基于PID控制的两轮自平衡小车设计(附有程序)
两轮自平衡小车双闭环PID控制设计
两轮⾃平衡⼩车双闭环PID控制设计两轮⾃平衡⼩车的研究意义1.1两轮平衡车的研究意义两轮平衡车是⼀种能够感知环境,并且能够进⾏分析判断然后进⾏⾏为控制的多功能的系统,是移动机器⼈的⼀种。
在运动控制领域中,为了研究控制算法,建⽴两轮平衡车去验证控制算法也是⾮常有⽤的,这使得在研究⾃动控制领域理论时,两轮平衡车也被作为课题,被⼴泛研究。
对于两轮平衡车模型的建⽴、分析以及控制算法的研究是课题的研究重点和难点。
设计的两轮平衡车实现前进、后退、转弯等功能是系统研究的⽬的,之后要对车⼦是否能够爬坡、越野等功能进⾏测试。
⼀个⾼度不稳定,其动⼒学模型呈现多变量、系统参数耦合、时变、不确定的⾮线性是两轮平衡车两轮车研究内容的难点,其运动学中的⾮完整性约束要求其控制任务的多重性,也就是说要在平衡状态下完成指定的控制任务,如在复杂路况环境下实现移动跟踪任务,这给系统设计带来了极⼤的挑战。
因此可以说两路平衡车是⼀个相对⽐较复杂的控制系统,这给控制⽅法提出了很⾼的要求,对控制理论⽅法提出来很⼤的挑战,是控制⽅法实现的典型平台,得到该领域专家的极⼤重视,成为具有挑战性的控制领域的课题之⼀。
两轮平衡车是⼀个复杂系统的实验装置,其控制算法复杂、参数变化⼤,是理论研究、实验仿真的理想平台。
在平衡车系统中进⾏解賴控制、不确定系统控制、⾃适应控制、⾮线性系统控制等控制⽅法的研究,具有物理意义明显、⽅便观察的特点,并且平衡车从造价来说不是很贵,占地⾯积⼩,是很好的实验⼯具,另外建⽴在此基础上的平衡系统的研究,能够适应复杂环境的导航、巡视等,在⼯业⽣产和社会⽣中具有⾮常⼤的应⽤潜⼒。
两轮平衡车所使⽤的控制⽅法主要有:状态回馈控制、PID控制、最优控制、极点回馈控制等,这些控制⽅法被称为传统控制⽅法。
1.2 本⽂研究内容(1)两轮⾃平衡⼩车的简单控制系统设计。
(2)基于倒⽴摆模型的两轮⾃平衡⼩车的数学建模。
(3)利⽤MATLAB⼯具进⾏两轮⾃平衡⼩车的系统控制⽅法分析。
基于卡尔曼滤波和PID控制的两轮自平衡车
基于卡尔曼滤波和PID控制的两轮自平衡车【摘要】针对两轮自平衡车的稳定和运动过程中的控制问题,我们在信号处理的过程中引入卡尔曼滤波对信号进行处理并且采用传统的pid控制,将控制过程分为三个部分,即站立、直线运动和转向。
由于车体运动分为这三个部分,并且这三个部分必须几乎同时控制,所以采用分时控制每一部分的方法,该方法被成功应用于“飞思卡尔”智能车大赛,并且取得良好效果。
【关键词】倒立摆系统;自平衡车;卡尔曼滤波;pid控制引言倒立摆系统是控制系统的一个重要的分支和典型的应用。
实际上它可以理解成在计算机的控制下,通过对系统各种状态参数的实时分析,使系统在水平方向或垂直方向上的位移和角度(角速度)的偏移量控制在允许的范围以内,从而使系统保持平衡。
自平衡车就是以倒立摆系统为工作原理的成品,两轮自平衡智能小车直立行走是要求仿照两轮自平衡电动车的行进模式,让车模以两个后轮驱动进行直立行走。
近年来,两轮自平衡电动车以其行走灵活、便利、节能等特点得到了很大的发展。
国内外有很多这方面的研究,也有相应的产品。
相对于传统的四轮行走的车模竞赛模式,车模直立行走在硬件设计、控制软件开发以及现场调试等方面提出了更高的要求。
实物图如下:一、系统构成整个模型车分为两个部分组成,即硬件电路和软件两部分。
硬件电路主要由加速度计、陀螺仪、微控制器、编码器、线性ccd、电机驱动电路组成。
由微处理器对陀螺仪、滤波电路和加速度计构成的传感器组进行高速a/d采样后,通过卡尔曼滤波器对传感器数据进行补偿和信息融合,得到准确的姿态角度信号,此角度信号再通过pid控制器运算,输出给电子调速器转换成pwm 信号,进而对电机进行控制。
系统结构框图如下图所示:二、卡尔曼滤波加速度计用于测量物体的线性加速度,加速度计的输出值与倾角呈非线性关系,随着倾角的增加而表现为正弦函数变化。
因此对加速度计的输出进行反正弦函数处理,才能得到其倾角值。
测量数据噪声与带宽的平方根成正比,即噪声会随带宽的增加而增加。
基于PID控制器的两轮自平衡小车设计
本科毕业设计基于PID控制器的两轮自平衡小车设计摘要两轮自平衡小车具有体积小、结构简单、运动灵活的特点,适用于狭小和危险的工作空间,在安防和军事上有广泛的应用前景。
两轮自平衡小车是一种两轮左右平衡布置的,像传统倒立摆一样,本身是一种自然不稳定体,其动力学方程具有多变量、非线性、强耦合、时变、参数不确定性等特性,需要施加强有力的控制手段才能使其保持平衡。
本文在总结和归纳国内外对两轮自平衡小车的研究现状,提出了自己的两轮自平衡小车软硬件设计方案,小车硬件采用陀螺仪和加速度传感器检测车身的重力方向的倾斜角度和车身轮轴方向上的旋转加速度,数据通过控制器处理后,控制电机调整小车状态,使小车保持平衡。
由于陀螺仪存在温漂和积分误差,加速度传感器动态响应较慢,不能有效可靠的反应车身的状态,所以软件使用互补滤波算法将陀螺仪和加速度传感器数据融合,结合陀螺仪的快速的动态响应特性和加速度传感器的长时间稳定特性,得到一个优化的角度近似值。
文中最后通过实验验证了自平衡小车软硬件控制方案的可行性。
关键词:自平衡互补滤波数据融合倒立摆Two-wheeledSelf-balancingRobotMaXuedong(CollegeofEngineering,SouthChinaAgriculturalUniversity,Guangzhou510642,China) Abstract:Thetwo-wheeledself-balancingrobotissmallinmechanism,withsimplestructureandcanmakeflexiblemotion,目录华南农业大学本科生毕业设计成绩评定表1前言研究意义应用意义。
自平衡车巧妙地利用地心引力使其自身保持平衡,并使得重力本身成为运动动能的提供者,载重越大,行驶动能也就越大,具有环保的特点(胡春亮等,2007)。
驾驶者不必担心掌握平衡,车体自身的平衡稳定性,使得原本由于平衡能力障碍而无法骑自行车的人群也同样可以驾驭。
基于PID控制的两轮自平衡小车的研究
2021.14科学技术创新基于PID 控制的两轮自平衡小车的研究李志豪司永康屈志扬李建军李高展曲艺晗(河南科技大学机电工程学院,河南洛阳471003)1概述近年来,两轮式自平衡小车的研究在美国、日本、等国都得到了迅速发展。
平衡车能够通过自身的整体协调性操作平衡,而且体积小,容易上手,成为越来越多人的一种代步工具。
平衡车的动力来源是锂电池,没有碳排放,是一种绿色出行方式,能很好的保护环境。
目前,平衡车已经进入越来越多人的视野之中,我们研究的目的是使小车能在正常的环境下正常前进和后退,保证正常的直立运行。
2系统总体结构设计该平衡小车系统采用Arduino 单片机为核心,GY-85九轴IMU 传感器模块负责采集平衡小车的姿态,并将姿态信息传输回Arduino 控制器,控制器得到平衡小车的实时角速度和角度以及小车车轮当前的速度,综合计算出需要输出的控制信号进而准确控制平衡小车两个车轮的直流电动机[1],使平衡小车保持平衡,同时将平衡小车系统所采集到的角度、角速度、车轮速度等通过蓝牙控制模块传送至手机app 上实时显示,以及在小车硬件显示屏上也能显示。
系统总体结构如图1所示。
图1平衡小车系统3系统电路设计该平衡小车系统分别由电源降压模块AMS1117、Arduinouno 、GY-85姿态传感器、电机驱动模块、电机及BT08b 蓝牙控制模块四部分组成,小车的系统集成电路结构如图2。
12v 的电源经过降压模块下降至5v ,为Arduino 控制板提供电源,GY-85读取小车姿态数据再传到Arduino 控制器;电机编码器获得一台电机的转速再通过传感器反馈到Arduino 控制板,Arduino 控制板根据传感器所采集的信息,通过PID 控制算法将PWM 信号输出传至电机驱动模块[2]与此同时,控制器将传感器采集到的小车姿态运动信息通过BT08B 蓝牙模块传送到手机app 上,并且能在显示屏上显示出来。
3.1ArduinoUNO 控制板ArduinoUNO 是基于ATmega328P 的一款微控制器板[3]。
双轮自平衡车的双闭环式PID控制系统设计与实现
双轮自平衡车的双闭环式PID控制系统设计与实现摘要:双轮自平衡车是一种集环境感知、规划决策、自主驾驶等功能为一体的综合性系统。
提出了一种双闭环式PID控制系统实现双轮自平衡车的控制。
针对传统的PID控制算法的缺陷,该系统引入了双闭环式PID改进平衡车的控制算法。
同时对平衡车的硬件系统与软件控制系统进行了设计、实现与分析。
实验表明:所提出的控制系统是有效可行的,提高了平衡车的稳定性和动态响应性。
关键词:双轮自平衡车;PID控制算法;双闭环式PID控制系统传统的PID控制算法在平衡车控制系统中的应用存在很大的缺陷。
在传统的PID控制器中,积分控制环节的引入是为了消除被控量的静态误差,以提高控制精度;在平衡车控制系统中,由于平衡车在启动过程或车体在较差的路况中运行,车体倾角会发生大幅度地变化,平衡车系统在较短的时间内会产生较大的输出偏差。
