离心压缩机振动故障综合分析
离心式压缩机振动故障解析

离心式压缩机振动故障解析化工企业中经常应用到离心式压缩机设备,化工企业施工过程中,一旦离心式压缩机出现问题,将可能引起整个工程的故障,造成巨大的经济损失。
排除化工企业运行中的安全隐患,需要对离心式压缩机的质量进行提升,通过科学的方式改进离心式压缩机现存的质量问题,离心式压缩机在使用中常出现的问题是震动问题,震动问题的出现容易对设备元件造成损坏,降低设备的使用寿命。
引起离心式压缩机震动的因素有诸多方面,全文对此进行了详细的分析,并提出了改进建议。
1 离心式压缩机结构介绍1.1 离心式压缩机概念离心式压缩机也被称为透平式压缩机,其主要作用是将气体压缩,由转子与定子两个结构形成。
离心式压缩机的工作过程是,叶轮高速旋转使周围气体随之转动,通过离心作用将气体推送到扩压器中,在叶轮周围形成真空环境,这样外界的新鲜气体便会进入到叶轮内。
经过叶轮的不断转动使气体形成反复的吸入排除,保证了施工环境内的空气流通。
发展初期离心式压缩机只适用于中亚力大流量的地方,所以并未受到重视,后期化工业的发展需求,才使离心式压缩机受到了重视。
随着气体动力学的发展,促使了离心式压缩机性能的提升。
1.2 离心式压缩机特性离心式压缩机之所以在多种重工业中得到重用,必有其独特的性能,离心式压缩机的优势是:(1)离心式压缩机形成的气体量较大,组成结构相对简单紧凑,所以重量较轻、体积较小,在工程使用中不会占据过多的位置;(2)运行平稳,实际应用可靠性较高,因其设备的结构较少,所以为维护工作降低了难度;(3)离心式压缩机在化工实施过程中,可达到无油压缩;(4)离心式压缩机属于回转运动的设备,相对适合于工业气轮机的直接使用,促进了热能的综合使用。
但同时离心式压缩机也存在其自有的问题,在下文中会做出分析。
2 离心式压缩机震动故障分析2.1 转子不稳定在对离心式压缩机的制造过程中,受到材料及技术等多方面的制约,使离心式压缩机的转子结构的质量分布无法实现理想中的中心线轴对称,所以无法达到转子的绝对平衡,使之在结构中旋转线中心线与转子质量中心线存在偏差。
离心压缩机振动分析及处理

离心压缩机振动分析及处理离心压缩机是一种常见的压缩机类型,广泛应用于空调、制冷、石油化工、电力等行业。
然而,离心压缩机在运行过程中会产生振动问题,这可能会导致设备损坏、性能下降甚至故障。
因此,对离心压缩机的振动进行分析和处理是非常重要的。
定性分析主要是根据振动信号的谐波频率和幅值,判断出振动的类型。
常见的振动类型包括:圆周振动、轴向振动、径向振动和轴向径向振动等。
通过分析振动的类型,可以初步判断出振动的原因,然后针对性地采取处理措施。
在确定了离心压缩机振动的原因后,就可以采取相应的处理措施。
根据振动类型的不同,可能的处理方法包括:1.圆周振动的处理:调整压缩机的平衡,确保旋转部件的质量分布均匀,并进行轮盘的磁粉探伤,发现质量偏差的旋转部件及时进行修复或更换。
2.轴向振动的处理:检查轴承和密封件的状况,及时更换磨损严重或损坏的轴承和密封件,调整轴承的预紧力,确保轴向间隙符合要求。
3.径向振动的处理:检查离心压缩机的叶轮是否平衡,发现不平衡时需进行平衡加工;检查轴承是否磨损,及时更换磨损的轴承;检查轴承座固定螺栓是否松动,如有松动应及时进行紧固。
4.轴向径向振动的处理:综合考虑轴承、叶轮、密封件等部分的情况,逐一进行处理。
此外,为了减少离心压缩机的振动问题1.定期检查和维护离心压缩机,确保各部件运转正常。
2.定期进行动平衡校正,确保离心压缩机的旋转部件平衡。
3.选择合适的润滑剂和适当的润滑方式,保证轴承工作正常。
4.保证离心压缩机的安装牢固,避免设备共振和机械松动。
5.随时关注离心压缩机的振动情况,发现异常及时处理。
总之,离心压缩机振动的分析和处理是确保设备正常运行的重要环节。
通过合理的振动分析和针对性的处理措施,可以降低振动对设备的影响,提高设备的可靠性和性能。
此外,定期的预防措施也是减少振动问题的有效手段,能够延长离心压缩机的使用寿命。
离心压缩机试车异常振动的处理及原因分析

离心压缩机试车异常振动的处理及原因分析Summary:在工业生产的许多领域中,离心压缩机都占据十分重要的地位,并且能够给国民经济带来一定的影响,特别是在石油化工炼油设备中,保证离心机压缩设备稳定顺利的运行意义重大。
但是根据近些年来离心压缩机运行的实际情况来看,离心压缩机常常会出现振动故障,这使得设备直接停止运行,严重影响生产效率。
因此,针对于离心压缩机试车异常振动故障进行分析,并积极探索处理方式十分重要。
Keys:离心式压缩机;试车;异常振动;处理措施引言离心式压缩机在化工企业中属于核心设备,其对整个化工企业的运行发展,发挥出了极为重要的作用。
因此一旦该设备运行出现问题,则必然给整个企业的发展带来严重的经济损失。
所以,就必须要在对其进行机械测试,尽可能的在产品试验阶段发现机组问题,分析故障原因,采取相应措施加以排除,这项工作的开展就显得极为重要。
1、离心压缩机常见振动类故障离心压缩机在运行的过程中产生振动现象是不能避免的,但是如果振动现象被控制在标准的范围中,那么就能够有效减少因振动对离心压缩机造成的磨损现象,进而避免事故发生。
而根据实际情况分析,离心压缩机振动过大是常出现的故障之一,振动过大的现象主要表现在:1.主电机的振动过大,虽然在主电机中以及离心压缩机中采取了减少振动的对策,但是主电机本身的振动过大之后就会将振动传递给离心压缩机,进而导致离心压缩机振动过大的现象。
2.离心压缩机本身的精度遭受破坏。
3.共振的现象出现在机器中。
当机器设备在即将到达临界转速的过程中,机器设备的振动幅度就会剧烈增加进而产生共振的现象。
另外,如果在机器设备中,自身的部件振动频率达到了倍数的关系,那么也会导致共振的现象发生。
4.当离心压缩机在喘振区域中运行时,那么在离心压缩机出口就会形成压力的情况,而在这种情况下就会导致振动幅度极大提升,使得离心压缩机产生振动过大的故障。
而如果振动过大的故障情况较为严重,还会使得机器设备发生损坏的状况。
离心式压缩机常见振动故障诊断及解决办法

