce2f0166654e.png)
步可由子模块4、子模块5中任何一个来完成,
因此,分析一条指令在整个模块的执行路径
需要用到两个计数原理
解:由分类加法计数原理,子模块1、子模块2、子模块3中的子路径条数共为
18+45+28=91;子模块4、子模块5中的子路径条数共为38+43=81.又由分步乘法
计数原理,整个模块的执行路径条数共为91×81=7371.
1,2,…,9的九宫格中的9个小正方形(如图),使得
任意相邻(有公共边)的小正方形所涂颜色都不
相同,且标号为“1,5,9”的小正方形涂相同的颜
色,则符合条件的所有涂法有 108 种.
解:分三步:第一步,先给标号1.5.9的正方形涂色,有3种涂法第二步,给标号2,3.6的小正方形涂色,又分两类:一是标号3
同方法数N2=3×4×6=72. .故这三人出游的不同方法数N= N1 +N2 =102
若选择①③④,则三人出游的不同方法数N=4×5×5=100
若选择②③④,则三人出游的不同方法数N=5×5×5=125.
巩固练习 排队问题:
汽车维修师傅在安装好汽车轮胎后,需要紧固轮胎上的五个螺栓,记为A、B、
C、D、E(在正五边形的顶点上),紧固时需要按一定的顺序固定每一个螺栓,
当第1位和第2位是字母时,分5个步骤确定一个序号中的字母和数字:第1,2步都是从24个字母中选1
个分别放在第1位、第2位,各有24种选法;第3~5步都是从10个数字中选1个放在相应的位置,各有
10种选法,根据分步乘法计数原理,号牌张数为24×24×10×10×10=576000.同样,其余九个子类号
同的方法……做第n步有mn种不同的方法.
那么完成这件事共有N=m1× m2× …× mn种不同的方法.
因此,分析一条指令在整个模块的执行路径
需要用到两个计数原理
解:由分类加法计数原理,子模块1、子模块2、子模块3中的子路径条数共为
18+45+28=91;子模块4、子模块5中的子路径条数共为38+43=81.又由分步乘法
计数原理,整个模块的执行路径条数共为91×81=7371.
1,2,…,9的九宫格中的9个小正方形(如图),使得
任意相邻(有公共边)的小正方形所涂颜色都不
相同,且标号为“1,5,9”的小正方形涂相同的颜
色,则符合条件的所有涂法有 108 种.
解:分三步:第一步,先给标号1.5.9的正方形涂色,有3种涂法第二步,给标号2,3.6的小正方形涂色,又分两类:一是标号3
同方法数N2=3×4×6=72. .故这三人出游的不同方法数N= N1 +N2 =102
若选择①③④,则三人出游的不同方法数N=4×5×5=100
若选择②③④,则三人出游的不同方法数N=5×5×5=125.
巩固练习 排队问题:
汽车维修师傅在安装好汽车轮胎后,需要紧固轮胎上的五个螺栓,记为A、B、
C、D、E(在正五边形的顶点上),紧固时需要按一定的顺序固定每一个螺栓,
当第1位和第2位是字母时,分5个步骤确定一个序号中的字母和数字:第1,2步都是从24个字母中选1
个分别放在第1位、第2位,各有24种选法;第3~5步都是从10个数字中选1个放在相应的位置,各有
10种选法,根据分步乘法计数原理,号牌张数为24×24×10×10×10=576000.同样,其余九个子类号
同的方法……做第n步有mn种不同的方法.
那么完成这件事共有N=m1× m2× …× mn种不同的方法.
分类计数原理-PPT
![分类计数原理-PPT](https://img.taocdn.com/s3/m/2a01942ba517866fb84ae45c3b3567ec102ddcda.png)
6
分类加法计数原理与分步乘法计数原理
教学流程
引入课题
分类加法计数原理 提出问题 发现新知 知识应用 一般归纳
分步乘法计数原理 提出问题 发现新知 知识应用 一般归纳
综合应用
巩固练习
课堂小结
课外作业
7
分类加法计数原理与分步乘法计数原理
教学程序
引入课题
①从我们班上推选出两名同学担任班长,有多少 种不同的选法? ②把我们的同学排成一排,共有多少种不同的排 法?