此时,PlD控制器中的积分控制环节会导致系统产生较大的超调,甚至导致平衡车产生较大的震荡。
除此之外,传统的PID控制器忽略了平衡车中两个电机的性能差异,对两个电机采用同一个PID控制器,容易引起车体产生震荡。
本文提出了一种双闭环式PID控制系统,其避免了PID控制器中的积分环节在平衡车的倾角发生大幅度地变化的情况下引起的超调和震荡,解决平衡车两个电机性能差异对平衡车控制系统的干扰,提高了平衡车控制系统的稳定性。
1平衡车的优势及机械结构1.1平衡车的优势l、转向半径小,小巧灵活,适合在原地频繁转向和狭小空间的场合下使用;2、结构简单,由于可以通过直接控制电机驱动来完成启动、加速、匀速、减速等动作,省略刹车和离合等装置,使得整车结构设计更为简单。
3、绿色环保,可以作为短途代步工具,用于上下班或者出去购物游玩,可以穿梭与人流密集的闹市区,减少城市道路交通行驶车辆,既可以解决交通堵塞问题,又可以减少碳的排放,做到环保出行。
1.2机械结构本文研制的平衡车高57.8cm,宽41.5cm,两轮直径为8cm。
基于PID控制器的两轮自平衡小车设计
基于PID控制器的两轮自平衡小车设计一、引言在自动控制领域中,PID控制器是一种常用的控制器。
它通过对系统输出进行反馈,来调节系统的输入,使系统的输出尽可能接近预期值。
本文将基于PID控制器设计一个两轮自平衡小车。
二、系统模型两轮自平衡小车是由两个驱动电机控制的,通过控制电机的转速来实现小车的前进、后退、转向等功能。
小车的整体结构是一个倒立摆,通过控制电机的转速,使其保持垂直状态。
系统的输入是电机转速,输出是小车的倾斜角度。
三、PID控制器PID控制器由比例(P)、积分(I)和微分(D)三个部分组成。
这三个部分根据误差来计算控制信号,实现对系统的控制。
1.比例控制部分:比例控制器根据误差的大小来计算控制信号。
误差是指系统输出与期望输出之间的差异。
比例控制器的计算公式为u_p=K_p*e(t),其中u_p是比例输出,K_p是比例增益,e(t)是误差。
2. 积分控制部分:积分控制器根据误差的累积值来计算控制信号。
积分控制器的计算公式为u_i = K_i * ∫e(t)dt,其中u_i是积分输出,K_i是积分增益,∫e(t)dt是误差的累积值。
3. 微分控制部分:微分控制器根据误差的变化率来计算控制信号。
微分控制器的计算公式为u_d = K_d * de(t)/dt,其中u_d是微分输出,K_d是微分增益,de(t)/dt是误差的变化率。
PID控制器的输出信号为u(t)=u_p+u_i+u_d,其中u(t)是控制信号。
四、设计与实现在设计两轮自平衡小车的PID控制器时,需要根据系统的特性来选择合适的参数。
通常可以通过试验或仿真来获得系统的模型,进而进行参数调节。
1.参数调节:首先,可以将系统的转角作为输入信号,通过试验或仿真来获得小车的倾斜角度与转角的关系。
然后,可以根据比例、积分和微分控制部分的特性,来选择合适的增益参数。
比例增益越大,系统的响应速度越快,但可能会引起震荡;积分增益可以消除静态误差,但可能会引起过冲;微分增益可以减小震荡,但可能会引起超调。
基于单片机的两轮自平衡车控制系统设计
基于单片机的两轮自平衡车控制系统设计文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]基于单片机的两轮自平衡车控制系统设计摘要两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。
本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。
系统选用STC公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。
整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。
通过蓝牙,还可以控制小车前进,后退,左右转。
关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波 PID算法Design of Control System of Two-Wheel Self-Balance Vehicle based onMicrocontrollerAbstractTwo-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravityaccelerometer gyroscope sensor MPU6050 for the inclination angle of vehicle, and using complementary filter for the data fusion of gyroscope and accelerometer. We choose an 8-bit microcontroller named STC12C5A60S2 from STC Company as main controller of the control system. The main controller output control signal, which is based on the data from the sensors, to the motor drive chip named TB6612FNG forcontrolling two motors of vehicle, and keeping the vehicle in balance. After the completion of the control system, the vehicle can achieve autonomous balance under the conditions of unmanned intervention, the vehicle can adjust automatically and restored to a stable statequickly in the case of giving appropriate interference as well. In addition, we can control the vehicle forward, backward and turn around. Key words: Two-Wheel Self-Balance Vehicle; Accelerometer; Gyroscope; Data fusion;Complementary filter; PID algorithm1 绪论自平衡小车的研究背景近几年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前机器人研究领域的一个重要组成部分,并且其应用领域日益广泛,其所需适应的环境和执行的任务也更复杂,这就对移动机器人提出了更高的要求。
两轮自平衡小车的设计与实现
两轮自平衡小车的设计与实现一、本文概述随着科技的飞速发展,智能化、自主化已经成为现代机器人技术的重要发展方向。
两轮自平衡小车作为一种典型的动态稳定控制机器人,其设计与实现技术对于推动机器人技术的进步具有重要意义。
本文旨在深入探讨两轮自平衡小车的设计理念、实现方法以及关键技术,为相关领域的研究者和爱好者提供有益的参考。
本文将首先介绍两轮自平衡小车的基本概念和原理,阐述其动态稳定控制的基本思想。
随后,将详细介绍两轮自平衡小车的硬件设计,包括电机驱动、传感器选型、控制器设计等关键部分,并阐述各部件之间的协同工作原理。
在此基础上,本文将重点探讨两轮自平衡小车的软件实现,包括平衡控制算法、运动控制算法以及人机交互界面设计等。
本文还将对两轮自平衡小车的性能优化和实际应用进行深入分析,探讨如何提高其稳定性、响应速度以及续航能力等问题。
本文将对两轮自平衡小车的发展趋势和前景进行展望,为相关领域的研究和发展提供有益的参考。
通过本文的阐述,读者可以全面了解两轮自平衡小车的设计与实现过程,掌握其关键技术和应用方法,为推动机器人技术的发展做出贡献。
二、两轮自平衡小车的基本原理两轮自平衡小车,又称作双轮自稳车或双轮倒立摆,是一种基于动态稳定技术设计的个人交通工具。
其基本原理主要涉及到力学、控制理论以及传感器技术。
两轮自平衡小车的稳定性主要依赖于其独特的力学结构。
与传统三轮或四轮的设计不同,双轮自平衡小车只有两个支撑点,这意味着它必须通过动态调整自身姿态来维持稳定。
这种动态调整的过程类似于杂技演员走钢丝,需要精确的平衡和快速的反应。
实现自平衡的关键在于控制理论的应用。
两轮自平衡小车通常搭载有先进的控制系统,该系统通过传感器实时监测小车的姿态(如倾斜角度、加速度等),并根据这些信息计算出必要的调整量。
控制系统随后会向电机发送指令,调整小车的运动状态,以保持平衡。
