科学记数法 ppt课件

合集下载

科学计数法ppt课件

科学计数法ppt课件

精品课件
2、下面信息中的大数已经用科学记数法表示, 你知道原数是谁吗?
(1)一口痰大约含有细菌1.3×10个; _____1_3______个
(2)温岭市去年总共缺水6.2×106吨; __6__2_0_0__0_0_0__吨
(3)据中国电监会统计,我国今年预计将缺电 6×1010千瓦时; 6_0__0_0_0__0_0_0__0_0_0___千瓦时 (4) -2.4×104=______-_2_4_0_0_0_____.
复习
什么运算叫乘方?什么叫幂?
填空:
a 2、 在 n 中,a叫做底__数__,n叫做_指__数_, 乘方的结果叫做_幂___。 a 3、式子 n 表示的意义是_n_个__a_相__乘__。
4. (-4)>8 __ 0
精品课件
(-<4)9__ 0
7.5.2科学计数

精品课件
我国古代数字的写法:
在敦煌石窟所刻的算经中发现以下文字 “一、十、百、千、万、十万、百万 、千万、万万曰亿、一亿、十亿、百 亿、千亿、万亿、百万亿、千万亿、 万万亿曰兆……万万兆曰京……”
4 7000000000000 =4.7×1000000000000 0=4.7×1013
6 0 0000000000=6×100000000000 =6×1011
科学记数法:
这种把一个数写成a与10的n次幂的乘积的形式, 叫做科学记数法简记为,
a×10n
规定: (1)1≤a<10 (2) n是正整数
指数为5,幂的最末有5个零,
一般地10n等于10……0(在1的后面有n个0)
指数为n,幂的最末有精n品个课件零,反之亦然。
把下列各数写成10的乘方的形式

《科学记数法》PPT课件

《科学记数法》PPT课件

当堂训练
基础巩固题
1.用科学记数法表示下列各数.
80000
56000000
7400000
8×104
5.6×107
7.4×106
2.下列用科学记数法表示的数,原来各是什么数?
4×103
8.5×106 7.04×105 3.96×104
4000
8500000
704000
39600
当堂训练
3. 四川省公布了2017年经济数据GDP排行榜,绵阳市排名全
讨论:1.指数与运算结果中的0的个数有什么关系? 2.指数与运算结果的位数有什么关系?
探究新知
归纳总结
反之,1后面有多少个0,10的幂指数就是多少.
探究新知
【试一试】
1. 把下列各数写成10的幂的形式:100 ,10000,100000000,
即写成10( )
100=102 10000=104 100000000=108
当堂训练
能力提升题
已知光的传播速度为300000000 m/s,太阳光到达地球 的时间大约是500 s,试计算太阳与地球的距离大约是多少 千米.(结果用科学记数法表示)
答案:1.5×108km
当堂训练 拓广探索题
已知1平方千米的土地1年内从太阳得到的能量相当于燃 烧1.3亿千克煤所产生的能量,那么我国960万平方千米土地 上1年内从太阳得到的能量相当于燃烧a×10n千克煤所产生 的能量,求a,n的值.
省第二,GDP总量为2075亿元,将2075亿用科学记数法表示
为( B )
A.0.2075×1012
B.2.075×1011
C.20.75×1010
D.2.075×1012
当堂训练

科学计数法课件

科学计数法课件

你喜欢吃拉面吗?拉面馆的师傅,用一根很细的面 条,把两头捏合在一起拉伸,再捏合,再拉伸,反 复几次,就把这根很细的面条拉成了许多细的面条, 如图三所示,这样捏合到第5次时可拉出 根细面 条.
第一次
第二次
第三次
在银河东岸与织女星遥遥相对的地方,有 一颗比她稍微暗一点儿的亮星,它就是牛郎星。 我国古代牛郎用扁担挑着的两个孩子,他正奋 力追赶织女呢。可惜狠心的王母娘娘拔下头上 的金簪迎空一划,瞬时间一条天河从天而降, 硬是将这一对爱人永远分隔了。