分类加法计数原理与分步乘法计数原理
教学程序
巩固练习
3.从甲地到乙地有2种走法,从乙地到丙地有4种走
法,从甲地不经过乙地到丙地有3种走法,则从甲
地到丙地的不同的走法共有
种.
4.甲、乙、丙3个班各有三好学生3,5,2名,现准
备推选两名来自不同班的三好学生去参加校三好学
生代表大会,共有
种不同的推选方法.
字,以 A1 , A2 ,…, B1,B2,…的方式给教室里的座位
编号,总共能编出多少个不同的号码?
探究:你能说说这个问题的特征吗?
18
分类加法计数原理与分步乘法计数原理
教学程序
分步乘法计数原理
完成一件事有两类不同方案,在第1类方案中
有 种m不同的方法,在第2类方案中有 种
不同n 的方法. 那么完成这件事共有
种不m1同的方法,做第2步有 种不m2同的方法,做第
3步有 种m不3 同的方法,那么完成这件事共有多 少种不同的方法?
如果完成一件事情需要 个n 步骤,做每一步中都
有若干种不同方法,那么应当如何计数呢?
21
分类加法计数原理与分步乘法计数原理
教学程序
分步乘法计数原理
分类加法计数原理与分步乘法计数原理
教学流程
引入课题
分类加法计数原理 提出问题 发现新知 知识应用 一般归纳
分步乘法计数原理 提出问题 发现新知 知识应用 一般归纳
综合应用
巩固练习
课堂小结
课外作业
7
分类加法计数原理与分步乘法计数原理
教学程序
引入课题
①从我们班上推选出两名同学担任班长,有多少 种不同的选法? ②把我们的同学排成一排,共有多少种不同的排 法?
分类加法计数原理与分步乘法计数原理
教学程序
巩固练习
3.从甲地到乙地有2种走法,从乙地到丙地有4种走
法,从甲地不经过乙地到丙地有3种走法,则从甲
地到丙地的不同的走法共有
种.
4.甲、乙、丙3个班各有三好学生3,5,2名,现准
备推选两名来自不同班的三好学生去参加校三好学
生代表大会,共有
种不同的推选方法.
字,以 A1 , A2 ,…, B1,B2,…的方式给教室里的座位
编号,总共能编出多少个不同的号码?
探究:你能说说这个问题的特征吗?
18
分类加法计数原理与分步乘法计数原理
教学程序
分步乘法计数原理
完成一件事有两类不同方案,在第1类方案中
有 种m不同的方法,在第2类方案中有 种
不同n 的方法. 那么完成这件事共有
种不m1同的方法,做第2步有 种不m2同的方法,做第
3步有 种m不3 同的方法,那么完成这件事共有多 少种不同的方法?
如果完成一件事情需要 个n 步骤,做每一步中都
有若干种不同方法,那么应当如何计数呢?
21
分类加法计数原理与分步乘法计数原理
教学程序
分步乘法计数原理
分类加法计数原理ppt课件
![分类加法计数原理ppt课件](https://img.taocdn.com/s3/m/7d81a8fe4b73f242326c5fd7.png)
6
例:在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣 的强项专业,具体情况如下:
A大学
B大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学
工程学
如果这名同学只能选一个专业,那么他有多少中选择?
在这个例题中,如果数学也是A大学的强项专业,则A大学共有6个专业可以选择, B大学有4个专业可以选择,那么用分类计数原理,得到这名同学可能的专业选择种 数为6+4=10,对吗?
1
汽车
杭州
火车
杭州
2
北京
3种
3 3+2=5种
1
北京
2种
2
2
引例2 用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多 少种不同的号码?
编一个号码可以分成两类
N=26+10=36
3
引例3
两个袋子里分别装有40个不同的红球,60个不同的白球,从中任取一个球,有多少种取 法?
取一个球可以分成两类,
67,68,69,
78,79,
89.
注:当分类不易说明时,多数是需要进行分类讨论
11
例:A与B是I={1,2,3,4}的子集,若A∩B={1,2},则称(A,B)为
一个理想配集,若将(A,B)与(B,A)看成不同的“理想配集”,则符合
此条件的“理想配集”的个数是( ).