传感器在两轮自平衡小车中扮演着至关重要的角色。
常见的传感器包括陀螺仪、加速度计和角度传感器等。
毕业设计(论文)-两轮自平衡小车的设计
本科毕业设计(论文)题目两轮自平衡小车的设计学院电气与自动化工程学院年级专业班级学号学生姓名指导教师职称论文提交日期两轮自平衡小车的设计摘要近年来,两轮自平衡车的研究与应用获得了迅猛发展。
本文提出了一种两轮自平衡小车的设计方案,采用陀螺仪ENC-03以及MEMS加速度传感器MMA7260构成小车姿态检测装置,使用卡尔曼滤波完成陀螺仪数据与加速度计数据的数据融合。
系统选用飞思卡尔16位单片机MC9S12XS128为控制核心,完成了传感器信号的处理,滤波算法的实现及车身控制,人机交互等。
整个系统制作完成后,各个模块能够正常并协调工作,小车可以在无人干预条件下实现自主平衡。
同时在引入适量干扰情况下小车能够自主调整并迅速恢复稳定状态。
小车还可以实现前进,后退,左右转等基本动作。
关键词:两轮自平衡陀螺仪姿态检测卡尔曼滤波数据融合IDesign of Two-Wheel Self-Balance VehicleAbstractIn recent years, the research and application of two-wheel self-balanced vehicle have obtained rapid development. This paper presents a design scheme of two-wheel self-balanced vehicle. Gyroscope ENC-03 and MEMS accelerometer MMA7260 constitute vehicle posture detection device. System adopts Kalman filter to complete the gyroscope data and accelerometer data fusion.,and adopts freescale16-bit microcontroller-MC9S12XS128 as controller core. The center controller realizes the sensor signal processing the sensor signal processing, filtering algorithm and body control, human-machine interaction and so on.Upon completion of the entire system, each module can be normal and to coordinate work. The vehicle can keep balancing in unmanned condition. At the same time, the vehicle can be adjusted independently then quickly restore stability when there is a moderate amount of interference. In addition, the vehicle also can achieve forward, backward, left and right turn and other basic movements.Key Words: Two-Wheel Self-Balance; Gyroscope; Gesture detection; Kalman filter; Data fusionII目录1.绪论 (1)1.1研究背景与意义 (1)1.2两轮自平衡车的关键技术 (2)1.2.1系统设计 (2)1.2.2数学建模 (2)1.2.3姿态检测系统 (2)1.2.4控制算法 (3)1.3本文主要研究目标与内容 (3)1.4论文章节安排 (3)2.系统原理分析 (5)2.1控制系统要求分析 (5)2.2平衡控制原理分析 (5)2.3自平衡小车数学模型 (6)2.3.1两轮自平衡小车受力分析 (6)2.3.2自平衡小车运动微分方程 (9)2.4 PID控制器设计 (10)2.4.1 PID控制器原理 (10)2.4.2 PID控制器设计 (11)2.5姿态检测系统 (12)2.5.1陀螺仪 (12)2.5.2加速度计 (13)2.5.3基于卡尔曼滤波的数据融合 (14)2.6本章小结 (16)3.系统硬件电路设计 (17)3.1 MC9SXS128单片机介绍 (17)3.2单片机最小系统设计 (19)3.3 电源管理模块设计 (21)3.4倾角传感器信号调理电路 (22)III3.4.1加速度计电路设计 (22)3.4.2陀螺仪放大电路设计 (22)3.5电机驱动电路设计 (23)3.5.1驱动芯片介绍 (24)3.5.2 驱动电路设计 (24)3.6速度检测模块设计 (25)3.6.1编码器介绍 (25)3.6.2 编码器电路设计 (26)3.7辅助调试电路 (27)3.8本章小结 (27)4.系统软件设计 (28)4.1软件系统总体结构 (28)4.2单片机初始化软件设计 (28)4.2.1锁相环初始化 (28)4.2.2模数转换模块(ATD)初始化 (29)4.2.3串行通信模块(SCI)初始化设置 (30)4.2.4测速模块初始化 (31)4.2.5 PWM模块初始化 (32)4.3姿态检测系统软件设计 (32)4.3.1陀螺仪与加速度计输出值转换 (32)4.3.2卡尔曼滤波器的软件实现 (34)4.4平衡PID控制软件实现 (36)4.5两轮自平衡车的运动控制 (37)4.6本章小结 (39)5. 系统调试 (40)5.1系统调试工具 (40)5.2系统硬件电路调试 (40)5.3姿态检测系统调试 (41)5.4控制系统PID参数整定 (43)5.5两轮自平衡小车动态调试 (44)IV5.6本章小结 (45)6. 总结与展望 (46)6.1 总结 (46)6.2 展望 (46)参考文献 (47)附录 (48)附录一系统电路原理图 (48)附录二系统核心源代码 (49)致谢 (52)V常熟理工学院毕业设计(论文)1.绪论1.1研究背景与意义近年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前科学研究最活跃的领域之一,移动机器人的应用范围越来越广泛,面临的环境和任务也越来越复杂,这就要求移动机器人必须能够适应一些复杂的环境和任务。
两轮自平衡小车的PID控制
两轮自平衡小车的PID控制【摘要】两轮自平衡小车的核心问题是平衡控制问题和运动控制问题。
两轮自平衡小车需要始终保持车身直立,同时还需要完成各种机动动作,如行进、旋转、左转弯、右转弯等。
PID控制算法是应用最为普遍的一种算法,其特点是构造简单,应用有效及具备了许多成熟的稳定性分析的方法,有很高的可靠性。
针对两轮自平衡小车的非线性和不稳定性,利用非线性PD控制算法和PID差动结构可以实现小车的平衡控制和运动控制。
【关键词】两轮自平衡小车;PID控制;平衡控制;运动控制;控制算法1.引言两轮自平衡小车是一种典型的欠驱动系统(underactuated system)、非完整系统(nonholonomic system)。
其核心问题是对小车的平衡控制和运动控制,其中两轮自平衡小车的姿态平衡控制类似于倒立摆的平衡问题,所不同的是两轮自平衡小车可以在二维甚至三维空间内运动。
两轮自平衡小车不仅需要始终保持车身的直立,还需要在保持直立的同时在二维甚至三维空间内运动。
两轮自平衡小车有4个自由度:2个平面支撑运动自由度,2个姿态角运动自由度。
然而其中只有2个平面支撑运动自由度,即左轮和右轮可以驱动。
对于两轮自平衡小车,姿态平衡控制可以通过改变左轮和右轮的运动速度和运动方向来控制的。
当小车的车身发生倾斜时,左右电机产生相应的力矩来调节左右两轮运动速度和运动方向,使小车恢复平衡直立的状态。
小车的运动轨迹控制则是通过调整行进速度和行进方向来控制的。
两轮自平衡小车的行进速度是左轮线速度和右轮线速度的平均值,也是通过左右电机产生的力矩来调节。
行进方向则需要左轮和右轮的差动来调节,即对左轮和右轮施加不同的作用力矩,以产生不同的运动速度,从而实现两轮自平衡小车航向的控制。
PID控制算法是一种应用广泛、使用简单有效的经典的自动控制算法,两轮自平衡小车的平衡控制和运动控制都可以采用PID控制策略。
在1997年,日本的Hiraoka和Noritsugu研究出一种采用PID算法控制速度和位置的两轮平行小车[1]。
基于串级PID控制的两轮自平衡车控制系统设计
基于串级PID控制的两轮自平衡车控制系统设计摘要:伴两轮平衡车的状态变量多、系统模型非线性、变量间强耦合、时变性等不稳定,需要高效的控制算法和控制周期。
本文采用串级PID控制系统配合互补滤波算法姿态解算,实时精确地控制无刷直流电机,以角速度环为最内环,角度环与速度环为外环实现了闭环控制。