离心式压缩机常见振动故障诊断及解决办法摘要离心压缩机是高速运转的设备,运行中产生振动是不可避免的。
但是振动值超出规定范围时的危害很大。
对设备来说,引起机组静动件之间摩擦、磨损、疲劳断裂和紧固件的松脱,间接和直接发生事故。
对操作人员来说,振动噪音和事故都会危害健康。
下面就常见的振动现象进行简单诊断并提出相应的解决的办法。
关键词离心压缩机;振动;转子;共振;喘振1 油膜振荡1.1 油膜振动值的变化有一定规律1)振动值与环境温度的变化存在一定规律,温度下降,振动值略有升高;反之会下降。
环境温度的变化影响润滑油温、润滑油粘度、油膜刚度的变化,从而影响轴承振动值的变化。
2)振动值大小与声音的剧烈程度同步:振动大时,声音剧烈;振动小时,声音平缓。
3)其他运行参数变化时,振动值变化较迟钝,压缩机在空负荷运行时(吸风阀未打开时)就产生剧烈振动,在吸风、力口压过程中,振动值基本不变。
1.2 故障解决方案油膜振荡是由半速涡动发展而成,即当转子转速升至两倍于第一临界转速时,涡动频率与转子固有频率重合,使转子一轴承系统发生共振性振荡而引起,如果能提高转子的第一临界转速,使其大于0.5倍工作转速,即可避免发生油膜振荡,但这显然无法实现。
只有通过加大轴承的载荷,使轴颈处于较大的偏心率下工作,提高轴瓦稳定性的办法解决。
在振荡发生时,提高油温,降低润滑油的粘度。
2 临界转速临界转速是指数值等于转子固有频率时的转速。
转子如果在临界转速下运行,会出现剧烈的振动,而且轴的弯曲度明显增大,长时间运行还会造成轴的严重弯曲变形,甚至折断。
装在轴上的叶轮及其他零、部件共同构成离心式压缩机的转子。
离心式压缩机的转子虽然经过了严格的平衡,但仍不可避免地存在着极其微小的偏心。
另外,转子由于自重的原因,在轴承之间也总要产生一定的挠度。
上述两方面的原因,使转子的重心不可能与转子的旋转轴线完全吻合,从而在旋转时就会产生一种周期变化的离心力,这个力的变化频率无疑是与转子的转数相一致的。
离心式压缩机振动故障分析及解决措施

离心式压缩机振动故障分析及解决措施离心压缩机作为一种以叶轮旋转以及扩张器等实现提升目的的设备,其在实际应用的过程中根据排气压力的大小主要分为离心通风机、离心鼓风机、离心压缩机等几种配型。
离心式压缩机在工业生产中经过长期的推广和应用已经取得了非常显著的成效。
文章主要是就离心式压缩机振动故障以及解决的措施进行了分析与探讨,希望可以为离心式压缩机的使用、维修保养提供积极的建议。
关键要:离心式压缩机;维护保养;检修管理0 引言离心式压缩机实际上就是我们所说的透平式压缩机。
这种类型的压缩机在实际运行的过程中,主要是利用向空气施加压力的方式,促进气体压力和速度的有效提升,其作为一种将气体转化为压力的特种设备,虽然已经被广泛的应用于工业生产的各个领域中,但是由于受到各种不确定因素的影响,所以在实际使用的过程中,不可避免的也会发生各种故障。
由于振动故障作为离心式压缩机运行过程中常见的故障类型之一,因此,针对离心式压缩机振动故障与安全运行的研究,对于促进离心式压缩机运行稳定性的提升具有极为重要的意义。
1 离心式压缩机振动故障分析1.1 转子不稳定形成振动材料自身存在的缺陷,技术差等各方面因素是导致离心式压缩机振动故障现象发生的主要原因。
在生产制造离心式压缩机时,假如转子结构的质量无法满足绝对性转子平衡要求,将会增加结构出现偏差的几率。
由于转子在长期旋转的过程中,因为受到周期性离心力的影响,致使轴承荷载的增加,最终导致振动现象的出现。
经过长期的实践应用发现,致使转子产生不稳定现象的因素主要包括以下几方面:(1)如果制造离心式压缩机选择的材料耐磨性较差的话,那么离心式压缩机就会早长期使用后出现严重的不平衡现象;(2)大多数没有经过加工处理的轴承,都因为存在接触面平滑度不够的现象,而造成整个结构与形状面出现了严重的不对称现象;(3)人为因素导致的加工过程中出现严重的缺陷与偏差现象,对于转子运转稳定性的提升也会产生极为不利的影响。
研究离心压缩机振动故障以及解决方法

研究离心压缩机振动故障以及解决方法摘要:离心压缩机在工作中可以高速运转的设备,而且它在运行时振动的产生也是不可避免的,但是对于离心压缩机来说其振动值超过规定的范围时,就会引起振动故障,照成机组静动件的摩擦以及磨损等,严重的还会引发事故。
因此,应该积极针对离心压缩机的振动故障进行分析才行,文章就对离心压缩机使用过程中出现的故障进行分析,找出离心压缩机振动故障的原因,并给出故障维修的解决方法,确保今后离心压缩机的安全稳定运行。
关键词:离心压缩机振动故障故障排除运行解决方法离心压缩机在现代化生产中发挥着巨大的作用,一直被看作是石油、化工、冶金等行的重要设备。
其实在现实的生产过程中,离心压缩机作为一种高转速、高功率、制造精度高的动力机械,运行过程中比较容易出现振动故障,若压缩机的振动故障不能及时排除,就会对企业的生产中带来严重的安全隐患。
以下本篇文章就以日本神户制钢制造的,型号为dh9m的离心压缩机为例,为您讲解离心压缩机振动故障的维修和保养方法,以确保在以后的工作生产中,离心压缩机可以能够安全稳定的运行。
一、离心压缩机的振动故障分析离心压缩机在使用中造成振动故障的原因有很多,我们采用的dh9m型号的离心压缩机,是由功率为4900kw,转速为2980r/min 的电动机来直接驱动的,而且离心压缩机在生产中的作用也就是将循环气升压,来维持生产中流化床反应器的流化过程。
dh9m型号离心压缩机的工艺流程图如下所示:我们从以上离心压缩机的工艺流程图中可以看到,流化床反应器中装有聚乙烯粉料,并且催化剂与反应物料也被连续加入到其中,经过聚合反应之后,生成的聚乙烯粉料树脂就会从排料系统间断的排出,这样也就使得连续循环的气相反应物从反应器的顶部出来,不断地与新鲜物料融合在一起,然后再经过离心压缩机的增压,然后再通过循环气冷却器,降低压缩机内循环气的温度,除去反应热与压缩热之后,就经过流化床反应器下部再返回到反应器中,从而完成一个循环。
离心压缩机振动故障的分析和处理