A.4
B.8
C.9
D.16
枚举法
对子集A进行分类讨论. 当A是二元集{1,2}时,B可以{1,2,3,4},{1,2,4},{1,2,3},{1,2},共4种情况; 当A是三元集{1,2,3}时,B可以为{1,2,4},{1,2},共2种情况; 当A是三元集{1,2,4}时,B可以为{1,2,3},{1,2},共2种情况; 当A是四元集{1,2,3,4}时,此时B为{1,2},共1种情况.
第十章 第一节 分类加法计数原理与分步乘法计数原理 课件(共30张PPT)
![第十章 第一节 分类加法计数原理与分步乘法计数原理 课件(共30张PPT)](https://img.taocdn.com/s3/m/98c13fd0dbef5ef7ba0d4a7302768e9951e76e24.png)
主,难度将会变小.
学科素养: 数学建模、数学抽象.
知识·分步落实
⊲学生用书 P165
两个计数原理
分类加法计数原理
分步乘法计数原理
条 完成一件事有两__类__不__同__方__案__,在第 1 完成一件事需要两__个__步__骤__,做
件 类方案中有 m 种不同的方法,在第 2 第 1 步有 m 种不同的方法,做
法,所以由分步乘法计数原理得直线有 5×4=20(条).]
4.书架的第 1 层放有 4 本不同的语文书,第 2 层放有 5 本不同的数学书, 第 3 层放有 6 本不同的体育书.从第 1,2,3 层分别各取 1 本书,则不同的 取法种数为________.
解析: 由分步乘法计数原理知,从第 1,2,3 层分别各取 1 本书,不 同的取法共有 4×5×6=120(种).
(2)区域 3 有 4 种选法,区域 1 有 3 种选法,区域 2 有 2 种选法,区域 4 从区域 1,2 所选颜色中选有 2 种选法,区域 5 可选剩下的一种和区域 1,2 所选被区域 4 选剩下的一种,有 2 种选法,共有 4×3×2×2×2=96 种.
答案: 144;96
用分步乘法计数原理解决问题的三个步骤
类方案中有 n 种不种的方法
第 2 步有 n 种不同的方法
结 完成这件事共有 N=m__+__n_种不同的 完成这件事共有 N=_m_·_n_种不
论 方法
同的方法
[注意] 分类的关键在于要做到“不重不漏”;分步的关键在于要正确 设计分步的程序,即合理分类,准确分步.在分类与分步之前要确定题目中 是否有特殊条件限制.
1.分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于 其中一类.
2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立, 分步完成”.
学科素养: 数学建模、数学抽象.
知识·分步落实
⊲学生用书 P165
两个计数原理
分类加法计数原理
分步乘法计数原理
条 完成一件事有两__类__不__同__方__案__,在第 1 完成一件事需要两__个__步__骤__,做
件 类方案中有 m 种不同的方法,在第 2 第 1 步有 m 种不同的方法,做
法,所以由分步乘法计数原理得直线有 5×4=20(条).]
4.书架的第 1 层放有 4 本不同的语文书,第 2 层放有 5 本不同的数学书, 第 3 层放有 6 本不同的体育书.从第 1,2,3 层分别各取 1 本书,则不同的 取法种数为________.
解析: 由分步乘法计数原理知,从第 1,2,3 层分别各取 1 本书,不 同的取法共有 4×5×6=120(种).
(2)区域 3 有 4 种选法,区域 1 有 3 种选法,区域 2 有 2 种选法,区域 4 从区域 1,2 所选颜色中选有 2 种选法,区域 5 可选剩下的一种和区域 1,2 所选被区域 4 选剩下的一种,有 2 种选法,共有 4×3×2×2×2=96 种.
答案: 144;96
用分步乘法计数原理解决问题的三个步骤
类方案中有 n 种不种的方法
第 2 步有 n 种不同的方法
结 完成这件事共有 N=m__+__n_种不同的 完成这件事共有 N=_m_·_n_种不
论 方法
同的方法
[注意] 分类的关键在于要做到“不重不漏”;分步的关键在于要正确 设计分步的程序,即合理分类,准确分步.在分类与分步之前要确定题目中 是否有特殊条件限制.
1.分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于 其中一类.
2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立, 分步完成”.