系统结果表明,基于串级PID控制的控制系统能够有效控制两轮自平衡车的运行。
关键词:两轮自平衡车;控制算法;控制周期引言两轮平衡车是通过电机对左右两轮进行力矩输出保持平衡的类倒立摆系统,具有结构小巧、控制高效和转弯灵活等特点已经成为移动机器人的研究热点。
对于自平衡车控制系统,已有不同的控制理论被提出,其中常用于实际应用的控制算法有常规PID控制、自适应控制、模糊控制等。
采用串级PID控制系统配合互补滤波算法姿态解算,通过实时精确地控制无刷直流电机,以角速度环为最内环,角度环与速度环为外环实现了闭环控制。
在实践赛道中表现出具有良好的动态特性,反应迅速。
一、系统整体设计本文要求能识别赛道方向信息,自主控制姿态,通过两轮驱动以直立姿态行驶在铺有电磁线的赛道上,并且同时在微控制器上采集到的各个传感器信息无线传输到PC上位机。
系统设计整体架构如图 1,微处理器选用飞思卡尔的MK6ODN512ZVLQ1O为控制中心,通过外接电磁传感器、MPU6050三轴姿态传感器、测速512线编码器来获取当前车体的方向、姿态、速度信息。
通过微处理器运算后输出PWM控制信号给驱动模块驱动电机运转,同时通过NRF24L01无线传输模块发送信息到上位机进行监视。
二、软件设计2.1软件总体设计框架由于两轮平衡车是一种典型的倒立摆模型,根据平衡车的自平衡原理,当检测到传感器解算出的角度与预设机械零点角度不同即车体发生倾斜时,为保持车体平衡,需要电机发力驱动车向前或向后获得加速度,让重心移动来达到系统动态平衡。
在开通电源后,传感器必须进行初始化,从而保证传感器的工作正常。
一种采用双pid串级控制的双轮自平衡车的研制
摘 要一种采用双PID串级控制的双轮自平衡车的研制双轮自平衡车因其动力学系统同时具有多变量,非线性,不稳定,强耦合等特性,在研究各种控制方法等方面是较为领先的领域,所以双轮自平衡车的发展引起了人们广泛的关注。
双轮自平衡车可以用倒立摆模型进行分析,因其系统极其不稳定,务必要用强效巧妙的控制方法才能维持其稳定。
系统整体上主要由姿态传感子系统、CPU处理子系统、驱动子系统三部分构建而成,其中获取精确的姿态信息以及将获得数据进行融合和处理的算法决定了自平衡车的优劣。
其原理是自平衡车通过姿态传感器(MPU6050)高频率实时检测运行情况,将所采集的俯仰角和角度及加速度变化率传输给CPU,经由CPU融合处理并输出调整姿态的指令,从而驱动电动机使两个轮的转速发生相应的改变,实现车体平衡以及加速和减速的目的。
本文研制了一种采用双PID串级控制的双轮自平衡车,系统以STM32最小系统为核心板,采用运动处理传感器MPU6050实时检测角速度以及角度,并通过互补滤波的方式进行数据融合,用于减小传感信号温度漂移的影响,同时使自平衡车即使受到很大的外界干扰(如推拉、震动、颠簸等)也能够快速进行调整。
系统通过串级PID(Proportion Integration Differentiation)算法进行车体的控制,通过PD(Proportion Differentiation)控制使得车身能够直立运行,通过安装在直流电机上的测速码盘实时反馈电机转速和方向,并通过PI(Proportion Integration)控制来控制车身的速度。
该双轮自平衡车运用TB6612FNG电机驱动系统,调节PWM输出的占空比来改变电机的转速。
系统通过LM2940以及ASM1117子系统作为电源驱动,准确的转换电压并对STM32和电机供电。
最后对系统进行控制参数的调整和优化,最终实现让双轮自平衡车直立平衡运行的目标。
关键词:双轮平衡车,PID控制,互补滤波,姿态检测ABSTRACTDeveloping of a dual-wheel self-balancing vehicle using double PID cascade controlThe dual-wheeled self-balancing vehicle is a leading field in the research of various control methods because of its dynamic system of multi-variable, nonlinear, unstable and strong coupling, so the development of self-balancing two-wheeled vehicles has attracted widespread attention.The dual-wheel self-balancing vehicle can be analyzed by using inverted pendulum model. The system is extremely unstable, so it is important to use a effective method to maintain its stability. The system is mainly composed of three parts: attitude sensing subsystem, CPU processing subsystem and driving subsystem. The accurate attitude information and the algorithm which gets the data to be fused and processed determine the performance of self-balancing vehicle. The self-balancing vehicle detects operating conditions through the real-time high-frequency sensor (MPU6050), the collected pitch angle and acceleration rate of change is transmitted to the CPU, CPU fusion processing and output adjustment attitude commands, which drive the motor to make two wheels' speed change to achieve the purpose of acceleration, deceleration and balancing the body.In this paper, a dual-wheel self-balancing vehicle using double PID cascade control is developed. Using STM32 as the cord board and motion detection sensor(MPU6050)detects angular velocity and angle in real time. And performing data fusion by complement filter to reduce the influence of the temperature drift of the sensing signal. At the same time, even if the self-balancing vehicle suffers from great external interference (Push and pull, vibration, bump, etc.) can also be quickly adjusted. The system controls the vehicle body through the Proportion Integration Differentiation (PID) algorithm. By the control of PD (Proportion Differentiation), the vehicle body can be erected. The speed and direction of the motor are fed back in real time by the speed encoder installed on the DC motor. And using the control of Proportion Integration(PI) to control the body speed. The TB6612FNG driving system of motor is used in the self-balancing dual-wheel vehicle, and the motor speed is changed by adjusting the PWM output duty cycle. The system is powered by the LM2940 and the ASM1117 