因子分析 ppt课件
合集下载
因子分析-PPT
小或增大。所以“方差极大” 旋转就是使载荷值按照列向0,1 两极分化,同时也包含着按行向 两极分化。
因子 得分
因子分析
什么 叫因 子分
析
定义解释
因子分析就是主成分分析得推广和发展, 她就是把具有复杂关系得多个变量(或样 品)综合为少数几个因子,并给出原始变量 与综合因子之间得相关关系得多元统计 分析方法
种类
R型因子分析(对变量进行因子分析) Q型因子分析(对样品进行因子分析)
应用意义
应用范围
表示得形式不同。
因子 分析 得统 计意
义
假定因子模型中,各个变量、 公共因子、特殊因子都已经进 行了标准化处理
因子载荷矩阵得统计意义
变量共同度得统计意义
公因子方差贡献得统计意义
因子 载荷 矩阵 得估 计方
法
方法一:流
应用类型
基本思想 数学模型
因子 分析 得模
型
主成 分分 析与 因子 分析 得区
别
主成分分析就是一种数学变换 (正交变换)不能称为一种数学 模型;而因子分析需要构造数 学模型。
主成分得个数与原始数据个数 相等,就是把原始变量变换成 为相互独立得新得变量;而因 子个数一般要求小于原始数据 个数,目得在于得到一个结构 简单得因子模型。
可以互相讨论下,但要小声点
因子 旋转
含义:
因子旋转就是根据因子载荷矩阵 得不唯一性,用一个正交矩阵右乘 因子载荷矩阵,实行旋转(由线性代 数,一次正交变换,对应坐标系得一 次旋转),使旋转后得因子载荷矩阵 结构简化,以便对公共因子进行合 理得解释。
所谓结构简化就就是使得每个变 量仅在一个公共因子上有较大得 载荷,而在其她得公共因子上得载 荷比较小。
常用得方法有:
因子 得分
因子分析
什么 叫因 子分
析
定义解释
因子分析就是主成分分析得推广和发展, 她就是把具有复杂关系得多个变量(或样 品)综合为少数几个因子,并给出原始变量 与综合因子之间得相关关系得多元统计 分析方法
种类
R型因子分析(对变量进行因子分析) Q型因子分析(对样品进行因子分析)
应用意义
应用范围
表示得形式不同。
因子 分析 得统 计意
义
假定因子模型中,各个变量、 公共因子、特殊因子都已经进 行了标准化处理
因子载荷矩阵得统计意义
变量共同度得统计意义
公因子方差贡献得统计意义
因子 载荷 矩阵 得估 计方
法
方法一:流
应用类型
基本思想 数学模型
因子 分析 得模
型
主成 分分 析与 因子 分析 得区
别
主成分分析就是一种数学变换 (正交变换)不能称为一种数学 模型;而因子分析需要构造数 学模型。
主成分得个数与原始数据个数 相等,就是把原始变量变换成 为相互独立得新得变量;而因 子个数一般要求小于原始数据 个数,目得在于得到一个结构 简单得因子模型。
可以互相讨论下,但要小声点
因子 旋转
含义:
因子旋转就是根据因子载荷矩阵 得不唯一性,用一个正交矩阵右乘 因子载荷矩阵,实行旋转(由线性代 数,一次正交变换,对应坐标系得一 次旋转),使旋转后得因子载荷矩阵 结构简化,以便对公共因子进行合 理得解释。
所谓结构简化就就是使得每个变 量仅在一个公共因子上有较大得 载荷,而在其她得公共因子上得载 荷比较小。
常用得方法有:
多元统计分析因子分析64页PPT
1 mai2j
2 i
j1
所有的公共因子和特殊因子对变量
X
m
的贡献为1。如果 a
i
j 1
2 ij
非常
靠近1,
2 非常小,则因子分析的效果好,从原变量空间到公共因
i
子空间的转化性质好。
17
3、公共因子 F j方差贡献的统计意义
14
三、 因子载荷矩阵中的几个统计特征
1、因子载荷 aij 的统计意义
因子载荷 a ij 是第i个变量与第j个公共因子的相关系数