数学《分类加法计数原理》优秀课件
![数学《分类加法计数原理》优秀课件](https://img.taocdn.com/s3/m/c087c5f10975f46527d3e135.png)
完成一件事
分类(类类独立) 分步(步步关联)
不重不漏 步骤完整
例3.乘积 a1 a2 a3 b1 b2 c1 c2 c3 c4 展开后,共有
__2_4__ 项.
例4.(1)在图I的电路中,只合上一只开关
以接通电路,有多少种不同的方法? (2)在图II的电路中,合上两只开关以
四、分步乘法计数原理推广
完成一件事需要 n个步骤.做第1步有 m1 种不同的方
法,做第2步中有 m2 种不同的方法,...,在第n步中有mn
种不同的方法,那么完成这件事共有
N m1 m2 ... mn 种不同的方法
说明
各个步骤相互依存,只有各个步骤都完成了, 这件事才算完成,将各个步骤的方法数相乘得到 完成这件事的方法总数.
随着交通的便利,从A地出发到B地还有
飞机2班,共有多少种不同的走法?火车1
要完成的“一件事”?
火车2 火车3
怎样完成? 可以推广到n类吗?
A地
汽车1
B地
汽车2
飞机1
飞机2
二、分类加法计数原理推广
完成一件事有 n类不同方案. 在第1类方案中有m1 种不同的方法,在第2类方案中有 m2 种不同的方法,...,
探究点3 分步乘法计数原理
问题1 甲从A地出发到B地,可以乘火车,也可
以乘汽车.一天之中,火车有3班,汽车有2班, 问一天中乘坐这些交通工具从A地到B地共有多少
种不同的走法?
问题2 甲第一天从A地出发到B地,第二天从B地 出发去C地.已知B地到C地的汽车有3班,问这两天
中甲乘坐这些交通工具从A地到C地共有多少种不
同的走法?
火车1
火车2 火车3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类加法计数与分步乘法计数原理的区别和联系:
分类加法计数原理
分步乘法计数原理
联系
研究"完成一件事"的所有不同方法种数的问题
区别一 完成一件事有n类方案, 完成一件事需要n个步骤,ቤተ መጻሕፍቲ ባይዱ
关键词是“分类”
关键词是“分步”
区别二
相互独立
相互依存
例1.书架上的第1层放有4本不同的计算机书,第2层放 有3本不同的文艺书,第3层放有2本不同的体育书。 (1)从书架中任取1本书,有多少种不同取法?
完成一件事
分类(类类独立) 分步(步步关联)
不重不漏 步骤完整
例3.乘积 a1 a2 a3 b1 b2 c1 c2 c3 c4 展开后,共有
__2_4__ 项.
例4.(1)在图I的电路中,只合上一只开关
以接通电路,有多少种不同的方法? (2)在图II的电路中,合上两只开关以
随着交通的便利,从A地出发到B地还有
飞机2班,共有多少种不同的走法?火车1
要完成的“一件事”?
火车2 火车3
怎样完成? 可以推广到n类吗?
A地
汽车1
B地
汽车2
飞机1
飞机2
二、分类加法计数原理推广
完成一件事有 n类不同方案. 在第1类方案中有m1 种不同的方法,在第2类方案中有 m2 种不同的方法,...,
四、分步乘法计数原理推广
完成一件事需要 n个步骤.做第1步有 m1 种不同的方
法,做第2步中有 m2 种不同的方法,...,在第n步中有mn
种不同的方法,那么完成这件事共有
N m1 m2 ... mn 种不同的方法
说明
各个步骤相互依存,只有各个步骤都完成了, 这件事才算完成,将各个步骤的方法数相乘得到 完成这件事的方法总数.
探究点3 分步乘法计数原理
问题1 甲从A地出发到B地,可以乘火车,也可
以乘汽车.一天之中,火车有3班,汽车有2班, 问一天中乘坐这些交通工具从A地到B地共有多少
种不同的走法?
问题2 甲第一天从A地出发到B地,第二天从B地 出发去C地.已知B地到C地的汽车有3班,问这两天
中甲乘坐这些交通工具从A地到C地共有多少种不
探究点1 分类加法计数原理
问题1 甲从A地出发到B地,可以乘火车,也可
以乘汽车.一天之中,火车有3班,汽车有2班,
问一天中乘坐这些交通工具从A地到B地共有多少
种不同的走法?