subsystem, which can convert voltage accurately, power theSTM32 and the motor. Finally, two-wheeled self-balancing vehicle upright balance operation is achieved by adjusting and optimizing the control parameters.Keywords:a auto-balancing vehicle with two wheels, PID control, Complementary filter, attitude detection目 录摘 要 (I)ABSTRACT (II)第一章 绪论 (1)1.1研究背景及意义 (1)1.2国内外研究现状 (1)1.2.1国外现状 (1)1.2.2国内现状 (5)1.3本文主要内容及章节内容 (6)第二章 平衡车系统原理分析 (7)2.1控制系统任务分析 (7)2.2平衡车数学模型 (8)2.2.1 平衡车的受力分析 (8)2.2.2平衡车的运动微分方程 (11)2.3 串级PID在平衡控制和速度控制中的应用 (12)2.3.1 PID算法简介 (12)2.3.2 PID算法在平衡控制中的应用原理 (14)2.3.3 PID算法在速度控制中的应用原理 (14)2.3.4 串级PID的原理及在系统中的应用 (15)2.4基于互补滤波的数据融合 (16)2.5本章小结 (16)第三章 系统硬件电路设计 (17)3.1 单片机最小系统STM32F103C8T6 (18)3.2系统电源模块 (19)3.3 运动处理传感器模块 (20)3.4电机驱动电路 (21)3.5编码器电路 (23)3.6底板综合设计 (24)3.7系统遥控电路设计 (26)3.7.1 单片机STC89C52 (26)3.7.2 无线收发器模块NRF24L01 (27)3.7.3 液晶显示模块12864 (28)3.8本章总结 (29)第四章 系统软件程序设计 (30)4.1主程序框架与初始化 (30)4.2 数据采集 (32)4.2.1.输入信号采集函数 (32)4.2.2.捕获电机脉冲函数 (32)4.3互补滤波数据融合算法 (33)4.4 串级PID控制 (33)4.4.1直立PD控制 (33)4.4.2速度PI控制 (34)4.5电机PWM输出 (36)4.6程序优化 (37)4.7本章小结 (37)第五章 系统调试 (38)5.1系统开发平台 (38)5.2姿态检测系统调试 (39)5.3控制系统PID参数的整定 (41)5.3.1直立PD控制参数调试 (41)5.3.2速度PI控制参数调试 (41)5.4本章小结 (42)第六章 总结与展望 (43)6.1总结 (43)6.2展望 (43)参考文献 (44)作者简介及攻读硕士期间发表的论文 (46)致 谢 (47)第一章 绪论1.1研究背景及意义近年来,双轮自平衡车的发展势头迅猛主要有以下两个原因,其一是它的实用性很强,可以应用到绝大多数领域,其二是支撑搭建双轮自平衡车的理论体系逐渐完善,技术手段日益先进,如数据获取更简单有效,数据处理更科学精确。
两轮自平衡小车毕业设计
两轮自平衡小车毕业设计04161120(总24页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除两轮自平衡小车的设计摘要最近这几年来,自平衡电动车的研发与商用获得了快速发展。
自平衡车具有体积小,运动十分灵活,便利,节能等特点。
本文提出了一种双轮自平衡小车的设计方案,机械结构采用了双轮双马达驱动;控制主要采用的是反馈调节,为了使车体更好的平衡,使用了PID调节方式;硬件上采用陀螺仪GY521 MPU-6050来采集车体的旋转角度以及旋转角加速度,同时采用了加速度传感器来间接测量车体旋转角度。
采用意法半导体ST 公司的低功耗控制器芯片stm32作为主控,采集上述传感器信息进行滤波,分析等操作后进而控制马达的驱动,从而达到反馈调节的闭环,实现小车的自动平衡。
系统设计,调试完成后,能够实现各个功能部件之间协调工作,在适度的干扰情形下仍然能够保持平衡。
同时,也可以使用手机上的APP通过蓝牙与小车通信控制小车的前进和后退以及转弯。
关键词:自平衡小车陀螺仪传感器滤波 APPDesign of Two-Wheel Self-Balance VehicleAbstractIn the last few years, with the development of commercial self balancing electric vehicle was developed rapidly. Self balancing vehicle has the advantages of small volume, the movement is very flexible, convenient, energy saving etc.. This paper presents a two wheeled self balancing robot design, mechanical structure adopts double motor drive; controlled mainly by the feedback regulation, in order to make the balance of the body better, with the PID regulation; hardware using gyroscope GY521 mpu-6050 to collect the rotation angle of the car body and the rotation angle acceleration. At the same time, acceleration sensor to measure indirectly body rotation angle. St, the low power consumption controller STM32 chip used as the main control, collecting the sensor information filtering, analysis backward and control motor drive, so as to achieve close loop feedback regulation, the realization of the car automatic balance. System design, debugging is completed, the coordination between the various functional components can be achieved, in the case of moderate interference can still maintain a balance. At the same time, you can also use the APP on the mobile phone with the car to control the car's forward and backward and turning.Key Words: Self balancing car gyroscope sensor filter APP目录1.绪论 0研究背景与意义 0自平衡小车的设计要点 0整体构思 0姿态检测系统 0控制算法 (1)本文主要研究目标与内容 (1)论文章节安排............................................... 错误!未定义书签。
基于PID控制的两轮平衡小车(附原理图和程序讲解)
课程设计题目基于PID控制的两轮平衡小车学院XXXXX 专业班级XXXXXX小组成员XXXX 指导教师XXXXX X年 XX 月 XXX小组成员介绍及分工小组成员信息小组成员分工目录机电系统实践与实验设计 (1)一、研究背景与意义 (2)二、平衡原理 (2)2.1 平衡车的机械结构 (2)2.2 自平衡车倾倒原因的受力分析 (3)2.3 平衡的方法 (3)三、两轮平衡小车总体设计 (4)3.1 整体构思 (4)3.2 姿态检测系统 (4)3.3 控制算法 (5)四、matlab建模及仿真 (6)4.1 机械模型建模及仿真(Matlab_simulink) (6)4.2 联合控制器仿真(理想状态PID) (8)五、硬件电路设计 (9)5.1、硬件电路整体框架 (9)5.2、系统运作流程介绍 (10)5.3、硬件电路模块 (10)5.31 电源供电部分 (10)5.32 主控制器部分: (10)5.33 传感器部分; (11)5.34 驱动电路部分 (11)5.35 蓝牙控制模块 (12)5.36 超声波检测模块 (13)5.37 寻迹模块 (13)六、软件控制模块 (14)6.1 系统软件设计结构 (14)6.2 整体初始化过程 (14)6.3 程序设计 (15)6.31 PID-三个参数的调整 (15)6.32 OLED显示信息 (16)6.33 PID-采集信息 (16)6.34 PID-数据计算 (17)6.35 PID-结果输出 (18)6.36 超声波避障 (18)6.37 蓝牙控制 (18)6.38 寻迹实现 (19)七、总结 (19)附录 (21)摘要:两轮自平衡车结合了两轮同轴、独立驱动、悬架结构的自平衡原理,是一种在微处理器控制下始终保持平衡的集智能化与娱乐性于一体的新型代步工具。
