相对渗透率及相对渗透率曲线应用共27页

合集下载

相对渗透率ppt课件

相对渗透率ppt课件

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
相对渗透率与含水饱和度的关系称为相对渗透率曲线。
二、 相对渗透率曲线特征
A区: Sw≤Swi; 油相流动。
B区: Swi<Sw<1-Sor; 油、水相流动;随 Sw的增大,Kro急 剧降低,Krw增大。
因 此外,温度升高,会导致岩石热膨胀,使孔隙结构
发生变化,渗透率也随之发生改变。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
4、其它因素的影响
毛管压力
润湿相趋向于占据小孔隙,非湿相占 据着较大孔隙, 增加了两相相对渗透 率之间的差异。
达西公式
恒水、油比驱替
末端效应:
它是两相流体在多孔介质中流动过程中,出现在出口末端的一 种毛管效应,其特点是: (1)距离多孔介质出口末端端面一定距离内湿相饱和度过高; (2)出口端见湿相出现短暂的滞后。
消除末端效应的方法: (1) 提高流速:降低毛管力作用,以减小末端效应; (2) 三段岩心法:使末端效应不在测试岩心中发生。
2、饱和顺序的影响
湿 相:吸吮时的与 驱替时的相对渗透率 曲线重合。
非湿相:任何饱和度 下吸吮的总是低于驱 替的相对渗透率。
解释:在驱替过程中,非湿相首先窜入大孔隙中央,且非湿相 是连续的,故其相对渗透率较高;在吸吮过程中,湿相沿孔隙 壁面流动,同时驱动孔隙中间的非湿相,随湿相饱和度的增加, 越来越多的非湿相变为不连续相,因此影响了非湿相的相对 渗透率。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能

储油(气)岩石的相(有效)渗透率与相对渗透率(相渗)

储油(气)岩石的相(有效)渗透率与相对渗透率(相渗)

§3 相对渗透率曲线的影响因素
在一定条件下相对渗透率曲线是饱和度的函数.而且还是岩石孔隙结构、流体性质、 流体润湿性、流体饱和顺序、准数或毛细管准数以及温度等因素的函数.
一、岩石孔隙结构
由于流体饱和度受控 于岩石的孔隙结构,因此岩 石孔隙的大小、几何形态 及其组合特征就直接影响 岩石的相对渗透率曲线.
〔2〕流体中表面活性物质的影响:
在孔隙介质中共同渗流的油、水相态,根据巴巴良的研究可能有三种:油为 分散相,水为分散介质;油是分散介质,水是分散相;油、水为乳化状态.这三种 状态在渗流过程中互相转化.
油为分散相 水为分散介质
油是分散介质 水是分散相
油、水为乳化状态
分散体系的渗流与许多物理化学因素有关,而这些物理化学因素与油 水中的极性化合物的多少有关,与油水中的表面活性物质及其含量有关, 因为这些物质的多少使油水界面张力、流体在岩石表面上的吸附作用发 生变化.当渗流条件一定时,使油从分散介质转变为分散相是由油滴聚合 和油滴在固体表面上粘附时间所决定的.
水为分散介质、油为分散相和水为分散相、油为分散介质的油水相对 渗透率曲线.对比二曲线可知,分散介质的渗透能力大于分散相.
分散介质 分散相
分散介质 分散相
当由于表面活性物质的作用使油水处于乳化状态时〔即两种液体 互相分散,都处于分散状态时〕,无论是水包油型还是油包水型,两相渗 透率都急剧下降.
对于高粘度原油,这种乳化状况更容易出现.因此在稠油的开采中 需要对原油进行破乳,其目的就是为了提高流体的相对渗透率.
因此在实用中只需有油-水两相、油-气两相的相对渗透 率曲线就够用了.
但当油层中出现油、气、水三相共存时,这三相是否都参 与流动,,则必须用三相的相对渗透率与饱和度关系曲线图 来判断.