模型为 X i a i 1 F 1 a iF m m i
m
m
co X i,v F j)( coa v ik F k (i,F j)cov aik F (k,F j)coi,v F j)(
16
2、变量共同度的统计意义
定义:变量 X i 的共同度是因子载荷矩阵的第i行的元 素的平方和。记为 hi2 jm1ai2j。
统计意义:
X i a i 1 F 1 a iF m m i 两边求方差
V ( X i ) a a i 2 ( F m ) a V ( i ) r ar
多元统计分析因子分析
•
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
第四章 因子分析
2
第一节 因子分析的基本思想
3
因子分析的基本思想
12
12
D()
2 2
p2
即互不相关,方差不一定相等, i~N (0,i2)。
因子分析ppt课件
(2)因子提取 研究如何在样本数据的基础上提取综合因子。
(3)因子旋转
通过正交旋转或斜交旋转使提取出的因子具有可解 释性。
(4)计算因子得分
通过各种方法求解各样本在各因子上的得分,为进 一步分析奠定基础。
❖ 2、因子分析前提条件——相关性分析:
分析方法主要有:
(1)计算相关系数矩阵(correlation coefficients matrix)
1 2 为p的特0 征根,
标准化特征向量,则
为u对1 , 应u2 的,, up
1
Σ = U
2
U AA + D
p
u1 u2
up
1
0
1u1u1 2u2u2
0
u1 u2
p
up
mumum m1um1um1
1u1
2u2
pu p
1u1
2
u2
p
因子分析的基本理论 ❖ 3、因子分析的目的:
因子分析的目的之一,简化变量维数。即要使因素结 构简单化,希望以最少的共同因素(公共因子),能 对总变异量作最大的解释,因而抽取得因子愈少愈好, 但抽取因子的累积解释的变异量愈大愈好。
在因子分析的公共因子抽取中,应最先抽取特征值最 大的公共因子,其次是次大者,最后抽取公共因子的 特征值最小,通常会接近0。
(3)因子分析中因子载荷的不唯一性有利于对公因子进行有效解释; 而主成分分析对提取的主成分的解释能力有限。
因子分析的基本理论
❖ 5、因子分析模型: 设 Xi (i 1,2,个,变p)量p,如果表示为
X i i ai1F1 aimFm i (m p)
X1 1 11 12
或
X
2
(3)因子旋转
通过正交旋转或斜交旋转使提取出的因子具有可解 释性。
(4)计算因子得分
通过各种方法求解各样本在各因子上的得分,为进 一步分析奠定基础。
❖ 2、因子分析前提条件——相关性分析:
分析方法主要有:
(1)计算相关系数矩阵(correlation coefficients matrix)
1 2 为p的特0 征根,
标准化特征向量,则
为u对1 , 应u2 的,, up
1
Σ = U
2
U AA + D
p
u1 u2
up
1
0
1u1u1 2u2u2
0
u1 u2
p
up
mumum m1um1um1
1u1
2u2
pu p
1u1
2
u2
p
因子分析的基本理论 ❖ 3、因子分析的目的:
因子分析的目的之一,简化变量维数。即要使因素结 构简单化,希望以最少的共同因素(公共因子),能 对总变异量作最大的解释,因而抽取得因子愈少愈好, 但抽取因子的累积解释的变异量愈大愈好。
在因子分析的公共因子抽取中,应最先抽取特征值最 大的公共因子,其次是次大者,最后抽取公共因子的 特征值最小,通常会接近0。
(3)因子分析中因子载荷的不唯一性有利于对公因子进行有效解释; 而主成分分析对提取的主成分的解释能力有限。
因子分析的基本理论