(22位整数) (4)10100 (101位整数)
567 = 5.67 X 100 2 = 5.67 X 10
1≤a<10 n是正整数
n 8
567000000=5.67 X 100000000 a = 5.67 X 10
读作: ”5.67乘以10的8次方” n 将一个大于10的数可以表示成aX10 的形式, 其中1≤a<10, n为正整数,象这样的记数法是科 学记数法.
例: 用科学记数法表示下列各数
(1) 1000000
负数可以用科学记数法表 示吗? 解: 1000000 =106
57000000= 5.7 ×107
(2)57000000
(3) 123000000000
123000000000= 1.23 × 10
_15000000 = _ 1.5 ×10 7
11
1 1 2 2 2 3 3 3 4 4 4 5 5 5 6
你观察到什么规律? (1) 10的几次方就等于1后面有几个0. (2) 运算结果整数数位比指数大1.
练习


1.把下列各数写成10的幂的形式.
(1)1000 =103 (2)1000000 =106 (3)100000000 =108 2.指出下列各数是几位整数. (1)102 (2)104 (5位整数) (3位整数) (3)1021

人教版七年级数学上册《科学计数法》PPT

人教版七年级数学上册《科学计数法》PPT
科学计数法
计算: 102 , 103 , 104.
解:(1)102 =10×10=100; (2)103 =10×10×10=1000; (3)104 =10×10×10×10=10000.
10的乘方有如下的特点: 一般地,10的n次幂等于10···0(在1的后面有n个0).
观察:
567 000 000= 5.67×100 000 000 = 5.67×108
5.用科学记数法表示下列各数:
(1)280 000;
(2)-5 261.2
解:(1)280 000=2.8×105;
(2)-5 261.2=-5.261 2×103
6.下列用科学记数法表示的数,原来分别是什么数?
(1)3.14×105 ;(2)-3.125×103.
解:(1)3.14×105 =314 000 (2)-3.125×103=-3 125
A.22500 B.225000 C.2250000 D.2250
2.把下列用科学记数法表示的数的原数填在横线上. (1)3.618×103=___3_6_1_8___; (2)-2.1×104=__-__2_1_0_0_0___; (3)-7.123×102=__-__7_1_2_._3____.
读作:5.67乘10的8次方(幂).
-567 000 000=-__5_._6_7_×_1_0_8____
像上面这样,把一个大于10的数表示成a×10n 的形式(其中1≤ a <10,n是正整数),这种记数法,叫做科学记数法.
1.数据26000用科学记数法表示为2.6×10n,则n的值为 ___4_____.
7.现在一张光盘可存储500亿字节的信息,这个容量相当于存 5000本书的内容,即一张光盘可以储存5000本书的内容.

科学计数法课件.ppt

科学计数法课件.ppt
惯上叫科学记数法。
科学记数法的形式为a×10n ,其中 n 为正整数。
例题讲解
例:用科学记数法表示下列各数: 1000 000, 57 000 000, 123 000 000 000。 解: 1 000 000=106, 57 000 000= 5.7 ×10 000 000 =5.7×107, 123 000 000 000= 1.23 ×100 000 000 000
数法表示出来 ①水星的半径为2.44 ×106米,木星的赤道半径约为 71 400 000米. ②我国的陆地面积约为9 597 000平方千米,俄罗斯的陆
地面积约为9.976 ×106平方千米.
课堂小结
1.学了这节课你有哪些收获? 2.今后我们还会知道,用科学记数法还 可以表示绝对值较小的数,并且易读、 易写、易算。
=1.23×1011.
观察与思考
下面的式子中,等号左边整数的位数与右边10 的指数有什么关系?
1 000 000=106, 57 000 000=5.7×107, 123 000 000 000=1.23×1011. 用科学记数法表示一个数时, 10的指数 比原数的整数位数少1。
如果一个数是6位整数,用科学记数法表示它 时,10的指数是多少?如果一个数有9位整数呢?
你知道吗?
月球离地球的距离约为380000000米
整个可见宇宙空间恒星大约有 70000000000000000000000颗
太阳的半径约为696000千米, 光的速度约为300000000米/秒, 目前世界人口约为6100000000人。
这些大数的读、写都有一定困难。那么 可以用怎样的方法来表示这些大数,使它易读、 易记、易判断大小还便于计算呢?
作业