整车由底盘、动力装置、控制装置和转向装置组成。
机械结构采用了双轮双马达驱动;控制主要采用的是反馈调节,为了使车体更好的平衡,使用了PID调节方式;硬件上采用陀螺仪GY521 MPU-6050来采集车体的旋转角度以及旋转角加速度,采用加速度传感器来间接测量车体旋转角度,同时,加入超声波检测模块,使小车能够自动完成避障功能;通过在两轮平衡车上加入两个寻迹模块(光电传感器)来识别场地上的黑白线,使得两轮自平衡车能够沿着黑线进行寻迹完成循迹功能。
两轮小车,陀螺仪,PID
学号:***********毕业设计说明书两轮自平衡小车的设计Design of self balancing two wheeled vehicle学院计算机与电子信息学院专业电子信息科学与技术摘要摘要近年来,两轮自平衡车研究和应用获得了快速的发展,但是存在陀螺仪漂移及加速度计的动态响应慢的问题。
针对这个问题,本文提出了一种改进的两轮平衡车设计方案,采用陀螺仪以及MEMS加速度传感器构成小车姿态检测模块,使用卡尔曼滤波算法完成陀螺仪与加速度计的数据融合。
系统选用飞思卡尔32位单片机Kinetis K10为控制核心,完成各种传感器的信号放大处理,滤波算法的研究实现以及车身的状态控制等。
整个系统完成后,各个模块能够正常协调工作,小车可以在无人干预的情况下实现直立平衡的功能。
同时两轮平衡小车能够在引入适量干扰的情况下,自动地调整小车的姿态并恢复稳定的状态,基本实现本文设计的要求。
关键词:两轮自平衡飞思卡尔姿态检测陀螺仪卡尔曼滤波广东石油化工学院本科毕业设计:两轮自平衡小车的设计AbstractIn recent years, the research and application of two-wheels self-balanced vehicle have an obtained rapid development, but there is the problem of slow response of dynamic drift and acceleration gyrometer. To solve this problem, this paper presents a design schemes of two-wheels self-balanced vehicles. Gyroscopes and MEMS accelerometer constitute vehicle posture detection device. System adopts to Kalman filters to complete the gyroscope‘s data and accelerometer data fusion, and adopts freescale32-bit microcontroller-Kinetis K10 as core controller. The center controller realize the sensor signal processing and the sensor signal processing, filtering algorithm and body control and so on. Upon completion of the entire system, the each modules can normal and to coordinate work. The vehicles can keep balancing in unmanned condition. At the same time, the vehicle can be adjust independently and then quickly restores stabilitly when there is a moderates amount of interference, basic to meet the design requirements.Key Words: Two-Wheel Self-Balance; Freescale; Gesture detection; Gyroscope; Kalman filter目录目录摘要 (I)目录 ................................................................................................................................................. I II 第1章绪论. (1)1.1研究背景及意义 (1)1.2两轮自平衡小车的发展概况 (1)1.2.1国外的研究成果 (2)1.2.2国内的研究成果 (2)1.3研究目的与内容 (3)1.4本章小结 (3)第2章系统原理分析 (4)2.1平衡控制原理分析 (4)2.2 自平衡车数学模型 (5)2.2.1 两轮平衡车的受力分析 (5)2.2.2两轮自平衡小车运动微分的方程 (8)2.3 PID控制器 (9)2.3.1 PID控制器原理 (9)2.3.2 PID控制器设计 (10)2.4 倾角检测系统 (11)2.4.1 陀螺仪 (12)2.4.2 加速度计 (12)2.4.3 基于卡尔曼滤波的数据融合 (13)2.5 本章小结 (15)第3章系统硬件设计 (16)3.1飞思卡尔Kinetis K10单片机介绍 (16)3.2 单片机最小系统设计 (17)3.3 电源管理模块设计 (18)3.4 倾角传感器信号调制电路 (19)3.4.1 加速度计电路设计 (19)3.4.2 陀螺仪电路设计 (19)广东石油化工学院本科毕业设计:两轮自平衡小车的设计3.5 直流无刷电机 (21)3.5.1 直流无刷电机特性 (21)3.5.2 直流无刷电机工作原理 (21)3.5.3 直流无刷电机调速 (21)3.6 电机驱动电路设计 (22)3.6.1 驱动芯片介绍 (22)3.6.2 驱动电路设计 (23)3.7 速度检测模块设计 (24)3.7.1 编码器介绍 (25)3.7.2 编码器的电路设计 (26)3.8 硬件设计中的抗干扰措施 (26)3.9 本章小结 (27)第4章系统软件设计 (28)4.1 单片机初始化软件设计 (29)4.1.1 延时初始化 (29)4.1.2 通用输入输出口(GPIO)初始化 (29)4.1.3 模数转换模块(ADC)初始化 (29)4.1.4 脉冲宽度调制模块(PWM)初始化 (29)4.2 姿态检测软件设计 (30)4.2.1 陀螺仪与加速度计输出值处理 (30)4.2.2 卡尔曼滤波器的软件实现 (31)4.3 PID控制算法软件实现 (32)4.4 运动控制 (33)4.5 本章小结 (34)第5章系统调试 (35)5.1 硬件调试 (35)5.2 软件调试 (35)5.3 串口调试 (36)5.4 本章小结 (37)全文总结与展望 (38)致谢 ...................................................................................................................错误!未定义书签。
基于串级PID控制的两轮自平衡车控制系统设计
基于串级PID控制的两轮自平衡车控制系统设计作者:杨皓明赵唯来源:《电脑知识与技术》2019年第16期摘要:两轮平衡车的状态变量多、系统模型非线性、变量间强耦合、时变性等不稳定,需要高效的控制算法和控制周期。
本文采用串级PID控制系统配合互补滤波算法姿态解算,实时精确地控制无刷直流电机,以角速度环为最内环,角度环与速度环为外环实现了闭环控制。
系统结果表明,基于串级PID控制的控制系统能够有效控制两轮自平衡车的运行。
关键词:两轮自平衡车; 控制算法;控制周期中图分类号:TP311; ; ; 文献标识码:A文章编号:1009-3044(2019)16-0288-02开放科学(资源服务)标识码(OSID):两轮平衡车是通过电机对左右两轮进行力矩输出保持平衡的类倒立摆系统,具有结构小巧、控制高效和转弯灵活等特点已经成为移动机器人的研究热点。
对于自平衡车控制系统,已有不同的控制理论被提出,其中常用于实际应用的控制算法有常规PID控制、自适应控制、模糊控制等。