相对渗透率与毛管压力曲线在数值模拟中的应用讲解

相对渗透率与毛管压力曲线在数值模拟中的应用讲解
分布
油水毛管压力
3.00
2.50
2.00
1.50
1.00
0.50
0.00
0
0.2
0.4
0.6
0.8
1
Sw
油水过渡带
Pc 大气压
二、毛管压力曲线在数值模拟中的应用
1、毛管压力在数值模拟中的作用
B、在数值模拟运算中提供驱动力或阻力
亲水油藏
水驱油:毛管压力为驱动力 油驱水:毛管压力为阻力
一、相对渗透率曲线在数值模拟中的应用
5、相对渗透率曲线应用过程中的一些问题
C、相渗曲线没有残余油饱和度
Kr
油水相对渗透率曲线
1
0.9
0.8
Kro
0.7
Krw
0.6
0.5
0.4
0.3
0.2
0.1
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sw
一、相对渗透率曲线在数值模拟中的应用
二、毛管压力曲线在数值模拟中的应用
2、将试验室测试曲线转化为油藏条件下毛管压力曲线
Pc
实验室测定曲线
60
50
40
30
20
10
0
0
0.2
0.4
0.6
0.8
1
SW
实验室条件下测定的毛管压力与油藏条 件下的毛管压力不同,在数模模型中输 入的应是油藏条件下的毛管压力,因此 需要将实验室条件下测定的毛管压力转 换为油藏条件下的毛管压力。
5、相对渗透率曲线应用过程中的一些问题
D、相对渗透率曲线形态异常
标准形态的油水相对渗透率曲线
1
0.8
0.6

相渗曲线及其应用

相渗曲线及其应用
相渗曲线及其应用
2020年7月15日星期三
主要内容
油水两相相对渗透率曲线 相对渗透率曲线的处理(标准化) 相对渗透率曲线的应用
2
一、油水两相相对渗透率曲线
1、概念
油相和水相相对 渗透率与含水饱和度 的关系曲线,称为油 水两相相对渗透率曲 线。随着含水饱和度 的增加,油相相对渗 透率减小,水相相对 渗透率增大。
12
(3)根据以下公式分别对Sw、Kro、Krw进行标准化处 理,以消除各相对渗透率曲线不同的Swi、Sor带来的影 响。
13
(4)根据下列公式求取回归系数a、b。
(5)取Sw*=0,0.1,0.2,…,0.9,1.0。由公式计算出平 均的Krw*、Kro*值,并绘制标准化平均相对渗透率曲线。 (6)根据油藏的平均空气渗透率,利用回归关系式,求 取Swi、Sor、Krwmax。
前缘含水饱和度和两相区平均含水饱和度一般根据分 流量曲线,用图解法求得。
(1)前缘含水饱和度Swf
在分流量曲线上,过(Swi,0)点作分流量曲线的切 线,切点的横坐标即为前缘含水饱和度Swf,切点的纵坐标 为前缘含水fw(Swf)。其计算公式为:
20
(2)两相区平均含水饱和度
在分流量曲线上,过点(Swi,0)作分流量曲线的切 线,切线与直线fw=1相交于一点,该点的横坐标即为两相 区平均含水饱和度。其计算公式为:
10
(5)将平均标准化相对渗透率曲线上各分点的Sw*、Kro*、 Krw*,换算公式如下:
(6)根据上述公式,作出油藏的平均相对渗透率曲线 。
11
2、与束缚水饱和度相关法
此方法是利用各油藏的空气渗透率K来求油水相对渗 透率曲线的特征值。 (1)选择具有代表性的油水相对渗透率曲线。 (2)建立岩心的束缚水饱和度(Swi)、残余油饱和度( Sor)、残余油饱和度下的水相相对渗透率(Kromax)与空 气渗透率(K)的关系,并进行线性回归,以求取回归系 数,建立回归关系式。

相对渗透率及相对渗透率曲线应用

相对渗透率及相对渗透率曲线应用

相对渗透率及相对渗透率曲线应⽤第四节储层岩75中的想对滲透率*-*相对冰遑率和流⼡⽐k 有败渗it 率:务多相渝体拱存对,岩⽯对其中备⼀相浇体的通2L 能⼒。

例:70%的饱和盐於,r ⽔的枯度为icp), 30%的饱和油, C 油的粘度为3cp),△ p=2at ,Qw=0.3cmVs,Qo=0.02cmVs, 计#⽔的有效券遗率Kw,油的有欢涣it 率Ko ⼼==0.225(“制Ko + Kw =0.27 ( pm2 ) < K 绘=0.375 ( pm^ )-两相渗透率之和⼩于绝对渗透率 ?这是为什么⽼?(})站⽔同对浇动对,诂⽔发⽣⼲扰。