科学记数法PPT课件

科学记数法PPT课件

VS
详细描述:在进行科学记数法的除法 运算时,可以先将被除数和除数都表 示为指数形式后直接相除,再将结果 表示为科学记数法形式。例如,将 3.45×10^5除以2.34×10^3,可以 表示为(3.45÷2.34)×(10^5÷10^3) = (3.45÷2.34)×10^(5-3) = (3.45÷2.34)×10^2。
在化学中的应用
在化学中,科学记数法也被广泛使用。例如,描述化学反应速率、化学键的能 量等,使用科学记数法可以更方便地表示这些量之间的关系。此外,在描述分 子结构和化学键的类型时,科学记数法也经常被使用。
与其他数学知识的联系
与对数的联系
科学记数法和对数之间存在密切的联系。例 如,对于任意正实数a和任意正整数n,有 log_a(a^n)=n,这说明科学记数法和自然 对数之间存在一定的关系。此外,对数的换 底公式也可以用来将科学记数法转换为对数 形式。
科学记数法ppt课件

CONTENCT

• 引言 • 科学记数法的规则 • 科学记数法的运算 • 科学记数法的实例 • 科学记数法的扩展
01
引言
什么是科学记数法
科学记数法是一种表示大数或小数的简便方法,形如 a × 10^n,其 中 1 ≤ |a| < 10,n 为整数。
这种记数法广泛应用于科学、工程、技术等领域,尤其在表示极 大或极小的数时非常方便。
02
科学记数法的规则
指数的规则
指数规则
科学记数法中,数字被表示为 10的幂次形式,即a x 10^n, 其中1≤a<10,n为整数。
指数表示法
指数可以表示为加法、减法、 乘法和除法等运算,例如2.56 x 10^3可以表示为2560,即2.56 乘以10的3次方。

科学计数法课件

科学计数法课件
科学计数法:将大数或小数转换为科学计数法的形式
实例:将10000***实例一:表示大数和小数
科学计数法:将大数或小数转换为科学计数法的形式
科学计数法:将大数或小数转换为科学计数法的形式
实例二:计算大数和小数的乘除法
实例:计算1.***10^12和1.***/10^12计算方法:使用科学计数法进行计算结果:1.2345678实例二:计算大数和小数的乘除法实例:计算1.***10^12和1.***/10^12计算方法:使用科学计数法进行计算结果:1.***10^12=***实例二:计算大数和小数的乘除法实例:计算1.***10^12和1.***/10^12计算方法:使用科学计数法进行计算结果:1.***10^12=1***实例二:计算大数和小数的乘除法实例:计算1.***10^12和1.***/10^12计算方法:使用科学计数法进行计算结果:1.***10^12=***
科学计数法的形式为×10^n其中是数字的整数部分n是数字的小数部分。
科学计数法可以表示非常大的数或非常小的数使得计算和表示更加方便。
科学计数法在科学、工程、计算机科学等领域广泛应用。
科学计数法的表示方法
科学计数法是一种表示大数或小数的方法通常用于表示科学数据或工程数据。
科学计数法的表示形式为:×10^n其中为整数或小数n为整数。
存储大数:科学计数法可以方便地存储和表示大数
计算精度:科学计数法可以提高计算精度避免误差累积
数值分析:科学计数法在数值分析中用于处理大数问题如线性方程组求解、数值积分等
Prt Four
科学计数法的运算规则
乘法和除法运算规则
乘法规则:将两个数的有效数字相乘结果保留有效数字位数
除法规则:将两个数的有效数字相除结果保留有效数字位数