采用串级PID控制系统配合互补滤波算法姿态解算,通过实时精确地控制无刷直流电机,以角速度环为最内环,角度环与速度环为外环实现了闭环控制。
在实践赛道中表现出具有良好的动态特性,反应迅速。
1系统整体设计本文要求能识别赛道方向信息,自主控制姿态,通过两轮驱动以直立姿态行驶在铺有电磁线的赛道上,并且同时在微控制器上采集到的各个传感器信息无线传输到PC上位机。
系统设计整体架构如图1,微处理器选用飞思卡尔的MK6ODN512ZVLQ1O为控制中心,通过外接电磁传感器、MPU6050三轴姿态传感器、测速512线编码器来获取当前车体的方向、姿态、速度信息。
通过微处理器运算后输出PWM控制信号给驱动模块驱动电机运转,同时通过NRF24L01無线传输模块发送信息到上位机进行监视。
2 两轮自平衡车硬件系统设计自平衡车的硬件系统分为电源电路、运放模块、传感器电路模块、控制系统电路模块、滤波电路模块、电机驱动电路模块等。
双轮自平衡小车项目设计报告
双轮自平衡小车项目设计报告电子与信息工程学院项目设计报告项目名称双轮自平衡小车设计学生姓名戴磊103621015廖崎107221046李旭103621045王思然103522024专业电子信息科学与技术班级103622指导教师李东京万青赵东目录一自平衡小车的总体方案设计 (3)1、自平衡小车的设计方案 (3)2、自平衡小车的总体框图 (3)二系统的具体设计与实现 (4)1、单片机控制模块 (4)2、陀螺仪加速度计模块 (4)3、光码盘测速模块 (6)4、稳压模块 (7)5、电机驱动模块 (8)6、LCD1602显示模块 (11)三软件系统设计 (16)1、设计思想 (16)(1)PID技术 (16)(2)应用现状 (16)(3)PID调节规律 (17)(4)极点配置 (18)(5)极点配置条件 (18)(6)极点配置控制器 (21)2、程序流程图 (22)3、程序代码 (23)摘要随着科技进步,生活水平的提高,人们追求智能与舒适的愿望也日益强烈。
从而催生了许多智能化的产品。
如智能电视、智能小车等。
如何实现小车的小车的自动快捷驾驶,也成为人们心中的向往与疑问,基于这种趋势与需求,着眼于实际情况。
本文介绍了基于STC90C51单片机的自平衡小车系统的设计。
系统基于陀螺仪等传感器,利用PID平衡算法,对小车的速度倾斜角度平衡状态来进行检测,并通过单片机来控制电机来实现双轮小车自如平衡地运动。
从而实现小车智能自主控制的目的。
关键词:STC90C51 自平衡PID算法一自平衡小车的总体方案设计1、自平衡小车的设计方案该自平衡小车,采用STC90C51单片机和各种传感器的组合,构成了自平衡小车系统。
其系统主要由以下几个部分组成:单片机控制系统、陀螺仪加速度检测模块、光码盘测速模块、稳压模块、电机驱动模块、LCD1602显示模块组成。
本设计的自平衡小车工作原理:给小车通电,平衡放在地上,当小车开始倾斜时,陀螺仪及时地采集的小车倾斜角度数据传给单片机,而加速度计将车子倾斜的瞬时加速度采集后也传给单片机,同时,光码测速仪也将车子的实时速度采集后传给单片机。
两轮自平衡小车论文
2013年全国大学生电子设计竞赛两轮自平衡小车设计作者:杨魏,黄敏杰,夏俊逸2015.7.17摘要本文采用自制的两轮简易小车作为试验平台,以MEMS传感MPU6050为传感器的姿态感知系统,通过离散卡尔曼滤波器对两种传感器的数据进行滤波融合,选用32位单片机STM32F103RB为控制核心处理器,完成对数据的采集处理和车身控制,采用PID控制算法实现小车两轮自平衡。
用蓝牙控制前后运动。
实验结果验证了该系统的性能满足设计要求。
关键词:两轮自平衡;姿态感知;STM32F103RB;卡尔曼滤波;PID控制。
目录1系统方案 (1)1.1 姿态检测模块的论证与选择 (1)1.2 电机驱动模块的论证与选择 (1)2 系统硬件设计 (1)2.1 STM32F103RB 单片机系统 (2)2.1.1 STM32F103RB 单片机介绍 (2)2.1.2单片机最小系统设计 (3)2.1.3 电源管理模块设计 (4)2.2 姿态检测模块MPU-6050 (5)2.2.1 MPU-6050简介 (5)2.2.3数字运动处理器(DMP) (6)2.3速度检测模块设计 (7)2.3.1编码器介绍 (7)2.3.2 编码器电路设计 (8)2.4 电机驱动模块 (8)2.4.1 L298N简介 (8)2.4.2 L298N特点 (9)3理论分析与计算 (9)3.1 两轮平衡小车数学模型 (9)3.2 PID控制器设计 (10)3.2.1 PID控制器原理 (10)3.2.2 PID控制器设计 (11)3.2.3 PID程序 (12)3.3 基于卡尔曼滤波的数据融合 (13)4 系统软件设计 (15)4.1 系统软件设计框架 (15)4.2 资源模块初始化 (15)4.3 两轮小车姿态信息检测 (16)5测试方案与测试结果 (16)5.1测试方案 (16)5.1.1硬件连接检测 (16)5.1.2小车功能检测 (16)5.2 测试分析与结论 (16)1系统方案本系统主要由姿态检测模块、电机驱动模块、蓝牙模块、红外对管模块、电源模块组成,下面分别论证这几个模块的选择。
《基于双轮自平衡小车的PID参数验证平台的设计》范文
《基于双轮自平衡小车的PID参数验证平台的设计》篇一一、引言随着智能控制技术的快速发展,双轮自平衡小车作为一种典型的动态系统,被广泛应用于智能交通、服务机器人和智能家居等领域。
PID(比例-积分-微分)控制算法作为最常用的控制策略之一,在双轮自平衡小车的控制中起着至关重要的作用。
本文旨在设计一个基于双轮自平衡小车的PID参数验证平台,为优化PID参数提供有效的工具和手段。
二、设计目标本设计的核心目标是构建一个功能完善、操作简便的PID参数验证平台,以实现对双轮自平衡小车PID控制参数的精确验证和优化。
该平台应具备以下特点:1. 高度集成化:整合硬件设备和软件算法,实现一体化设计。
2. 实时性:能够实时监测和调整小车的运行状态,为PID参数的调整提供实时反馈。
3. 便捷性:操作界面友好,便于用户进行参数设置和调整。
4. 通用性:适用于不同型号和规格的双轮自平衡小车。
三、平台架构设计本平台主要由硬件设备和软件算法两部分组成。
(一)硬件设备硬件设备包括双轮自平衡小车、传感器、控制器、电源等。
其中,双轮自平衡小车采用典型的两轮驱动结构,通过电机驱动实现平衡和移动;传感器用于实时监测小车的状态信息,如角度、速度等;控制器负责接收传感器数据,根据PID算法计算出控制指令,驱动电机实现小车的平衡和移动;电源为整个系统提供稳定的电力供应。
(二)软件算法软件算法主要包括PID控制算法、数据采集与处理、用户界面等部分。
PID控制算法是本平台的核心,负责根据小车的状态信息计算出控制指令;数据采集与处理负责实时采集传感器数据,并进行预处理和存储;用户界面提供友好的操作界面,便于用户进行参数设置和调整。
四、PID参数验证流程设计本平台通过以下步骤进行PID参数的验证和优化:1. 初始化:设置初始的PID参数,启动小车和平台。
2. 数据采集:通过传感器实时采集小车的状态信息,如角度、速度等。
3. PID计算:根据采集的数据和设定的PID参数,计算出控制指令。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于PID控制两轮自平衡小车设计目录1.方案设计论证 (3)1.1单片机的选择与论证 (3)1.2显示模块的选择与论证 (3)1.3按键模块的选择与论证 (4)1.5电机模块的选择与论证 (5)2.硬件设计 (5)2.1微控制模块设计与分析.................................................................. 错误!未定义书签。
2.2传感器模块设计与分析.................................................................. 错误!未定义书签。
2.3显示器模块设计与分析.................................................................. 错误!未定义书签。
2.4按键模块设计与分析...................................................................... 错误!未定义书签。
2.5电源模块设计与分析...................................................................... 错误!未定义书签。
3.特色创新 (5)4.总结 (7)参考文献 (8)两轮自平衡小车设计摘要:以Kinetis_K60微处理器单片机作为控制核心,通过PID算法,利用陀螺仪,摄像头、加速度计、编码器和液晶显示器等元件,设计了此两轮自平衡控制小车,实现了小车的自动平衡。
该系统的创新主要体现在可以自动循迹,实时的显示周围环境的温度及小车行驶速度,以便用户可以了解当时的温度和小车的速度。