❖ 5、因子分析模型: 设 Xi (i 1,2,个,变p)量p,如果表示为
X i i ai1F1 aimFm i (m p)
X1 1 11 12
或
X
2
因子分析 ppt课件
PPT课件
14
(1)计算相关系数矩阵
计算原有变量的简单相关系数矩阵。观察相关系数矩阵,如果相关系数 矩阵中的大部分相关系数值小于 0.3,则各个变量之间大多为弱相关,这就 不适合做因子分析。如果一个变量与其他变量间相关度很低,则在下一分析 步骤中可考虑剔除此变量。
PPT课件
15
(2)进行统计检验
因子分析
—SPSS操作及其原理
PPT课件
陶鑫 2008-4-23
1
在科学研究中,往往希望尽可能多地收集反映研究对象的 多个变量,以期能对问题有比较全面、完整的把握与认识。多 变量的大样本虽然能为科学研究提供大量的信息,但是在一定 程度上增加了数据采集的工作量,更重要的是在大多数情况下, 许多变量之间可能存在相关性,这意味着表面上看来彼此不同 的变量并不能从各个侧面反映事物的不同属性,而恰恰是事物 同一种属性的不同表现。
PPT课件
11
Байду номын сангаас
主成分分析的数学模型
PPT课件
12
主成分分析与因子分析的公式上的区别
因子分析(m<p)
y1 a11x1 a12 x2 a1p xp y2 a21x1 a22 x2 a2 p xp
主成分分析 因子得分
y p ap1x1 ap2 x2
app xp
PPT课件
27
5.计算因子得分
计算因子得分是因子分析的最后一步。因子变量确定后,便可计 算各因子在每个样本上的具体数值,这些数值就是因子的得分,形成 的新变量称为因子变量,它和原变量的得分相对应。有了因子得分, 在以后的分析中就可以因子变量代替原有变量进行数据建模,或利用 因子变量对样本进行分类或评价等研究,进而实现降维和简化的目标。
因子分析方法ppt课件
2、变量共同度(共同性)
总之,变量的共同度刻画了因子全体对变量信息解释的 程度,是评价变量信息丢失程度的重要指标。
如果大多数原有变量的变量共同度均较高(如高于0.8), 则说明提取的因子能够反映原有变量的大部分信息(80 %以上)信息,仅有较少的信息丢失,因子分析的效果 较好。因子,变量共同度是衡量因子分析效果的重要依 据。
Page 10
10
因子分析数学模型中几个相关概念
举例说明:
Page 11
11
Page 12
12
因子分析的五大基本步骤
第一步:因子分析的前提条件
由于因子分析的主要任务之一是对原有变量进行浓缩,即将
原有变量中的信息重叠部分提取和综合成因子,进而最终实
现减少变量个数的目的。因此它要求原有变量之间应存在较
Page 4
4
用矩阵的形式表示为Z=AF+U
F称为因子,由于它们出现在每个原始变量的线性表达式 (原始变量可以用Xj表示,这里模型中实际上是以F线性表 示各个原始变量的标准化分数Zj),因此又称为公共因子.
A称为因子载荷矩阵, aji称为因子载荷,是第j个原始变 量在第i个因子上的负荷。
U称为特殊因子,表示了原有变量不能被因子解释的部分, 其均值为0,相当于多元线性回归模型中的残差。
当要判断一个因子的意义时,需要查看哪些变量的负荷达
到了0.3或0.3以上
Page 7
7
因子分析数学模型中几个相关概念
2、变量共同度(共同性) 一个因子解释的是相关矩阵的方差,变量的方差由共同因 子和唯一因子组成,可以表示成h+u2=1(h表示共同度,u2 表示特殊因子的平方)。 变量共同度就是指每个原始变量在每个共同因子的负荷量 的平方和,是全部因子对变量方差解释说明的比例。变量共 同度h越接近1,说明因子全体解释说明了变量Zj的较大部分 方差,如果用因子全体刻画变量,则变量的信息丢失较少; 共同性的意义在于说明如果用共同因子替代原始变量后,原 始变量的信息被保留的程度。 特殊因子U的平方,反应了变Pag量e 8方差中不能由因8 子全体解