科学记数法PPT课件

科学记数法PPT课件

.
知识讲解
例1
用科学记数法表示下列各数:
1 000 000,57 000 000,-123 000 000 000.
解 : 1 000 000 = 106,
57 000 000 = 5.7×107,
-123 000 000 000 = -1.23×1011
思考:用科学记数法表示一个位整数,其中10
10 000 =104
8×10
800 000
=5
56 000 000 =5.6×107
7 400 000
= 6
7.4×10
3.下列用科学记数法表示的数,原来分别是什么数?
1×107 =10 000 000
8.5×106 = 8 500 000
4×1043 =
000
5 = 000
7.04×10704
随堂训练
第一章 有理数
1.11 科学计数法
部编版七年级数学上册
学习目标
1
了解科学记数法的意义。
2
会用科学记数法表示数。(重难点)
新课导入
月球与地球的距离
约为380 000 000米。
新课导入
太阳半径约696 000Km
新课导入
某某世博会从5月1
日到6月22日参观人数
已经达到17 418 900
人。
新课导入
( 5 ) 第 六 次 人 口 普 查 时 , 中 国 人 口 约 为 1 370 000 000人.
解 : ( 1 ) 380 000 000米 = 3.8×108 米.
( 2 ) 300 000 000m / s = 3.0 ×108 m/s.
( 3 ) 696 000k m = 6.96 ×105 km.