设备运维理,尽量选择获得国家专利的干气密封系统,选择品质与运行状况良好的就地热控设备,这种效果是非常好的,在经常发生故障部位的前端、中间装置,以此提高干气密封系统整体可靠性与保护系统的稳定性。
其次,提高和改善干气密封系统的运行环境与电子件的环境条件。
干气密封系统会受到多方面因素的影响,比如温度、湿度和灰尘以及设备振动等都直接或者间接影响着干气密封系统运行。
所以,严格控制电子间的环境条件,需要在干气密封系统底部钻几个小孔,在小孔里面安装红色发光二极管,这样可以显示出干气密封系统是否正常运行。
此外,干气密封系统运行环境十分恶劣,很容易受到外界因素的影响,因此,必须提高和改善干气密封系统的工作环境条件。
比如,尽量选择密封性良好的小孔材质,防雨、防潮,小孔还可以使密封箱内空气流通,不会产生负压,如果干气密封系统进入水,可以从小孔排出。
并且安装在仪表柜内,尽量远离热源、辐射,还可以对取样管和柜内采取防冻伴热等措施,延长干气密封系统的使用寿命,并提高系统工作的可靠性与安全性【3】。
最后,加强定期维护与管理工作。
做好干气密封系统的大小设备检修治理,及时发现设备存在的隐患或者其他故障问题,不仅可以保证干气密封系统性能的有效发挥,保证作业效率,在一定程度上增加企业的经济效益。
还需要对相关操作人员进行培训,及时学习与掌握新型干气密封系统的功能以及使用方法与要求,对保护系统检修彻底,并严格进行保护试验,还需要在使用的过程中加强对干气密封系统的维修与保养。
4结语综上所述,随着社会经济与科学技术的不断发展与完善,天然气工程建设得到快速发展,离心式压缩机以其独特的优势被广泛应用到天然气长输管道中。
文章就天然气离心式压缩机干气密封失效的原因进行分析,并提出解决措施。
参考文献:[1]张国祥;单表法找正在多缸体离心式压缩机组中的应用[A];石化产业创新·绿色·可持续发展——第八届宁夏青年科学家论坛石化专题论坛论文集[C];2018年.[2]张永军;朱立伟;樊继壮;离心式压缩机性能预测研究[A];新世纪新机遇新挑战——知识创新和高新技术产业发展(上册)[C];2018年.[3]郝晓康;高潮;梁多兰;离心式压缩机密封系统改造[A]; 2017年晋冀鲁豫鄂蒙六省区机械工程学会学术研讨会论文集(河南分册)[C];2017年.[4]肖泰勇;;1TY-690/5.3压缩机振动故障分析[A];巨化集团公司化工学会论文集(九)[C];2018年.[5]王晓艳;王跃方;刘宇斌;于世新;受轴承和密封激振的离心式压缩机转子振动响应[A];第二十一届全国振动与噪声高技术及应用学术会议论文集[C];2018年.[6]王和顺;陈次昌;黄泽沛;王新霖四川日机密封件有限公司;;干气密封启停端面脱开概念的提出及理论研究[A];液压与气动学术研讨会论文集[C];2018年.离心压缩机振动故障的分析和处理李永强(青海盐湖工业股份有限公司化工分公司,青海格尔木816099)摘要:化工行业离不开离心压缩机,特别是在能源化工行业,离心压缩机有着极特殊的地位。
离心压缩机振动故障原因分析与处理措施探讨

离心压缩机振动故障原因分析与处理措施探讨摘要:在离心压缩机中,振动问题经常出现。
振动是压缩机重要的监测指标,振动幅值的大小是判断压缩机机械性能及气动稳定性的重要指标。
目前我们所知引发振动的因素较多,如气体激振、旋转失速、转子不平衡、叶轮积垢等,其中产生于压缩机内部的气体涡旋影响最复杂,最难分析。
通过对离心压缩机隔板空腔产生的气体涡旋所引发压缩机振动的特性分析,结合压缩机在实际运行中的现象与参数特点,可以判断振动原因,制定解决方案。
本文首先对压缩机进行概述,其次分析了离心压缩机振动的原因,最后论述了离心压缩机振动故障的处理办法,以供参考。
关键词:离心压缩机;振动故障;原因分析引言离心式压缩机目前已经被广泛运用于石化行业中,是石化企业的重点关键设备。
离心压缩机在运行的过程中,其内部都会有振动故障产生,当振动超差时直接影响离心式压缩机的安全、平稳运行。
很多时候会造成连锁停车,最终导致整个生产装置非计划停车,造成不必要的经济损失。
更严重的是,出现喘振、飞车等恶劣情况,造成机毁人亡事故发生。
要想确保离心压缩机的运行正常,保证其稳定性,就必须要对振动故障采取有关的预防和处理手段,避免离心压缩机产生振动。
1压缩机的相关概述近几年,装备技术得到了很好的发展,特别是离心式的压缩机,因为它有非常好的可靠性,而且占地面积相对较小。
在一些石油化工,煤化工以及冶金等各个行业之中得到了很好的应用。
离心式的压缩机结构,主要可以分为单轴式和多轴式两种类型。
在最初的时候,单轴式压缩机一般会利用多级的议论来将一根轴进行串联。
但是他的实际工作效率相对较低,随着技术的不断发展,对相关结构设计作出了改进,。
单轴式的离心压缩机,在高压比的环境之中也能够很好的运行。
比如说一些冷却剂它分布在机壳的两次,而且和机壳完全成为一体这样,不同的气体再经过压缩机之后,能够快速进入冷却器,能够将整个机组的实际运行效率得到提高。
然而多轴式的离心压缩机分为两种类型,分别是H型和M型。
离心式压缩机振动故障分析及解决措施

离心式压缩机振动故障分析及解决措施摘要:离心式压缩机属于是大型的机械设备,在石油化工、冶金工业以及能源动力等行业中应用的非常多,主要是由于其具备速度快、功率大以及高精度制造的特点。
但是离心式压缩机在运行的过程中很容易出现故障,振动故障发生的频率最高,直接影响了离心式压缩机的使用时间以及运行的速度。
因此,本文对对离心式压缩机中存在的振动故障进行了详细的分析,并提出了相应的解决措施。
关键词离心式压缩机;振动故障;分析;解决引言离心式压缩机是非常关键的设备,一旦出现故障,会给企业带来较大的经济损失。
因此,在离心式压缩机的实际使用中,如何对故障的部位和原因进行快速确定,以及怎样进行预防措施和对策,正成为行业内的重要课题。
一、离心式压缩机的工作原理离心式压缩机主要是由叶轮、转子、轴承等各个零件进行组成,在操作过程中,气体会从外部进入到装置中,转子高速旋转,使其快速旋转。
当气体旋转和作用时,压力继续升高。
当压力达到一定的值后,气体通过机器排气口.离心式压缩机在运行的过程中,主要是对上述过程进行重复,直到满足实际的生产需求。
二、离心式压缩机的发展现状1 理论算法的演变之前,在运用设计算法时,无法使用计算机的技术进行计算,在对离心式压缩机的性能进行分析时,很难使用数学的方式,因此,只能是通过简单的几何以及二维设计进行的。
然而,随着时间的推进,互联网的技术水平也在不断提升,使设计基础适应现代现实成为可能。
有的学者通过运用现状化的离心式压缩机思路,让复杂的问题更加的简单化,使用离心式压缩机时,变得更加的方便,同时也能够极大的提升离心式压缩机在工业生产中的有效性,这些结果也是离心式压缩机结构由传统几何设计向现代三维气动设计转变的结果设计。
2 控制系统的发展随着压缩机性能要求的不断变化,压缩机的自动控制系统也在不断完善。
过去,通过气动和电气模拟仪器对装置进行集中监控和初步控制。
随着时代的发展,在上世纪六十年代开始对计算机进行使用。
离心式压缩机振动故障现象分析及处理