该系统的主要特点是方便,快捷,环保。
关键词:Kinetis_K60微处理器,PID,陀螺仪,加速度计,液晶显示器Abstract:We use Kinetis_K60 micro processor control with micro controller as thecore,through the PID algorithm, using gyroscopes, cameras, accelerometers, encoders and LCD monitors and other components,designed the two-wheeled self-balancing control car to achieve as elf-balancing car.Innovation is mainly reflected in the system can automatically tracking, real-time display of temperature and speed of the car with the surrounding environment,so that users can under stand the prevailing temperature and the speed of the car.The main features of the system is easy, fast and environmentally friendly.Keyword:Kinetis_K60 micro processor PID algorithm accelerometers就目前市场上的小车来说,结构过于普通,而且大部分是通过四轮同时着地行走的,同时不够智能和人性化,所以我们设计了两轮自平衡控制小车。
1.方案设计论证1.1单片机的选择与论证方案一:凌阳公司的16位单片机。
该单片机是16位控制器,具有体积小、驱动能力强、可靠性高、功耗低、结构简单、具有语音处理、运算速度快等优点,但凌阳公司的单片机编程规则与传统的单片机大不相同,并且IO口数量相对于其他单片机来说较少。
方案二:ATMEL公司的AT89s52作为系统的控制器。
AT89s52单片机软件编程灵活,自由度大,可用软件编程实现各种算法和逻辑控制,成本低,被各个领域广泛应用。
但是51系列单片机RAM、ROM等资源少,外围模块少,指令周期长。
方案三:Kinetis_K60微处理器。
Kinetis_K60微处理器,它具有144个I/O管脚,此处理器具有高速的处理速度和丰富的I/O管脚,可以作为整个小车的控制核心。
经过综合考虑,我们选择方案三。
1.2显示模块的选择与论证方案一:采用LED数码管显示。
LED数码管显示虽然具有亮度高,醒目,价格便宜,寿命长;但是只能显示0~9的数字和一些简单的字符,电路复杂,占用资源较多且信息量小。
方案二:用12864液晶显示。
其优点是能显示更多的字符,功耗低,体积小,且有着良好的人机界面,能够实时的反映出系统当前的状态。
方案三:采用Nokia5110液晶显示。
此液晶具备成本低的特点,但是由于屏幕本身大小的限制,显示的内容相对较少。
比较以上三种方案,选择方案二,使用12864液晶作为显示界面。
1.3按键模块的选择与论证方案一:采用普通的电路开关设计电路。
使用普通的电路开关来作为系统工作模式的选择键可以提高系统的硬件稳定性,而且对于开关位置的放置也没有要求,但是对于一个系统来说,如每一个步骤的进行都需要一个开关的话,就会提高控制部分设计的复杂性,同时占用单片机的多个IO口,造成资源的浪费。
方案二:采用带有提示功能的3*4贴片式键盘设计电路。
矩阵键盘的设计原理是为了减少I/O口的占用,通常将按键排列成矩阵形式,在矩阵键盘中每条水平线和垂直线在交叉处不直接相连,而是通过一个按键相连接,这样在由N条水平线和M条垂直线最多可以有N *M 个按键,大大的减少了对于芯片I/O的占用。
通过对矩阵键盘的稳定性测试,发现具有很好的稳定性。
经过比较,我们采用方案二不但设计简单,运行稳定,精度高,而且能够提示使用者进行相应地操作。
1.4传感器模块的选择与论证考虑如何使系统精确运行。
这里我们要电机的停转精度等问题,为此我们考虑了以下几种传感器:方案一:采用光电开关。
它是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。
光电开关将输入电流在发射器上转换为光信号射出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。
但是光电开光受光线的影响很大,在一个相对密封的系统中,光电开关不容易进行检测。
方案二:采用行程开关。
行程开关是一种根据运动部件的行程位置而切换电路的电器,它的作用原理与按钮类似。
当动物接近静物时,开关的连杆驱动开关的接点引起闭合的接点分断或者断开的接点闭合。
由开关接点开、合状态的改变去控制电路和机构的动作。
行程开关的作用范围很广,不受限制,而且固定简单,原理简单。
方案三:采用超声波传感器。
超声波是利用像物体发送超声波,采集返回的信号,进而根据发送信号和接收信号的时间差来计算与对面物体的距离。
但是通过资料了解到,超声波的工作状态很严格,对温度的要求很高,而且采集信号容易受到光线的影响。
方案四:采用摄像头ov7620。
而道路的获取则是采用OV7620摄像头来采集,处理器把摄像头采集到的信息转换成二进制的数字信息,通过对颜色深浅的判断,转换成不同的二进制信息,再送给处理器处理。
通过比较方案,我们选择了摄像头作为主要传感器。
1.5电机模块的选择与论证方案一:采用三相异步交流电动机。
三相异步交流发电机的工作原理是直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。
三相异步交流发电机的控制精确度很高,但是由于电机只能使用交流电,而且价格昂贵,我们决定使用直流电机。
方案二:采用GW31ZY-24直流减速电机。
直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。
24系列的电机,电机长,力矩大,齿轮减速箱长,转速慢,稳定性高。
并且工作电压范围大,工作时电压稳定。
很适合做办公桌的动力系统。
方案三:采用freescale官方提供的直流电机。
DC7.2 RS-540马达,转速20000r/min,内装散热风扇,最大功率118W,是车模完成竞赛任务的有力保障。
通过比较方案,我们选择了RS-540电机作为主要的的受控部件2.硬件设计1.控制模块本两轮平衡代步车采用的Kinetis_K60微处理器,它具有144个I/O管脚,此处理器具有高速的处理速度和丰富的I/O管脚,可以作为整个小车的控制核心。
2.角度测量模块而小车的平衡则是利用陀螺仪与加速度传感器的融合来获得小车的与竖直方向的倾角,融合的的过程中是采用了卡尔曼滤波和中值滤波法来对AD采集到的数据进行滤波,使得数据形成的波形更加的平滑,使获得的信息更加的准确。
3.信息采集模块而道路的获取则是采用OV7620摄像头来采集,处理器把摄像头采集到的信息转换成二进制的数字信息,通过对颜色深浅的判断,转换成不同的二进制信息,再送给处理器处理。
4.电机与速度测量模块速度的测量主要是用到光码盘进行测速,把测到的速度信息与原设定的速度进行比较,由处理器进行算法处理,利用经典的PID算法和对电机的闭环控制,使得电机有更快的响应速度和实时的反馈,把处理后的信息送给电机,小车的控制原理图如下所示:5.电机驱动模块而电机驱动采用四片BTS7971芯片搭建而成的两个全桥电机驱动,它可以驱动两个电机的前进后退和转弯,使小车反应更加的灵敏,使小车适应一些复杂的地形,为人们提供了极大的方便,电流的最大可以达到43A,为小车提供充足的动力。
6.显示模块小车上装有温度传感器,可以测量当前环境下的温度,光码盘可以测量当前小车的速度,然后显示到12864的液晶屏幕上,反应给用户。
3.总结经过两个多月的努力学习,“两轮子平衡小车”终于得以按时顺利的完成了。
这次设计涉及的内容广,知识面大,做完之后自己在很多方面都有了进一步的了解与掌握,受益匪浅,当然在制作的过程中也遇到了很多困难,不过我们都一一克服了。
在这个过程中我们深刻的体会到了共同协作和团队精神的重要性,提高了自己解决问题的能力。
通过本次设计,使我初步掌握了工程设计的程序和方法,既丰富了自己的专业知识,又取得了一定的工作经验,为以后的走向工作岗位打下坚实的基础。
参考文献[1]黄智伟等.《全国大学生电子设计竞赛训练教程》.北京:电子工业出版社,2010[2]魏永广.《现代传感技术》.哈尔滨:东北大学出版社,2001[3]电子测量电路,吴丽华,童子权,张剑主编,哈尔滨工业大学出版社[4]张迎新,等.单片机微型计算机原理,应用及接口技术,[M].修订版.北京:国防工业出版社,2004.[5] 王毅平,张振容,晋明武.2000年.单片机原理及实用技术[M].北人民邮电出版社.32-65。