科学计数法PPT课件

科学计数法PPT课件

逆向思维
下列用科学记数法表示的数,原来各是什么数? (1)4.8×105 (2)1.0×107 (3)6.414×103 (4)-9.7×106 解:(1)4.8×105=480 000 (2)1.0×107=10 000 000 (3)6.414×103 =6414 (4)-9.7×106=-9 700 000
重点与难点
重点:正确运用科学记数法表示 比10大的数。
难点:正确掌握10n的特征及科学 计数法中n与数值的关系。
提出问题,探索规律
1、算一算,填一填 计算101 103 105 1010 1022 填表:
指数 运算结果中0的个数 运算结果的位数 101 1 1 2 103 3 3 4 105 5 5 6 1010 10 10 11 1022 22 22 23 … 10n n … … n … n+1
六、小结回顾
进一步体会和感受大数; 掌握大数的表示方法: 科学记数法 并能比较科学记数法表示的大 数的大小
七、延伸拓展
Textbook p61 必做 习题2.12 1~~3 选做:4、5题 《练习册》P 18 必做 1---3题 选做 4题
5、请用科学记数法表示下
列各数。(1)我国国土 面积为9597000平方千米; (2)我国现有人口1300 000 000人; (3)地球的表面积约为 510 000 000平方千米。
再接再厉
C 4、3500=3.5×10n-1,则n的值为( ) A、2 B、3 C、4 D、5 5、360万用科学记数法表示为( D ) A、3.6×102 B、360×104 C、3.6×104 D、3.6×106 6、用科学记数法表示的数3.61×108,它的原数是 ( C)
(A )361 00 000 000 (B)361 0 000 000
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳的半径约为:696 000 000米 108 米 =6.96 ×
人类观测的宇宙深度大约是: 15,000,000,000光年.
天安门广场的面积大 约为:44万平方米
中国国家图书馆
2
藏书约2千万册 居世界第五位
光的传播速度大约是300,000,000米/秒.
习题一 是非题:
光的速度约为300 000 000米/秒
生活中,我们经常会接触到比较大数? 你还能举出一些例子吗? 上面这些数都很大,怎样用简单的方 法来表示它们呢?
102 =
100 ; 3= 1 000 ; 10
104= 10 000 ; 105= 100 000 ;…; 1010= 10 000 000 000 ; · · 10n= 用科学记数法写出下列各数
10 000,800 000,56 000 000,7 400 000 5 7 104 7.4×106 8×10 5.6×10
习题三 下列用科学记数法写出的数,原
来分别是什么数
1×107 ; 4×103 ; 8.5×106 ; 7.04×106; 3.96×104 10000000 4000 39600 8500000 7040000
解:5万=50 000=5×104 30亿=3 000 000 000=3×109
例.据测算,我国每天因土地沙漠化造成 的经济损失为1.5亿元,按一年365天计算, 我国一年因土地沙漠化造成的经济损失是 多少元?(用科学记数法表示)
解:1.5×108×365 =547.5×108 =5.475×1010 (元) 答:我国一年因土地沙漠化造成的经济损 失是5.475×1010元。
人类观测的宇宙深度大约是: 15,000,000,000光年.
第五次人口普查时,中国人口约为1300 000 000人。
太阳的半径约为:696 000 000米
天安门广场的面积大 约为:44万平方米
中国国家图书馆
2
藏书约2千万册 居世界第五位
光的传播速度大约是300,000,000米/秒.
(A)7.2 ×105 (C)9.9 ×106
习题四 在以下的各数中,最大的数为 ( D )
(B)2.5×106 (D)1×107
习题四 用科学记数法写出下列各数,并保留两个
有效数字:
42 900 96 700 18 340 92 560 000
你知道吗?
一个指甲缝里有近5万个细菌, 在1克指甲污垢里竟藏着近30亿个细菌, 请用科学记数法表示以上两个数。
以10为底的幂的0的个数与指数有何关系? 相等
(1) 把下列各数写成10的幂的形式
1000 , 100 000 , 10 000 000 000 ,
(2)指出下列各数分别是几位数 102 , 104 , 1021 , 10100.
利用前面知识,你能把一个较大的数表示 成整数段是一位数的数乘以10n的形式吗?
本节课你有什么收获?
1.遇到较大的数时可用科学记数法来表示.
一般形式: a×10n( 1≤a<10,n为正整数)
2.用科学记数法表示大数有什么好处?
3.用科学记数法a×10n表示大数关键要注意两点: (1)1≤a<10. (2)当大数是大于10的整数时,n为整数位数减去1.
观察与思考:
1、上面的式子中,等号左边整数的位数与右边10的指数有 什么关系? 2、用科学记数法表示一个m位整数,其中10的指数是m-1 。
关键:①a的确定1≤a<10 ;②n的确定n=m-1
即n=m-1
第五次人口普查时,中国人口约为1300 000 000人。
1 300 000 000人 = 1.3×1000000000 人 =1.3 ×109人
把一个较大的数写成a×10n的形式,其中1≤a <10, n是正整数,这种记数的方法称为科学记 数法
用科学记数法表示下列各数: 例题: (1)1 000 000;(2)57 000 000; (3)123 000 000 000 解(1)1000000= 106 (2)57000000= 5.7 × 10 000 000= 5.7 × 107 (3)123 000 000 000 =1.23 × 100 000 000 000 =1.23 × 1011
10 10 100=1×_____, 3000=3×______ 10 10 25000=2.5×______, 328=3.28×_______
4 2
2
3
归纳
为了记数方便和表示形式规范,我们作 如下规定: 把一个较大的数写成a×10n (1≤a< 10,n为正整数)的形式,这种记数的方法 叫科学记数法.
1、 光的速度300 000 000米/秒用科学记数法表示 为308米/秒 ( × ) 2、地球半径约为150 000 000 000米可用科学记 数法表示为15×1010 米 ( × ) 3、2003年,我市实现国内生产总值218.4亿元, 可用科学记数法表示为0.2184×1013元 ( × ) 4、上半年,全国财政收入10954.99亿元,可用 科学记数法表示为10.95499×1014元 ( × )
相关文档
最新文档