《因子分析数学模型》课件
总结与展望
因子分析数学模型是一种强大的数据分析工具,可以揭示变量间的潜在结构和关系,帮助决策者做出准确和可靠的 决策。 未来,随着数据科学和人工智能的发展,因子分析将在更多领域得到应用,成为决策支持和问题解决的重要手段。
参考文献
• 附录1:相关数学知识 • 附录2:实例数据和代码 • 附录3:常见因子分析软件介绍
3
最似然法(MLE)
MLE基于概率统计理论,通过最大化观测数 据与模型之间的似然函数来估计因子载荷。
主因子法(PAF)
PAF基于向量之间的相关系数,寻找具有最 大因子载荷的主要因子,从中提取对观测变 量具有最大解释力的因子。
因子分析的实例分析
数据准备及预 处理
根据特定问题的需求, 选择合适的数据集,并 对数据进行清理、转换 和标准化,以满足因子 分析的假设。
因子数的确定 和选择
根据特征值、解释度方 差贡献率、Scree图等 指标,确定最合适的因 子数,以提取最重要的 信息。
因子旋转和解 释度分析
使用旋转方法(如 Varimax、Promax等), 优化因子结构,同时通 过解释度判断模型的质 量和合理性。
结果分析和解读
对提取的因子模式进行 解释,结合领域知识和 实际情境,解读因子的 含义和影响,提出相关 建议和决策。
特征值和特征向量
特征值用于衡量因子的重要性, 而特征向量表示因子的方向和 权重。
旋转和解释度
旋转可以优化因子的解释度, 使其更易理解和解释,用以提 高模型的可解释性和可靠度。
因子分析的模型方法
1
主成分分析法(PCA)ቤተ መጻሕፍቲ ባይዱ
2
PCA通过线性变换将观测变量转化为无关变
量的线性组合,从中提取主要特征,以解释
《因子分析法预测》课件
因子提取
因子提取是因子分析的关键步骤,通过数学方法将多个变量提取成少数几个因子,这些因子能够反映 原始变量的主要信息。
常用的因子提取方法有主成分分析、最大似然法等。
因子解释
因子解释是对提取出的因子进行解释 ,通过旋转矩阵等方法将因子与原始 变量建立联系,明确因子的含义。
解释时需要结合专业知识,对因子的 含义进行合理的解释和命名。
感谢您的观看
THANKS
信息浓缩
通过提取公因子,可以浓缩信息,反映原始 变量之间的相关关系。
稳健性高
在处理异常值或缺失值时,因子分析法的稳 健性较高。
缺点
依赖原始变量
因子分析法的结果很大程度上依赖于原始变 量的选择和数量。
因子解释的主观性
对因子的解释可能存在主观性,不同的人可 能对同一组数据得出不同的解释。
无法处理高度相关变量
因子得分计算
因子得分计算是根据因子的权重和原始变量的值计算出每个样本的因子得分,为后续的分析和预测提供依据。
可以通过回归分析、加权平均等方法计算因子得分。
04 因子分析法的优缺点
优点
降维性
因子分析法可以将多个变量通过少数几个因 子表示,简化数据结构。
解释性强
因子分析法能够提供清晰的因子结构,有助 于理解数据背后的驱动因素。
高消费者的满意度和忠诚度。
案例四:产品组合优化
总结词
因子分析法可以帮助企业优化产品组合,提 高产品线的协同效应和市场竞争力。
详细描述
产品组合优化是企业提高市场竞争力的重要 手段。通过因子分析法,企业可以对现有产 品线进行全面分析,了解各产品之间的关联 度和差异性。在此基础上,企业可以优化产 品组合,提高产品线的协同效应和市场竞争 力。同时,企业还可以发现新的产品机会,
因子分析因子分析PPT课件
1/ 5 2 / 5
1/ 5 2 / 5
1
21