? r2)⽑管阻⼒对凑it 卑的彩响。

-(3) t?Ao (4)静⽌從滝或球泡所,⽣的附加阻⼒。

宿对海⾞A=2cm*-解:⼼=塔存° (⾎)- ⾛义:多向流体共存肘,每⼀相流体的有效湊透率与⼀个基准渗选率的⽐值K,,=KJKJ=KJKKro+Krw <100 %3、渝度与渝盛⽐⽔的流度⼀_ KwAv =Av流度⽐:M=^⼏oQw ⼆KwAAP/“詁a K/AP/“昇_Kw / /AvK o / Po⼆相对渗透率曲线Jt 乂:相对凑it 率与他和废之同的关**筑,森%三相对渗透率的影响因素1彩⽯孔僚轴构的彩响K“S」4?M\Kn> K“SM JWO d 2 4^?w ?Km100ES 3- -31a ■ W 64co8C %JU5(b>孔W ⼈⼩以MA 通性好杯対矽好曲⽔*曲谗彫和K,wSw %5图3-90嵐⽔&密⽯油⽔相対*遗特(£2?君⽯湄邊性的影响① *⽊岩⽯:普券点含⽔他和度丸于50%;②富诂岩⽯:等凑点舍⽔他和废⼩于 50%。

St 按雜⾓增如,诂相相对込卑很次酷低,⽔^肩对*込*碱^次升嵩。

AM 傀O' 4T" 90 ' Bft* ITO" 湘⽿^?.点Hfit ?请⾞(U ?980那ORO0"063ffll-89⽔》*⽚?Mfi 件对朗时?咸褂的% (OwenfDArcber. Jn. July 1971) 農”澗沿《IB ⾓与itt 相《対潅8舉的关《半\悴 -----r4090含?MMX. ?10?含*ft 和窪?%2O廿饱秤蜃%图3—50 强油湿岩冇典型的油⽔相对港透率曲找轉征3?沆体畅性的彩响A?渝体枯盛的彩响菲》和粘盛很⾼对,⾮at相相对滦it*可以⼤于100%,⽽测fit相击相对冰邃卑与粘⼡⽆关。

相对渗透率及相对渗透率曲线应用

相对渗透率及相对渗透率曲线应用

剩余油量
AH
( 1 - S Or )- AH S Or AH ( 1 - S CW )
1 S CW S Or 1 S CW
第十七页,共二十八页。
六 相对渗透率曲线(qūxiàn)的测定
• (一)稳定(wěndìng)法测定相对渗透率曲线
第十八页,共二十八页。
二.非稳态法
又分为恒速法和恒压法
⑴.润湿滞后
流体作为驱动相时的相对渗透率大于作为被驱 动相时相对渗透率。 Kr驱动>Kr被驱动。 ⑵.捕集滞后
对于同一饱和度,作为驱动相时是全部连续, 而作为被驱动相时只有部分连续,所以,Kr驱动 >Kr被驱动。 ⑶.粘性滞后
驱动相流体争先占据阻力小的大孔道,并有沿 大孔道高速突进的趋势,所以, Kr驱动>Kr被驱动。
第六页,共二十八页。
2.岩石润湿性的影响
①亲水岩石:
等渗点含水饱和度大 于50 %;
②亲油岩石: 等渗点含水饱和度小于
50%。
随接触角增加,油相相 对(xiāngduì)透率依次降低, 水相相对(xiāngduì)渗透率依 次升高。
第七页,共二十八页。
第八页,共二十八页。
第九页,共二十八页。
束缚水饱和度SWi 等渗点含水饱和度SW
q r2P V
A 8L
第十二页,共二十八页。
第十三页,共二十八页。
5.温度对相对(xiāngduì)渗透率的影响
6.驱动因素的影响
第十四页,共二十八页。
五 相对(xiāngduì)渗透率曲线的应用
• 一、教学目的
• 重点了解相对渗透率曲线的应用,因为它是研究多相渗 流的基础,在油田开发计算,动态分析,确定储层中油水气 饱和度分布中都是必不可少的重要资料

相对渗透率特征曲线及其应用

相对渗透率特征曲线及其应用

aw 和 bw 为回归系数 。
对于不同的油田或区块 ,系数 ao 、bo 、Co 和 aw 、bw 、
Cw 不同 。将这种直线定义为相对渗透率特征曲线 ,将
式 (1) 和式 (2) 定义为相对渗透率特征曲线方程 ,将 Ⅰ、
Ⅱ和 Ⅲ相对渗透率曲线的特征曲线分别定义为 Ⅰ、Ⅱ和
Ⅲ相对渗透率特征曲线 ,相应的特征方程分别定义为 Ⅰ、Ⅱ和 Ⅲ相对渗透率特征曲线方程 。图 1 为 Ⅱ相对渗 透率曲线 ,其特征曲线如图 2 所示 。 21 2 校正系数 Cw 和 Co 的确定方法
Sw 的关系曲线 ,两者均为直线 ,lg ( Krw + Cw ) 与 Sw 的 关系曲线的斜率和截距分别为 aw 和 bw ,lg ( Kro + Co ) 与 Sw 的关系曲线的斜率和截距分别为 ao 和 bo 。 21 4 用特征曲线方法计算相对渗透率
用相对渗透率特征曲线方法可以计算任意空气渗
Eigen curve of relative permeabil ity and its application
Zhang J icheng So ng Kaoping
( Key L aboratory f or Enhance d Oi l Recovery of t he M i nist ry of Ed ucation , D aqi n g Pet roleum I nstit ute , D aqi n g 163318 , Chi na)
常见的相对渗透率曲线有 3 种形式 。 第一种是利用相对渗透率实测数据 ,直接作图 ,得 到 Krw —Sw 和 Kro —Sw 关系曲线 ,定义为 Ⅰ相对渗透 率曲线 。
基金项目 :国家自然科学基金重点项目 (50634020)“低渗透油层提高驱油效率的机理研究”部分成果 。 作者简介 :张继成 ,男 ,1972 年 3 月生 ,1998 年获大庆石油学院油藏工程专业硕士学位 ,现为大庆石油学院在读博士 ,副教授 ,主要从事油气田开发工