火车1
要完成的“一件事”
火车2 火车3
怎样完成
A地
汽车1
B地
汽车2
抽象成数学问题?(归纳成计数原理)
一、分类加法计数原理
完成一件事有 两类不同方案. 在第1类方案中 有 m 种不同的方法,在第2类方案中有 n 种不同 的方法. 那么完成这件事共有
在第n类方案中有 mn 种不同的方法,那么完成这件事共
有 N m1 m2 ... mn 种不同的方法
说明
各类办法之间相互独立,都能独立地完成这 件事,要计算方法种数,只需将各类方法数相加.
小试牛刀
练习1 用一个大写的英文字母或0~9十个阿拉伯数字 中的一个给教室里的座位编号,总共能够编出多少个不 同的号码? 练习2 现有高一年级的学生3名,高二年级的学生5名 ,高三年级的学生4名.从中任选1人参加接待外宾的活 动,有多少种不同的选法?
计数方式 在一个正六边形的6个区域栽种观赏 植物,如右图,要求同一块中种同 一种植物,相邻的两块种不同的植 物.现有四种不同的植物可供选择, 则有________种栽种方案.
选修2-3第一章计数原理
1.1分类加法计数原理 与分步乘法计数原理
1.理解分类加法计数原理与分步乘法计数原理. (重点) 2.应用两个原理分析和解决一些简单的应用问题. (难点)
N= m+n 种不同的方法
说明
各类办法之间相互独立,都能独立地完成这 件事,要计算方法种数,只需将各类方法数相加, 因此分类加法计数原理又称加法原理.
探究点2 分类加法计数原理推广
问题1 甲从A地出发到B地,可以乘火车,也可 以乘汽车.一天之中,火车有3班,汽车有2班, 问一天中乘坐这些交通工具从A地到B地共有多少 种不同的走法?
同的走法?
火车1
火车2 火车3
汽车2
A
汽车1 B
C地
地
汽车2 地 汽车3
探究点3 分步乘法计数原理 问题1 甲从A地出发到B地,可以乘火车,也可 以乘汽车.一天之中,火车有3班,汽车有2班, 问一天中乘坐这些交通工具从A地到B地共有多少 种不同的走法?
问题2 甲第一天从A地出发到B地,第二天从B地 出发去C地.已知B地到C地的汽车有3班,问这两天 中甲乘坐这些交通工具从A地到C地共有多少种不 同的走法?
解:(1)从书架上任取1本书, 有三类方法: 第1类方法是从第1层取1本计算机书,有4种方法; 第2类方法是从第2层取1本文艺书,有3种方法; 第3类方法是从第3层取1本体育书,有2种方法. 根据分类加法计数原理,不同取法的种数是: N=4+3+2=9.
例1.书架上的第1层放有4本不同的计算机书,第2层放 有3本不同的文艺书,第3层放有2本不同的体育书。 (1)从书架中任取1本书,有多少种不同取法? (2)从书架的第1,2,3层各取1本书,有多少种不同 的取法? 解(:2)从书架的第1,2,3层各取1本书分,三个步骤完成: 第1步:从第1层取1本计算机书,有4种方法;
要完成的“一件事”? 怎样完成?
抽象成数学问题?(归纳成计数原理)
三、分步乘法计数原理
完成一件事需要 两个步骤,做第1步有 m 种不同的 方法,做第2步有 n 种不同的方法,则完成这件事共有
N= m×n 种不同的方法
可以推广到n类
说明
各个步骤相互依存,只有各个步骤都完成了,这 件事才算完成,将各个步骤的方法数相乘得到完成 这件事的方法总数,又称乘法原理.
接通电路,有多少种不同的方法?
第2步:从第2层取1本文艺书,有3种方法;
第3步:从第3层取1本体育书,有2种方法, 根据分步乘法计数原理,不同取法的种数是:
N=4×3×2=24.
例2(1)商店里有15种上衣,18种裤子,某人要买1件 上衣或1条裤子,共有多少种选法?若要买上衣和裤子 各1件,共有多少种选法?
(2)完成一件工作,有两种方法,有5人只会用第 一种方法,另外有4人只会用第二种方法,从这9人中 任选1人完成工作,一共有多少种选法?