第21页/共96页
特征根为: 1 1.55 2 0.85 3 0.6
0.475 0.883 0
U
0.629
0.331 0.707
0.629 0.331 0.707
0.475 1.55 0.883 0.85
A 0.629 1.55 0.331 0.85
因子分析:潜在的假想变量和随机影响变量 的线性组合表示原始变量。
因子分析(探索)与结构方程模型(验证)
3
第3页/共96页
第二节 因子分析的数学模型
一、数学模型 1.R型因子分析数学模型(按列)
设 X i (i 1,2,, p) p 个变量,如果表示为
X i ai1F1 aimFm i (m p)
X1 11 12
或
X
2
21
22
X
p
p1
p2
1m F1 1
2m
F2
2
pm
Fm
p
或X AF
4
第4页/共96页
称为 F1, F2,, Fm公共因子,是不可观测的变量,
他们的系数称为因子载荷。i 是特殊因子,是不能被
前m个公共因子包含的部分。并且满足:
3、公共因子Fj方差贡献的统计意义
因子载荷矩阵中各列元素的平方和
Sj
a p i 1
2 ij
p
r
i 1
2
(
xi
,
Fj
)
称为Fj ( j 1,, m) 对 X i 的方差贡献和。衡量Fj的相对重
要性。
12
第12页/共96页
(三)因子分析模型的性质
1/ 5 2 / 5
1
21
第21页/共96页
特征根为: 1 1.55 2 0.85 3 0.6
0.475 0.883 0
U
0.629
0.331 0.707
0.629 0.331 0.707
0.475 1.55 0.883 0.85
A 0.629 1.55 0.331 0.85
因子分析:潜在的假想变量和随机影响变量 的线性组合表示原始变量。
因子分析(探索)与结构方程模型(验证)
3
第3页/共96页
第二节 因子分析的数学模型
一、数学模型 1.R型因子分析数学模型(按列)
设 X i (i 1,2,, p) p 个变量,如果表示为
X i ai1F1 aimFm i (m p)
X1 11 12
或
X
2
21
22
X
p
p1
p2
1m F1 1
2m
F2
2
pm
Fm
p
或X AF
4
第4页/共96页
称为 F1, F2,, Fm公共因子,是不可观测的变量,
他们的系数称为因子载荷。i 是特殊因子,是不能被
前m个公共因子包含的部分。并且满足:
3、公共因子Fj方差贡献的统计意义
因子载荷矩阵中各列元素的平方和
Sj
a p i 1
2 ij
p
r
i 1
2
(
xi
,
Fj
)
称为Fj ( j 1,, m) 对 X i 的方差贡献和。衡量Fj的相对重
要性。
12
第12页/共96页
(三)因子分析模型的性质
因子分析ppt课件
xi ai1 f1 ai2 f2 ... ui
特殊因子(unique factor)观测变量所
特有的因子,表示
公因子(common因fa子ct负or载s)(是factor load该in变gs量):不表能示被i公个因 观测变量所共有的变因量子在,第解j个释公因子上子的所负解载释,的是部因分子。
因子抽取方法的选择一般考虑因子分 析的目的和对变量方差的了解程度:
如果因子分析的目的是用最少的因子 最大程度地解释原始数据中的方差,或特 殊因子、误差带来的方差很小,则用主 成分分析法。
如果目的是确定数据结构,但不了解 变量方差的情况,则用公因子分析法。
五、解释因子(rotation)
初始因子很难解释,大多数因子都和很多变 量有关,因子的实际意义难以理解和把握。 因子旋转使因子结构更简单、更易于理解。
当公因子间不相关时,某变量 xi 的公因子方差
h2i
a2i1
a2i2
...