相渗曲线及其应用.

相渗曲线及其应用.

数,建立回归关系式。
S wi a1 b1 lg K
S or a 2 b2 lg K S rw max a3 b3 lg K
(3)根据以下公式分别对Sw、Kro、Krw进行标准化处 理,以消除各相对渗透率曲线不同的Swi、Sor带来的影
响。
* w
S
S w S wi 1 S wi S or
无因次采液指数的计算公式为:
J0 ' fw J l '( f w ) 1 fw
5、确定采出程度与含水的关系
采出程度可表示为驱油效率与体积波及系数的乘积, 即:
R Ed Ev
其中Ed可根据相对渗透率资料,用式(**)求得;Ev 的求取方法有两个,一是由油田的实际资料统计求得;二
非润湿相驱替润湿相过程中测得的相对渗透率称为驱替
相对渗透率
吸入过程的非润湿相相对渗透率低于排驱过程的非润湿 相相对渗透率 润湿相的驱替和吸入过程的相对渗透率曲线总是比较接 近,可以重合
(2)岩石表面润湿性的影响
1 )强亲水岩石油水相渗曲线的等渗点的 Sw 大于 50 %,而
强亲油者小于50%; 2)亲水岩石油水相渗曲线的 Swi 一般大于 20%,亲油者小 于15%; 3)亲水岩石油水相渗曲线在最大含水饱和度(完全水淹)
所以有:
1 1 fw K ro w bs w w 1 1 ae K rw o o
(*)
根据此式绘制的 fw—Sw 关系曲线,称为水相的分流量曲线。 严格地讲,以上求得的水相分流量曲线,应为地层水
的体积分流量曲线,把地层水的体积分流量曲线换算为地
面水的质量分流量曲线,其换算公式为:
fw

油水相对渗透率曲线课件

油水相对渗透率曲线课件
• 岩石非均质(层理)的影响
在各向异性的Berea砂岩上 发现,平行层理流动的相对渗 透率值高于垂直于层理流动的 相应值。同时沙粒大小、分布 颗粒形状以及方向性,孔隙大 小分布,几何形态,岩石比面 以及后生作用等都会影响相渗 曲线。
PPT学习交流
14
影响相对渗透率曲线的因素
• 上覆岩压的影响
上覆岩压小于3000psi时对
PPT学习交流
8
影响相对渗透率曲线的因素
• 流体粘度比的影响
当非湿相粘度很大时,非
湿相的Knw随非湿相/湿相 粘度比增加而增加,并且可
以超过100%;而湿相Kw与 粘度比无关。粘度比的影响
随孔隙半径增大而减小,当
K>1达西时,其影响忽略不
计。
这可用水膜理论来解释——
润湿膜起润滑作用。
PPT学习交流
重要。
PPT学习交流
2
前言
• 相对渗透率表示成饱和度的函数,但它还受岩 石物性、流体性质、润湿性、流体饱和顺序以 及实验条件的影响。
• 实际上,相对渗透率很聪明地把所有影响两相 渗流的因素都概括到这条曲线中,使其能把单 相渗流的达西定律应用到两相渗流中。
• 前面几项是储层的固有属性,而实验条件是我 们如何获得有代表性相对渗透率曲线的关键。
油水相对渗透率曲线
PPT学习交流
1
前言
• 油水相对渗透率资料是研究油水两相渗流的基础,是油 田开发参数计算,动态分析,以及油藏数值模拟等方面 不可缺少的重要资料。
它可直接应用: • 计算油井产量,水油比和流度比; • 分析油井产水规律; • 确定油水在储层中的垂向分布; • 确定自由水面; • 计算驱油效率和油藏水驱采收率; • 判断油藏润湿性等。 因此,获得有代表性的相对渗透率资料对油田开发十分