离心式压缩机振动故障现象分析及处理摘要:近年来,随着中国化工行业的快速发展,对离心压缩机的需求逐年增加。
正确使用离心压缩机,维护压缩机的稳定性、安全性和可靠性,避免压缩机意外停机是现代工业设备管理的主要目标。
为此简要分析了一些常见振动故障的原因和纠正措施。
在压缩机的日常管理过程中使用在线监侧系统来对压缩机的相关运行数据进行检查,并在出现故障造成重大损失之前及时调整运行参数,以进行关机和维护。
关键词:离心式压缩机;化工行业;振动故障引言随着当前我国化工生产的不断发展,在化工生产过程中同样也对于各类设备提出了较高要求,一旦任何机械设备出现了较为明显的故障问题,必然会对于整个化工生产形成严重影响,这也就需要切实关键设备常见问题的详细分析探讨。
离心式压缩机作为当前化工生产中比较关键的一环,同样也应该引起高度关注,确保常见的各类故障问题能够得到较好明确,尤其是对于比较典型的振动故障,更是应该予以高度关注,详细辨识造成振动的主要原因,如此也就可以有目的地予以应对处理,降低危害程度。
1.离心压缩机组振动故障现象分析1.1内部转子失去平衡性离心式压缩机内部运行主要依靠转子,转子失衡经典故障表现一般有三种:发展性失衡、意外性失衡和初始失衡,转子失衡应通过结合离心压缩机中转子不平衡故障的各种判断现象和维护经验来进行维修。
转子不平衡故障为正弦波。
随着速度增加,如果转子速度低于临界速度,则振幅值会增加;当速度高于临界极限时,振幅值将趋于稳定。
转子不平衡失效的原因有:旋转体的几何形状的重心位置固定不正确、零件的表面磨合松动、轴心间连接失效、内部孔位过大导致零件高速旋转偏离核心、轴上匹配零件的调整错误导致轴上零件不对称产生弯曲误差等。
1.2转子不对正转子不对正分为三类:平行不对正、角度不对正和键合不对正。
主要判断类别方法为通过使用振动信号检查来判断单元在高温下是否对准,同时观察轴承液压的变化,当液压下降时说明轴承下半部的内表面与轴颈之间的缝隙变大,最终由于各种因素引起振动故障的发生。
离心压缩机振动故障的分析和处理

设备运维166 |2019年7月2.3 监测氨设备的选型在电厂脱硝设备中,普遍存在示数偏小的问题,这种情况直接影响检测设备对氨逃逸率的监测的准确性,监测结果无法对工艺技术指标提供依据,也无法根据监测结果进行超标排放的风险预测。
因此在监测设备仪表选择上,要重点关注脱硝系统的出口处的烟尘含量、管道稳定情况和膨胀情况。
当前处理氨气的设备主要是采用对穿烟道的多孔固定杆组件提高仪表的监测效率。
多孔连接杆一般需要进行根据设计要求进行定做,给设备采购人员和工艺改造带来了难题。
一般情况下,电厂采用多点监测。
在线监测仪虽然避免了固定点采样的缺陷,但是在实际检测过程中,易发生监测样结晶和取样孔堵塞等问题。
在进行监测仪选型时重点是制定上述两种问题的解决措施。
抽取式在线监测仪结合了多点采样的的优点,在进行监测时,解决了取样孔堵塞的问题,还增加的取样的准确性。
建议电厂进行喷氨自动优化的技术改造,保持烟道的通畅等,提高反应区的均匀性。
3 安装在线监测仪需要注意的问题3.1 电厂需要对污染有充分的认识,积极地进行监督随着我国环保形势越来越严峻 ,环保部门和电厂监督部门要对环保问题有充分的认识,环保部门在建立完善的法律法规的基础上,加大对排污企业监测设备安装情况的监督力度,同时还要对排污企业的监测设备进行定期检查。
对于企业排污情况进行实时监控,降低污染物对环境的影响。
同时政府各部门进行明确分工,加大对违规排放污染物的处罚力度并责令企业进行整改。
3.2 企业加强对净化装置的技术改造工作对于排污企业而言,需要加强对净化装置的改造工作,把环境保护作为工作的重点,提高净化装置的净化作用,绷紧环保这根弦,根据在线监测设备的监测结果进行工艺调整,确保排放符合国家标准。
其次是引进环保方面的专业人才,借鉴其他国家和地区的环保经验并对企业内部的净化设备进行升级,降低排放污染物对环境的影响。
4 结语综上所述,企业应严格遵守国家环保法规,严控各项排放物标准的硬性指标,并且应加强对在线监测仪的安装使用情况的监督。
离心压缩机振动故障分析与处理

离心压缩机振动故障分析与处理离心压缩机在能源化工行业中的应用十分广泛,保证其使用性能至关重要。
本文以离心压缩机振动故障为研究对象,结合实例分析了离心压缩机振动故障的原因及处理措施,旨在为相关研究和实践提供参考。
标签:离心压缩机;振动故障;转子;故障处理离心压缩机是天然气加工中的重要设备,有着流量大、运转平稳、工作连续等优点。
但在使用过程中,振动故障出现往往影响正常运转,影响生产效益。
基于以上,本文简要分析了離心压缩机振动故障原因及处理的相关问题。
1 离心压缩机振动故障原因分析一般来说,离心压缩机振动故障原因主要有三个:①转子不平衡:在制作安装的过程中,受到加工技术及材料质量等方面因素的制约,导致转子质量没有按中心线轴对称分布,导致转子不平衡,出现偏心距,转子旋转的过程中会受到周期性的离心力影响,轴承上会产生荷载,从而导致压缩机出现震动,导致振动故障出现;②转子不对中:转子不对中的情况主要有平行不对中、组合不对中及角度不对中等三种情况,转子不对中也会导致离心压缩机振动故障出现;③油膜振荡:在轴承高速滑动的过程中,容易产生油膜力,出现油膜振动的情况,随着转速提升,油膜振荡不会减弱,导致振动故障出现;④气封与转子间出现摩擦:缩小叶轮顶间隙和密封间隙能够控制气体泄露,提升离心压缩机效率,但间隙缩小之后,也会导致气封与转子间出现摩擦的问题,例如局部碰撞摩擦、大弧度摩擦等,从而导致振动故障的额出现。
2 离心压缩机振动故障常规处理措施2.1 更换离心压缩机气封材料当前大多离心压缩机的气封材料为铝制材料,在高速运转下,这种材料很容易被氧化腐蚀,导致气封变形或断裂,与转子发生摩擦,出现振动故障。
针对这个问题,可从气封材料着手,更换为四氟材质的气封,避免腐蚀问题出现,从而避免因气封与转子摩擦引发的振动故障。
2.2 及时清理叶轮处与隔板的结疤离心压缩机高速运转下,隔板与叶轮处易结疤,影响进气量,导致转子不平衡,不仅浪费天然气资源,同时易导致振动故障发生。
离心压缩机振动故障的分析和处理

