橡胶硫化剂的研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
橡胶硫化剂的研究进展。
普通硫磺硫化的橡胶在停放时,易出现喷霜,且有焦烧倾向,极大影响最终产品的性能。为弥补硫磺的不足,人们开始了硫磺的改性研究,成功的例子是聚合态硫磺或不溶硫(Insoluble Sulfur),简称IS,该硫磺为不溶於二硫化碳的线性高分子聚合硫,是硫的μ型体。这种聚合态的硫磺平均分子量很大,经过不断验证,人们普遍认为其分子量为30000~40000。
不溶性硫磺在使用时通常分为充油型和未充油型两大类,而工业中使用的绝大多数(*99%)是充油型。与普通硫磺相比,不溶性硫磺具有以下优点﹕
(1)胶料在存放期内不会出现喷霜;
(2)在胶料中无迁移现象(特别是在顺丁橡胶和丁基橡胶胶料中);
(3)可减少混炼和存放过程中的焦烧现象;
(4)有利於橡胶与其它材料的粘合;
(5)可缩短硫化时间、减少硫磺用量。
不溶性硫磺可以通过硫磺的高温气相法或低温的熔融法制备,也可以通过硫化氢的氧化法制备。低温熔融法是指普通硫磺在温度高於临界聚合温度(159℃)下按照反应机理(图2)开环聚合而成,反应结束後形成两端为自由基的链状分子,如果自由基不能被俘获,该活性中间体存在解聚的可能,这一过程为可逆聚合反应。
图2硫磺低温熔融聚合反应历程图
与液相熔融不同,高温气相法是将硫磺加热至444.6℃以上,液硫沸腾气化,按自由能最小原理,气相硫的分子结构较小,主要是S8,S6,和S2。温度越高,分子中的硫原子越少,当温度高於1000℃,硫主要以S2的方式存在。低分子的硫反应活性很高,在快速降温的过程中很快聚合成份子量很大的聚合硫,其反应过程如下:
通过上述方法制备的不溶性硫磺均属於亚稳态,稳定性较差,特别在较高硫化温度下很容易返还成普通硫磺,这将极大影响硫化胶的性能,也限制了它的应用。因此提高不溶硫的稳定性是目前研究的重点。国外做得最早也是最为成熟的是富莱克斯公司生产的Crystex样品,其高品位不溶硫的质量分数在90%以上,而且在高温条件下不溶硫的保持率也较高。
图3硫磺高温气相聚合反应历程图
由於不溶性硫磺稳定性较差的原因可能是自由基的存在,所以人们设想用一种化学稳定剂耦合聚合硫双端自由基,减缓其返原作用。目前可采用的化学稳定剂有卤素或卤化物及不饱和
有机化合物。王亚池等人在他们的专利中提到,由聚异戊二烯、二异丙烯基黄原酸二酯和芳烃油(质量比为10:45:45)组成的复合稳定剂可使生产的不溶性硫磺的质量分数达到96%~98%,其热稳定性经过高温(105℃,15min)仍较高,达到国际先进水平。中科院大连化学物理研究所王复东等人采用由稳定剂A及稳定剂B组成的复合稳定剂(质量比为1:(20~180)),在50~80℃下对不溶性硫磺产品加热0.5~3h的稳定化处理,可得到不溶性硫磺质量分数为97%~98%;在110℃、15min条件下,不溶性硫磺的质量分数仍高达85%~89%。
硫磺给予体
为了提高硫磺在硫化过程中的有效利用率,改善硫磺与其它助剂的配合,人们开始对硫磺有机化处理的研究,并合成出更加高效的含硫化合物,即硫磺给予体。硫磺给予体又称硫载体,在硫化过程中可析出活性硫,使橡胶发生交联。
硫磺给予体的主要品种是秋兰姆、含硫吗啡衍生物、多硫聚合物、烷基苯酚硫化物及其它类型硫化物等,橡胶工业最常用的是秋兰姆和吗啡衍生物。随着硫化工艺的发展,特别是半有效硫化体系SemiEV和有效硫化体系EV的出现,硫磺给予体作为硫磺类硫化剂的生力军,不断有新的产品出现,以满足实际生产的需要。