a
பைடு நூலகம்
2 im
即等于与该变量有关的公因子负载的平方和。
因子贡献率(contributions) 表示每个公因子对数据的解释能力, 它等于和该因子有关的因子负载的平 方和,能衡量公因子的相对重要性。
公因子个数 ≤ 观测变量数
能代表观测变量较多信息的公因子是 研究感兴趣的;求因子解时,第一个因 子代表信息最多,随后的因子代表性逐 渐衰减。
0.6以上,差; 0.5,很差;0.5以下不能接受;
KMO 用于检测变量之间的简单相关系数和偏 相关系数的相对大小,取值在0--1间,一般认 为KMO在0.9以上很适合做因子分析,0.8以上 比较适合做因子分析;
Bartlett's 球形检验虚无假设“相关矩 阵是单位矩阵”,拒绝该假设(P<.001)表明 数据适合进行因子分析。
因子分析PPT课件
3. 公共因子的方差贡献:是某公共因子对所有原变量载荷的平方和, 它
反映该公共因子对所有原始总变异的解释能力,等于因子载荷矩阵中某 一列载荷的平方和。一个因子的方差贡献越大,说明该因子就越重要。
2024/6/2
15
★ 确定公因子数目的准则
1)因素的特征值(Eigenvalues)大于或等于1;
2)因素必须符合陡阶检验(Screen Test),陡阶检
仅仅是为了化简、浓缩数据,则采用正交旋转(保持
直角90度,不允许公因子相关)。如果研究的目的是
为了得到理论上有意义的研究结果,则采用斜交旋转。
(不呈90度,允许公因子相关;有证据表明公因子之
间是相关的才用)
旋转之后,特征值发生变化,但共同度不变
2024/6/2
18
第六步:单击Scores按纽,弹出对话框
输出旋转后的 因子载荷矩阵
2024/6/2
输出载荷散点图17
★ 因子旋转
为了更好地解释因子分析解的结果,常常需要将
因子载荷转换为比较容易解释的形式(相当于相机的
调焦,使看得更清楚;一般会使各因子对应的载荷尽
可能地向0和1两极分化)。
常用的方法有正交旋转(varimax procedure)
和斜交旋转(oblique rotation),如果研究的目的
2024/6/2
1
二、因子分析思想与方法的由来
● 英国统计学家Scott 1961年对英国157个 城镇发展水平进行调查时,原始测量的变量有57 个,而通过因子分析发现,只需要用5个新的综 合变量(它们是原始变量的线性组合),就可以 解释95%的原始信息。
● 美国统计学家Stone在1947年研究国民经
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ui
2 2
Hale Waihona Puke .....uip21(i1、2、...、p)
11
式中的系数按以下原则进行求解: (1) y i 与 y j 相 互 独 立 ( i j , i , j = 1 、 2 、 3 、 . . . 、 p ) (2) y1 是 所 有 线 性 组 合 中 方 差 最 大 的 ;
y2是 与 y1 不 相 关 的 一 切 线 性 组 合 中 方 差 最 大 的 ; yp是 与 y1 、 y2 、 ...、 yp 1 都 不 相 关 的 一 切 线 性 组 合 中 方 差 最 大 的 。
.....................................................
xp a p1 f1 a p2 f2 ......a pk fk p 用矩阵表示为X AF
5
在这个数学模型中,F称为公共因子,因为它出现在每个 变量的线性表达式中,简称因子。因子可理解为高维空间中
第十章
SPSS 因子分析
ppt课件
本章内容
• 10.1 因子分析概述 • 10.2 因子分析的基本内容 • 10.3 因子分析的基本操作及案例
2
10.1 因子分析概述
• 10.1.1因子分析的意义
在实际问题的分析过程中,人们往往希望尽可能多的 搜集关于分析对象的数据信息,进而能够比较全面的、完 整的把握和认识它。于是,对研究对象的描述就会有很多 指标。但是效果如何呢?如果搜集的变量过多,虽然能够 比较全面精确的描述事物,但在实际建模时这些变量会给 统计分析带来计算量大和信息重叠的问题。而消减变量个 数必然会导致信息丢失和信息不完整等问题的产生。