离心压缩机振动故障的分析和处理摘要:离心式压缩机在石化行业中是最为关键的设备之一,其在能源化工行业也占据着至关重要的地位。
使用过程中一旦设备出现故障或异常,便会给企业造成巨额经济损失,为保证该设备的平稳运行,需对其常见振动故障进行分析,并采取针对性措施加以解决。
本文对离心压缩机振动故障及其处理措施进行了研究。
关键词:离心式;压缩机;故障;处理;分析1导言离心式压缩机具有易损件少、连续性工作、运行平稳、转速高、流量大等优势,在生产加工过程中扮演着重要角色。
其运行状态与企业经济效益紧密相连,故需对其常见故障进行分析和预防,以免给企业带来不必要的经济损失。
2离心压缩机常见振动故障分析2.1转子不平衡离心式压缩机在安装和制作的过程中,由于受到材料质量以及加工技术等各方面因素的影响,导致转子上的质量分布无法完全按照中心线轴对称,故难以实现转子平衡,进而导致转子质量中心、旋转中心线存在一定偏离,转子在旋转的过程中,便会受到离心力的影响和干扰,使轴承产生核载,导致压缩机出现振动故障。
对该问题出现的原因进行分析,主要包括三方面,即加工因素、设计因素以及材料因素。
其中,材料因素主要是磨损性能差,运行中常因变形而导致质量分布不均,铸件存在气孔,材料厚度不一致;设计因素主要是旋转体形状问题;加工元素,切削误差以及焊接、浇注上的缺陷问题。
2.2油膜振荡高速滑动的轴承常出现油膜振荡问题,该问题主要是由膜力所引起。
随着转速的不断升高,振动现象却未出现减弱趋势,且振动频率基本保持不变。
转子的载荷不同。
发生半速涡动和油膜振荡的情况也完全不同。
轴承油膜起始失稳转速与轴颈轴承偏心率、转子临界载荷等均有着密切联系。
2.3转自不对中该问题主要分为三种,即组合不对中、角度不对中以及平行不对中。
常见的故障评判方法同样分为三类,分别是:在机组热态时,对其中的故障问题进行检查;对轴承油压力的变化进行详细观察,若出现压力减小的情况,则说明轴承下半内表面与轴颈之间间隙过大,反之则间隙减小;通过振动信号对故障进行检查。
离心压缩机振动原因分析

离心压缩机振动原因分析摘要:日常生产过程中一旦离心压缩机出现异常或故障,将会对企业的生产经营造成巨大的损失,为保证离心压缩机的平稳运行,需对其常见振动故障进行分析,并采取针对性措施加以解决。
本文对离心压缩机振动的故障原因与处理措施进行了简要的探讨分析,以保证压缩机组更好、更平稳的运行。
关键词:离心压缩机;振动故障;原因分析;处理;离心压缩机在运行的过程中,其内部都会有振动产生,当振动超标时直接影响离心式压缩机的安全、平稳运行。
很多时候会造成连锁停车,最终导致整个生产装置非计划停车。
更严重的是出现喘振、定转子碰磨、轴弯曲、转子零件碎裂或飞离等严重故障,有可能造成机毁人亡的事故发生。
要想确保离心压缩机的运行正常,保证其稳定性,就必须要对振动故障采取有效的预防和处理手段,避免离心压缩机产生异常振动。
1 离心压缩机概述离心压缩机的结构主要由两个部分组成, 分别为定子与转子。
而这两个部分又可分为多个零部件, 就其结构方面而言, 离心压缩机比较类似于离心鼓风机,因而在离心压缩机实际运行过程中主要就是利用高速旋转的转子将气体产生压强, 因而相比于其它同种类型鼓风机, 有着相对更高的工作效率。
离心压缩机是通过高速旋转的叶轮将输送的气体加速, 当高速流动的气体进入扩压器、弯道、回流器后转变流向而减速增压, 这样气体在叶轮内获得高速的动能转变成压力势能,因此提高了气体的压力。
2 离心压缩机振动故障发生原因2.1 转子失衡导致振动故障在对离心压缩机进行制造及安装过程中, 由于材料质量及加工技术等多种因素影响, 致使整个转子的质量分布情况无法完全符合中心线轴对称条件, 因而转子也就无法实现完全平衡, 而这种情况的存在会造成转子旋转中, 周期性离心力会对其产生干扰, 导致在轴承上有负荷产生, 从而导致压缩机出现振动情况。
对转子不平衡情况, 其产生原因主要包括三个方面, 即材料方面因素、设计方面因素以及加工方面因素。
其中, 材料方面因素主要就是由于选择的材料耐磨性能不理想, 在实际运行过程中有变形情况出现, 引起质量不均。
离心压缩机组振动故障及应对措施

离心压缩机组振动故障及应对措施众所周知,离心压缩机作为化工生产当中重要的组成部分,倘若离心压缩机设备发生了比较突出的问题,那么一定会对整个化工生产的顺利运作带来严重的影响,甚至还会造成严重的经济损失。
对此,本文从以下几个方面针对离心压缩机组振动故障进行探讨,笔者结合自身经验提出合理化建议,供以借鉴。
标签:离心压缩机组;振动故障;机理;辨识;应对措施引言离心式压缩机在实际应用期间可能会产生不同种类的故障,然而出现最为频繁的故障要数机组振动了。
振动形成的原因有很多,相关工作人员最期盼的是在发生振动故障能辨认故障原因,以便可以采取行之有效的对策加以解决。
一、离心压缩机组振动故障机理及原因辨识1.1长期停机当离心压缩机组在长时间运作时,倘若长时间发生停机的状况,那么当再次运作时会在无形当中增加振动情况出现的概率。
针对长期停机这一问题产生的原因很容易辨识,倘若离心压缩机组在产生故障以后停机,但却没有及时对其做好盘车处理工作,那么一定会导致其内部存在较多的杂质,当这些杂质附着到转子上以后,会在很大程度上导致转子在日后运作期间发生失衡情况,继而产生振动问题。
1.2轴瓦方面的问题当离心压缩机组在具体运作期间,发生的振动情况与轴瓦之间密不可分。
之所以这样说是由于轴瓦在长时间运作下发生了磨损情况,原有间隙逐渐加大,这样一来就会在很大程度上增加晃动情况出现的概率,从而产生振动故障。
由此可见,这种轴瓦和轴承方面发生的损坏情况也与多次开停车存在着息息相关的联系,同时由于后续维护工作难以落实到实处,因此极易导致相应磨损程度加大,继而对其稳定运行效果带来不利影响。
1.3转子方面的问题离心压缩机组在实际运作期间,转子在其中扮演着重要的角色,其发生故障引起的振动情况是非常常见的一个问题,显然这种转子方面的问题不单单体现在由于吸附杂质引起的失衡状况上,还比较倾向于自身运作误差方面。
之所以这样说是由于相关转子在制作、安装等一系列环节当中产生了显著误差,这样就会导致其没有较强的平衡效果,久而久之下去就会演变成比较严重的不稳定问题,出现的振动情况尤为突出。
离心式压缩机振动分析及应急维修方法