1、工业化的秋兰姆和吗啡衍生物
常用的秋兰姆类硫化剂,由於它们的化学结构和所含的硫磺量不同,所以硫化胶的综合性能也不相同。以TMTD(二硫化四甲基秋兰姆)为例,由於具有焦烧倾向小、硫化平坦性好等特点,所以应用越来越广。但无硫配合时,硫化速度慢,硫化胶的综合性能较差,因此,可采取低硫配合或并用少量促进剂M、DM等来增加硫化体系的活性,改善硫化胶性能。与秋兰姆相比,吗啡的TDM和MDB防焦烧性较好,且具有良好的操作安全性,但单独使用硫化速度较慢,因此一般是DTDM/TMTD并用,或用次磺酰胺或噻唑促进剂来调整焦烧期和
硫化速度。
随着人们环保观念的增强及对健康的关注,人们发现硫化剂DTDM和秋兰姆产品在硫化温度下会裂解释放出仲胺基分子残片,而这些残片可与亚硝基供给体结合产生致癌性亚硝胺物质,因此硫化剂DTDM和秋兰姆产品的生产和应用受到欧美国家及环境法规的限定与警告。目前新型硫化剂DTDC(N,N-二(ε-己内酰胺)二硫化物)因在硫化过程中不产生亚硝胺而备受国际关注,被认为是硫化剂DTDM和二硫化或六硫化秋兰姆的最佳替代品,用其等量替代硫化剂DTDM,无需改变胶料的配方和工艺。
2、含硫聚合物
这里的含硫聚合物也就是一般意义的多硫化合物(polysulfide),其分子量往往较小,但富含的硫原子在半导体、涂料及橡胶硫化等领域有着广泛的应用前景。
含硫聚合物种类较多,合成方法也不尽相同,主要有缩聚、加聚及催化加成等。Ganesh K.等人通过1,2-二溴乙苯与Na2S2/Na2S4水溶液缩合聚合已成功合成聚苯乙烯四硫化物(PST)和聚苯乙烯二硫化物(PSD),用红外、核磁、紫外及质谱等进行了详细的表徵,
并将其作为链转移剂,实现乙烯基聚合或作为新合成单体完成与其它单体的共聚,图4即为
缩聚反应历程图。
图4PST/PSD合成反应历程图
加成聚合,即利用传统的自由基聚合方式实现单体与硫磺的共聚,实验操作更为简便。早在上世纪80年代就有苯乙烯与硫磺共聚的报道,并从动力学角度分析得出单体共聚倾向性要
优於自聚。
加成-聚合硫PAS-80
催化加成,可通过选择不同的催化剂来实现结构可控。据Mieko A报道,钌金属化合物能催化完成二硫化物的交换反应,并通过改变不同的金属和配体来控制硫原子在化合物的位置(含硫化合物和硫磺之间),如图5所示。除了线性多硫化合物,环状多硫化合物和其他类
型的多硫化合物也有许多相关报道。
图5钌催化硫原子间的交换反应
目前,国内也有许多关於含硫聚合物的报道,如上海京海化工有限公司开发了一种加成-聚
合硫PAS-80。
从结构特徵中可看出,硫化剂PAS-80可以看作是硫磺给予体和不溶性硫磺的结合。与不溶性硫磺相比,硫化剂PAS-80中含硫部分为短链结构,稳定性相对较好。其次,独特的烃类化学键合封端结构,又体现了硫磺给予体的特徵,因此在实际中PAS-80既结合不溶性硫磺不易喷霜、防焦烧的特性,又体现硫磺给予体耐热的动态性能,适用於许多橡胶制品的生产。值得一提的是,这种新型硫化剂的独特结构,还将赋予该类硫化剂更加独特的性能,硫链部分在有机基团的携带作用下能更好地分散在基体中,而含有的烃类部分可与橡胶基体产生相互作用,硫磺与有机链的连接使得硫磺不易迁出表面,减少喷霜;高温硫化後,烃类部分的端基对橡胶可产生进一步交联,从而更加有效地发挥硫化作用。这种双重硫化作用将对橡胶硫化後的性能产生巨大影响,因此该类硫化剂有望成为硫化剂未来研究的热点,成为下一代
高效、功能化硫化剂的典范。
3、其它类型的硫磺给予体