假设原有变量有p个,分别用 x1、x2、x3、 ...、xp 表示,且每个变量的均值是0,标准差是1,现将每个
原有变量用k(k<p)个因子f1、f2、 ...、fk 的线性
组合来表示,即:
x1 a11 f1 a12 f2 ......a1k fk 1 x2 a21 f1 a22 f2 ......a2k fk 2
为单位矩阵,如果该检验对应的P值小于给定的显著性水平 a,则应拒绝原假设,认为原有变量适合进行因子分析。
4、KMO检验
该统计量取值在0-1之间,越接近于1说明变量间的相
关性越强,原有变量适合做因子分析。0.9以上表示非常合
适;0.8-0.9表示合适;0.7-0.8表示一般;0.6-0.7表
示尚可;0.5-0.6表示不太合适;0.5以下表示极不合适。
因子分析是解决上述问题的一种非常有效的方法。它 以最少的信息丢失,将原始众多变量综合成较少的几个综 合指标(因子),能够起到有效降维的目的。
3
• 因子分析的特点
1、因子个数远远少于原有变量的个数; 2、因子能够反应原有变量的绝大部分信息; 3、因子之间不存在线性关系; 4、因子具有命名解释性。
4
• 10.1.2因子分析的数学模型和相关概念 • 数学模型
互相垂直的k个坐标轴;A称为因子载荷矩阵a ,i j 称为因子载
荷,是第i个原始变量在第j个因子上的负荷; 称为特殊因子
,表示原始变量不能被因子解释的部分。其均值为0,相当于 多元线性回归模型中的残差。
• 因子分析的几个相关概念
1、因子载荷 在因子不相关的前提下,因子载荷是第i个变量与第j个因
子的相关系数。因子载荷越大说明因子与变量的相关性越强 ,所以因子载荷说明了因子对变量的重要作用和程度。
12
可见,主成分分析关键的步骤是如何求出上述方程 中的系数。通过方程的推导可以发现,每个方程中的系 数向量是原始变量相关系数矩阵的特征值对应的特征向 量。具体求解步骤如下: (1)将原有变量进行标准化处理; (2)计算变量的相关系数矩阵;
rij2
MSAi
i j
rij2
pij2
i j
i j
其中rij为第i个变量与第j个变量的简单相关系数;
pij为第i个变量与第j个变量在控制了剩余变量下
10
的偏相关系数。
• 10.2.3因子提取和因子载荷矩阵的求解
因子载荷矩阵的求解一般采用主成分法。主成份分析 法通过坐标变换的手段,将原有的p个变量标准化后进行线 性组合,转换成另一组不相关的变量y,即:
7
10.2 因子分析的基本内容
• 10.2.1因子分析的基本步骤
1、因子分析的前提条件; 因子分析的前提条件是原始变量之间应存在较
强的相关关系。 2、因子提取; 3、使因子更具有命名可解释性; 4、计算各样本的因子得分。
8
• 10.2.2因子分析的前提条件
1、计算相关系数并进行统计检验 如果相关系数矩阵中的大部分相关系数小于0.3,那么
6
2、变量共同度
变量共同度也称为公共方差。第i个变量的共同度定义 为因子载荷矩阵中第i行元素的平方和,即:
k
hi 2 a ij 2 j 1
3、因子的方差贡献
因子方差贡献是因子载荷矩阵中第j列元素的平方和, 反映了第j个因子对原有变量总方差的解释能力。该数值越 高,说明相应因子的重要性越高。
p
S j 2 aij 2 i 1
y1 u11x1 u12x2 ......u1p xp
y2 u21x1 u22x2 ......u2 p xp
.....................................................
y1 up1x1 up2x2 ......upp xp
其中ui12
这些变量不适合进行因子分析。
2、计算反映象相关矩阵
rij2
MSAi
i j
rij2
pij2
i j
i j
其中rij为第i个变量与第j个变量的简单相关系数;
pij为第i个变量与第j个变量在控制了剩余变量下
的偏相关系数。
9
3、Bartlett’s球度检验
以原有变量的相关系数矩阵为出发点,假设相关系数
根据以上原则确定的变量依次为原始变量的第1、第 2…第p个主成分。其中第一个主成分在总方差中所占比例 最大,其余主成分在总方差中所占比例依次递减,即主成分 综合原始变量的能力依次减弱。在主成份的实际应用中,一 般只选取前面几个主成分即可,这样既减少了变量的数目, 又能够用较少的主成分反映原始变量的绝大部分信息。