离心式压缩机振动分析及应急维修方法离心式压缩机是一种常见的机械设备,用于将气体或蒸气压缩成高压。
然而,在运行过程中,离心式压缩机可能会出现振动问题,这不仅会影响设备的正常运转,还可能造成设备损坏,因此振动分析和应急维修对于保持设备的正常运行至关重要。
振动分析的目的是确定振动源以及振动的原因。
以下是一些常见的离心式压缩机振动原因:1.不平衡:当离心式压缩机转子的质量不平衡时,会引起转子的振动。
这可能是由于材料不均匀或转子叶片磨损不均等原因引起的。
2.摩擦和磨损:摩擦和磨损也会导致离心式压缩机振动。
例如,滑动轴承的磨损或润滑不良可能导致轴的摆动和振动。
3.弯曲和松动:离心式压缩机的轴可能发生弯曲或松动,导致振动。
这可能是由于长时间使用或不当安装所致。
4.设备松动:散热器罩、管道、法兰等设备松动也可能导致振动问题。
这些设备松动会引起共振和震动。
进行振动分析时,可以通过以下步骤进行:1.观察和记录:观察离心式压缩机的振动情况,并记录振动的特点和出现的频率。
2.测量振动:使用专业的振动测量仪器来测量设备的振动水平。
根据测量结果,可以确定振动的严重程度。
3.检查设备:仔细检查设备,查找设备是否存在松动、磨损、不平衡等问题,并记录下来。
根据振动的原因和严重程度,可以采取以下一些应急维修方法:1.平衡:如果离心式压缩机的振动是由于转子不平衡引起的,可以进行转子的平衡操作。
这可能需要专业的设备和技术,因此最好由专业人士来执行。
2.更换磨损部件:如果振动是由于磨损部件引起的,例如滑动轴承,应及时更换受损部件。
3.调整设备:如果设备存在弯曲或松动问题,可以对设备进行调整,重新安装或更换部件。
4.紧固设备:检查设备的各个部件是否松动,如散热器罩、管道等,并紧固它们,以避免共振和震动。
在进行任何维修操作之前,建议先关闭设备并断开电源。
此外,建议寻求专业维修人员的帮助,特别是在涉及平衡和转子修复方面。
总结起来,离心式压缩机振动的分析和应急维修非常重要。
离心式压缩机振动故障的诊断及解决措施

离心式压缩机振动故障的诊断及解决措施汇报人:日期:CATALOGUE目录•引言•离心式压缩机振动故障的诊断•振动故障的原因分析•离心式压缩机振动故障的解决措施•案例分析•结论与展望引言01离心式压缩机的基本结构和工作原理离心式压缩机的特点和应用领域离心式压缩机的概述振动故障的危害振动故障对离心式压缩机的危害振动故障对操作人员和设备周围环境的影响离心式压缩机振动故障的诊断02离心式压缩机振动故障的原因多种多样,包括机械不平衡、气动不平衡、转子不对中、轴承磨损等。
因此,对于振动故障的诊断,需要采用多种方法,包括信号处理、机器学习以及其他技术。
信号处理方法主要包括频谱分析、波形分析、轴心轨迹等,可以用于识别机械不平衡和气动不平衡等故障。
机器学习算法则可以通过学习样本数据,自动识别和预测振动故障,提高诊断准确率。
其他技术,如轴颈测量和激光对中等,也可以用于诊断转子不对中和轴承磨损等故障。
诊断方法概述VS频谱分析01通过对振动信号进行频谱分析,可以将振动信号分解成不同频率的分量,从而识别出不同性质的振动故障。
例如,对于机械不平衡故障,可以在频谱上看到以转子转速频率为基频的振动分量。
波形分析02波形分析可以用于识别不同性质的振动故障。
例如,对于气动不平衡故障,可以在波形上看到周期性的波动,其频率与气动力的频率相等。
轴心轨迹03轴心轨迹可以用于识别转子不平衡和不对中等故障。
通过测量轴心位置的变化,可以绘制出轴心轨迹图,从而识别出转子不平衡和不对中的位置和大小。
支持向量机(SVM)SVM是一种有监督学习算法,可以用于分类和回归问题。
在振动故障诊断中,可以使用SVM对采集的振动信号进行分类,判断是否存在故障,并预测故障的类型和程度。
随机森林(RF)RF是一种集成学习方法,将多个决策树的结果进行集成,提高预测精度和稳定性。
在振动故障诊断中,可以使用RF对采集的振动信号进行分类或回归分析,预测故障的类型和程度。
神经网络神经网络是一种模拟人脑神经元网络结构的计算模型,具有强大的自学习和自适应能力。
离心压缩机异常振动、异常噪音、喘振原因与处理方法

1、压缩机的异常振动和异常噪音:
可能的原因
处理方法
①、机组找正精度被破坏,不对中。
检查机组振动情况,轴向振幅大,振动频率与转速相同,有时为其2倍、3倍……卸下联轴器,使原动机单独转动,如果原动机无异常振动,则可能为不对中,应重新找正。
②、转子不平衡。
检查振动情况,若径向振幅大,振动频率为n,振幅与不平衡量及n2成正比;此时应检查转子,看是否有污垢或破损,必要时转子重新动平衡。
⑦、防喘装置或机构工作失准或失灵。
定期检查防喘装置的工作情况,发现失灵、失准或卡涩,动作不灵,应及时修理调整。
⑧、防喘整定值不准。
严格整定防喘数值,并定期试验,发现数值不准及时校正。
⑨、升速、升压过快。
运行工况变化,升速、升压不可过猛、过快,应当缓慢均匀。
⑩、降速未先降压。
降速之前应先降压,合理操作才能避免发生喘振。
④、压缩机出口气体系统压力超间。
压缩机减速或停机时气体未放空或未回流,出口逆止阀失灵或不严,气体倒灌,应查明原因,采取相应措施。
⑤、工况变化时放空阀或回流阀未及时打开。
进口流量减少或转速下降,或转速急速升高时,应查明特性线,及时打开防喘的放空阀或回流阀。
⑥、防喘装置未投自动。
正常运行时防喘装置应投自动。
⑮、气体管道对机壳有附加应力。
气体管路应很好固定,防止有过大的应力作用在压缩机气缸上;管路应有足够的弹性补偿,以应付热膨胀。
⑯、压缩机附近有机器工作。
将它的基础、基座互相分离,并增加连结管的弹性。
⑰、压缩机负荷急剧变化。
调节节流阀开度。
⑱、部件松动。
紧固零部件,增加防松设施。
2、离心压缩机喘振:
离心式压缩机振动故障原因分析及应对措施

离心式压缩机振动故障原因分析及应对措施摘要:离心式压缩机是一种大型机械设备,其在石油化工、冶金制造、能源动力等诸多领域都有着广泛的应用。
该机械设备具有转速高、功率大、制造精度高等方面的特点,但同时在运行的过程中也容易出现故障问题,其中最常发生的是振动故障,对离心式压缩机的使用寿命及运行效率都会产生较大的负面影响。
因此探究离心式压缩机的振动问题及应对策略具有重要意义。
关键词:离心式压缩机;振动故障;原因分析;应对措施1 离心式压缩机的工作原理离心式压缩机主要有叶轮、转子、轴承等部分构成,在其运行的过程中,气体从外部进入设备内部之后,转子会进行高速转动,带动叶轮进行高速转动。
在气体旋转做功的过程中,压力不断提升,达到所需压力后,气体从排气口排出设备。
离心式压缩机运行中会重复上述过程,直到满足实际生产需求为止。
简单来讲,就是进入压缩机的气体被高速转动的叶轮不断压缩以获取所需的压力能和动能。
2 离心式压缩机特性及发展现状2.1 离心式压缩机的特性通过压缩气体可以将气体压力不断的提高,方便进行压缩机的分类。
一般将压缩机分成两种形式。
一种是容积式的压缩机一种是透平式的压缩机。
通常将容积式的压缩机用在流量比较小的工作中去,但是大流量的工作状况就要使用透平式的压缩机。
并且透平压缩机还可以分成好几种类型,根据不同的工作情况可以选择与工作情况相符的压缩机进行工作,这样既可以使生产得到满足还可以保证设备进行最优的运行。
在工业中广泛的应用离心压缩机,是因为离心压缩机可以充分的提供压缩气体。
尤其是进行重大工业设备的安装还有输送气体的过程中,利用最核心的设备之一就是离心压缩机,它也是验证我国装备制造水平的一个重要因素。
将机械能转化成为气体,可以通过叶轮对于气体进行有效的转化,并且在叶轮还有扩压器的流道内可以通过离心的特性来完成,而且离心式的压缩机还具有许多的优势,比如它的体积小占用不了多少土地,并且本身也比较的轻便方便挪动,它的运行效率比较的高,并且运送的气体也不会轻易的被油气污染,这些都是压缩机的优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离心压缩机振动故障综合分析故障类别及判别方法:1、转子不平衡引起的振动离心压缩机的转子由于受到材质和加工装配技术等各方面的影响,转子上的质量分布对轴心线成不均匀分布,或认为转子的质量中心与旋转中心之间总是有偏心距存在。
因此,转子在高速旋转时将产生周期性的离心力、离心力矩或两者兼有,这种交变的离心力或离心力矩就会在轴承上产生动载荷,也就会引起压缩机的振动。
转子不平衡是引起压缩机振动的最主要、最常见的原因。
1.1.1 转子不平衡的原因1. 设计问题:(1)旋转体几何形状设计不对称,重心不在旋转轴线上。
(2)在转子内部或外部有未加工的表面,引起质量分布不匀。
(3)零件在转轴上的配合面粗糙或配合公差不合适,产生径向或轴向摆动。
配合过松时,高转速下转子内孔扩大造成偏心。
(4)轴上的配合键装于键槽,形成局部金属空缺。
(5)轴上转动部件未对称安装,且有配合间隙。
2. 材料缺陷:(1)、铸件有气孔,造成材料内部组织不均匀,材料厚薄不一致如:焊接结构由于厚度不同而造成质量不对称。
(2)、材料较差,易于磨损、变形造成质量分布不匀。
3. 加工与装配误差:(1)焊接和浇铸上的造型缺陷。
(2)切削中的切削误差。
(3)叶轮在装配时配合误差的累积,引起重心偏移,因此对于高速转子每装上一个叶轮需要进行一次动平衡。
(4)、材料热处理不符合条件要求,或残余应力未消除加工和焊接时的扭曲变形,使转子永久性变形。
(5)配合零件不一致造成质量不对称。
如:螺孔深度或螺钉长度不一致等。
(6)联轴器不对中,对于其中一个转子来讲,一种平行不对中相当于对转子加了一个不平衡负荷。
因此也表现出不平衡的特征。
4. 动平衡的方法不对对于挠性转子,其工作转速下的振型与其一阶振型有显著差别。
因此仅在低速下对转子做动平衡,在高速下仍会发生很大的振动。
1.1.2 转子不平衡的主要振动特征1.振动的时域波形为正弦波。
2.频谱图中,谐波能量集中于基频。
3.当转动频率小于固有频率时,振幅随转动频率的增加而增加;当转动频率大于固有频率后,转动频率增加时振幅趋于一个较小的稳定值;当转动频率接近于固有频率时,振幅具有最大峰值。
4.当工作转速一定时,相位稳定。
5.转子的轴心轨迹为椭圆。
6.转子的进动特征为同步正进动。
7.振动的强烈程度对工作转速的变化和敏感。
8.质量偏心的矢量域稳定于某一允许范围内。
1.1.3 转子不平衡的故障甄别及处理措施一般而言,工频谱线或一次谐波表示转子不平衡,但这不是绝对的。
对于刚组装完成的压缩机机组,要确诊是不是由于动平衡引起的振动过大,应与下列情况加以区别:(1)对刚性转子,要排除是否遇到了转子的临界转速问题,这就需要通过瀑布图或波特图等来分析,确定转子的固有频率,看是否与压缩机的工作转速相近。
(2)工频分量过大时,还应注意是否遇到了基础共振,这就需要进行相位分析来进一步确诊。
基础共振使机组各点都以同一频率和相位进行,而由不平衡引起的振动,在顺着旋转方向上各点的振动存在着相位差。
(3)当用涡流传感器测振动位移时,工频成分也有可能是由于测振部位处轴颈加工不同心或有椭圆度、表面剩磁等造成的假振动,需用降低转速的办法来检查,如果低速时振幅与高速时振幅相近,很可能是一种假振动。
因此,要判断是否转子不平衡引起的振动,除了根据转子不平衡振动的主要特征外,还要看对于确认的转子不平衡振动故障,则应该查找不平衡的原因,可从如下几个方面入手并加以解决:(1)检查转子上各零部件是否有松动。
(2)检查转子上是否有结构不对称的地方。
(3)重新对转子做动平衡校验。
2、转子不对中引起的振动压缩机组通常都由电机或汽轮机、变速机、压缩机组成,机组各转子之间由联轴器连接而构成轴系,传递运动和扭矩。
由于机器的安装误差、机组承载后的变形以及机组基础的沉降不均等原因,往往造成机器工作时各转子的轴线之间产生轴线平行位移、轴线角度位移或综合位移等对中变化误差。
转子系统不对中将产生一系列有害于机组的动态效应,导致压缩机发生异常振动。
转子系统不对中的故障发生的比较多,因此需要认识转子系统不对中故障的机理和表现出来的现象,能够准确诊断这种故障。
图2-1 转子不对中的形式1.2.2 转子不对中故障的诊断及特征转子不对中的轴系,不仅改变了转子轴颈与轴承的相互位置和轴承的工作状态,同时也降低了轴系的固有频率。
轴系由于转子不对中,使转子受力及支承所受的附加力是转子发生异常振动和轴承早期损坏的重要原因。
转子不对中的转子系统的主要振动特征为:1)振动频率是转子工作频率的2倍;2)由不对中故障产生的对转子的激励力幅,随转速的升高而加大;3)激励力幅与不对中量成正比,随不对中量的增加,激励力幅呈线性加大;转子不对中引起的故障及特征1)改变了轴承的油膜压力, 负荷较小的轴承可能引起油膜失稳, 因此, 出现最大振动往往是紧靠联轴器两端的轴承。
2)不对中引起的振幅与转子的负荷有关, 随负荷的增大而增大, 位置低的轴承振幅比位置高的轴承大, 因为低位轴承被架空, 油膜稳定性下降。
3)平行不对中主要引起径向振动, 角不对中主要引起轴向振动。
4)不对中使联轴节两侧产生相位差。
5)从振动频率上分析, 不同形式的不对中产生不同的频率。
2. 2判断不对中故障的方法1)观察轴承油膜压力随负荷的变化量, 油膜压力增大, 意味着轴颈与轴承下半的内表面的间隙减小, 反之间隙增大。
2)测量机组热态时的对中情况。
3)利用振动信号判断不对中状况是目前的常用方法, 即根据前面介绍的不对中的特征进行判断。
往往振动带有多种因素, 既要测径向振动和轴动向振动, 也要测相位, 通过多方面的信息, 才能正确判断。
3油膜振荡油膜振荡是高速滑动轴承的一种特有故障, 它是由油膜力产生的自激振动。
转子发生油膜振荡时输入的能量很大, 引起转子轴承系统零部件的损坏,甚至整个机组的毁坏, 因此必须深入了解有效防治。
3. 1油膜振荡的机理3. 1. 1半速涡动与油膜振荡有些轻载转子, 半速涡动在较低转速就产生了,从而使转子变为不稳定, 但由于油膜的刚性和阻尼作用, 抑制了涡动幅度, 使转子仍能平衡工作。
但随着转速的升高, 半速涡动幅值逐渐增加, 直到转速升高到第一临界转速的两倍附近时, 涡动频率与转子一阶自振频率重合。
转子轴承系统发生强烈的油膜共振, 这种共振涡动称为油膜振荡, 其频率为转子的一阶自振频率。
3. 1. 2 油膜振荡的特征油膜振荡往往来势很猛, 瞬时振幅突然升高, 很快发生局部油膜破裂。
引起轴颈与轴瓦间的磨擦,发生吼叫声, 严重损坏轴承和转子。
判别是否发生油膜振荡是从振动频率是否接近转速的1 /2, 但必须与动静磨擦区分开来, 动静磨擦也发生半频振动。
首先, 观察振动频率是否发生在一阶振动频率上; 其次判别是否存在油膜半速涡动, 一般情况下Ω/ ω的比值在一定转速范围内是不变的。
频谱、轴心轨迹及波形特征是:( 1)较大的径向振动。
频谱中有明显而稳定的涡动频率分量可能有高次谐波分量; ( 2)轴向振动在涡动频率处的分量较小;( 3)若在一阶临界转速频率处出现峰值, 则表明已出现油膜振荡; ( 4)轴心轨迹呈现双椭圆或紊乱不重合, 轴心轨迹呈现内 8 字形; ( 5)时域波形中稳定的周期信号占优势, 每转一周少于一个峰值,没有较大的加速度冲击现象。
3. 2油膜振荡的防治措施1)避开油膜共振区: 使压缩机工作转速避免在一阶临界转速的2倍附近运转。
2)增加轴承比压: 即增加轴瓦工作面上单位面积所承受的载荷。
增加比压就等于增加轴颈的偏心率, 提高油膜的稳定性。
3)减少轴承间隙: 轴承间隙减小, 侧可提高发生油膜振荡的转速。
4)控制适当的轴瓦预负荷: 预负荷为正值, 就是轴瓦内表面上的曲率半径大于轴承内圆半径, 等于起到增大偏心距的作用。
5)选用抗振好的轴承: 圆柱轴承抗抗性最差,其次是椭圆轴承最好的是三油楔和四油楔轴承。
6)调整油温: 升高油温, 减小油的粘度, 可以增加轴颈在轴承的偏心率, 有利于轴颈稳定。
4转子与气封间的磨擦为了提高离心压缩机的效率, 往往把密封间隙、叶轮顶间隙做得较小, 以减小气体的泄漏, 但是小间隙除了会引起流体动力激振外还容易发生转子与气封的磨擦。
转子与气封的磨擦有两种: 一种是转子转动过程中, 转子与气封发生局部碰磨。
另一种是转子与气封发生大弧度磨擦接触。
4. 1发生局部碰磨的特征发生局部碰磨时, 接触力和转子运动之间为非线性关系, 使转子产生次谐波和高次谐波振动。
局部碰磨一般是不对称的非线性振动, 因此多数情况下产生转速频率的1 /2次谐波振动, 当转速高于转子一阶自振频率的2倍时, 就会产生共振。
4. 2发生大弧度磨擦振动的特征1)大弧度磨擦甚至整周磨擦, 会产生很大的磨擦力, 使转子由正向涡动变为反向涡动。
转子发生大面积磨擦时, 在波形图上就会发生单边波峰 削波 现象。
在双综示波器上观察转子的进动方向,如果出现由正向进动, 变为反向进动, 就表示转子发生了全磨擦。
2)在刚开始发生磨擦接触时, 由于转子的不平衡, 转速频率成分幅值较高, 高次谐波中第二、第三次谐波一般并不高, 第二次谐波幅值必大于第三次谐波。
随着转子接触弧的增大, 磨擦起到附加的支撑作用, 转速频率幅值有所下降, 二、三次谐波幅值,由于附加非线性作用而明显增加。
5旋转脱离与喘振5. 1旋转脱离机理当离心式压缩机工况发生变化时如果流过压缩机的量减小到一定程度, 进入叶轮或扩压器的气流方向发生变化, 气流向着叶片工作面产生冲击, 在叶片非工作面上产生很多气流旋涡, 旋涡逐渐增多, 使流道流通面积减少。
假如2 流道中旋涡较多, 多余的气体就会进1和3叶道, 进入1 叶道的气体正好冲击叶片非工作面, 使旋涡减少, 而进入了叶道的气体冲击工作面使旋涡增多, 堵塞流道的有效流通面积, 迫使气流折向其它流道如此发展下去, 旋涡组成的气团转速反向传播, 并产生振动。
5. 2旋转失速的类型及特征1)类型: 旋转失速有渐进型和突变型两种。
渐进型失速是随气量的减小, 气流堵塞区所占的面积是逐渐扩大的; 突变型失速是在气量减少到一定程度后失速区迅速扩大, 占据较大面积, 更容易产生较大的气流脉冲, 会引起强烈的机器和管道的振动。
2)特征:( 1)失速区内气体减速流动, 依次在各个叶道内出现与旋转方向相反做环向移动,叶轮内压力是轴不对称的。
( 2)旋转失速产生的振动基本频率, 叶轮失速0. 5~ 0. 8转速频率扩压器失速在0. 1~ 0. 5转速频率。
( 3)压缩进入旋转失速后, 压力发生脉动, 但流量基本不变。
( 4)旋转失速引起的振动,强度比喘振小。
5. 3喘振喘振是突变型失速的进一步发展。
当气量进一步减小时, 压缩机整个流量被气体旋涡区所占据, 这时压缩机出口压力会突然下降。