油水相对渗透率曲线

油水相对渗透率曲线
在各向异性的Berea砂岩上 发现,平行层理流动的相对渗 透率值高于垂直于层理流动的 相应值。同时沙粒大小、分布 颗粒形状以及方向性,孔隙大 小分布,几何形态,岩石比面 以及后生作用等都会影响相渗 曲线。
影响相对渗透率曲线的因素
上覆岩压的影响
上覆岩压小于3000psi时对 相对渗透率没甚麽影响。当 达到5000psi时就可以看到 影响。主要是由孔隙结构的 变化引起的。具体多大上覆 岩压发生影响,与岩石性质 有关。在高压地层应模拟 上覆岩压测定相对渗透率曲 线。
影响相对渗透率曲线的因素
初始饱和度的影响
初始含水饱和度增大会使整个曲线向右移动,即 较高的初始含水饱和度可以得到较低的残余油 饱和度。特别对水湿情况影响明显。对于高达 20%初始水饱和度的油湿岩芯,饱和度再增加 就看不出变化了。 所以除特殊研究外,开始测定相对渗透率时,岩 芯中的水量应该是其束缚水饱和度。


相对渗透率表示成饱和度的函数,但它还受岩 石物性、流体性质、润湿性、流体饱和顺序以 及实验条件的影响。 实际上,相对渗透率很聪明地把所有影响两相 渗流的因素都概括到这条曲线中,使其能把单 相渗流的达西定律应用到两相渗流中。 前面几项是储层的固有属性,而实验条件是我 前面几项是储层的固有属性, 们如何获得有代表性相对渗透率曲线的关键。 们如何获得有代表性相对渗透率曲线的关键 下面,我们首先介绍影响相对渗透率曲线的因 素。
非稳态相对渗透率测定方法
采用Johnson(JBN)方法 采用Johnson(JBN)方法 Johnson(JBN) 该方法以下列假设为基础: 该方法以下列假设为基础: 1. 流动是一维并稳定的; 2. 岩芯为线性均质的; 3. 毛细管力的作用与粘滞力作用相比可以忽略 不计。 通常这些假设得不到满足,岩芯多半是非均质的, 驱动力往往比较小,混合润湿性等等。

油水相对渗透率曲线ppt课件

油水相对渗透率曲线ppt课件

• 润湿性的影响
从强亲油到强亲水,油相 相对渗透率逐渐增大, 水相相对渗透率逐渐减 小,相对渗透率交点右 移。
润湿性的影响与油水在岩 石孔隙中的分布有关。
亲水:水在小孔隙或岩石 表面或边角;
亲油:水呈水滴或在孔道 中间
精选ppt课件2021
6
影响相对渗透率曲线的因素
• 用相对渗透率曲线可以判断润湿性
重要。
精选ppt课件2021
2
前言
• 相对渗透率表示成饱和度的函数,但它还受岩 石物性、流体性质、润湿性、流体饱和顺序以 及实验条件的影响。
• 实际上,相对渗透率很聪明地把所有影响两相 渗流的因素都概括到这条曲线中,使其能把单 相渗流的达西定律应用到两相渗流中。
• 前面几项是储层的固有属性,而实验条件是我 们如何获得有代表性相对渗透率曲线的关键。
13
影响相对渗透率曲线的因素
• 岩石非均质(层理)的影响
在各向异性的Berea砂岩上 发现,平行层理流动的相对渗 透率值高于垂直于层理流动的 相应值。同时沙粒大小、分布 颗粒形状以及方向性,孔隙大 小分布,几何形态,岩石比面 以及后生作用等都会影响相渗 曲线。
精选ppt课件2021
14
影响相对渗透率曲线的因素
精选ppt课件2021
12
影响相对渗透率曲线的因素
• 驱替速度和界面张力的影响
随π (σ/μv)值减小, 两相相对渗透率都增大, 两相共同流动范围变宽。 显然,这与非连续相的 流动有关。 应当注意;使非连续相 流动π值必须呈数量级 变化,只有使σ<0.01 mN/m才有可能。
精选ppt课件2021
油水相对渗透率曲线
精选ppt课件2021
1

油水相对渗透率的应用

油水相对渗透率的应用

油水相对渗透率曲线应用油水两相相对渗透率曲线是油水两相渗流特征的综合反映,也是油水两相在渗流过程中,必须遵循的基本规律。

它在油田开发方案编制、油田开发专题研究、油藏数值模拟等方面得到了广泛应用。

因此,对油田开发来说,油水两相相对渗透率曲线既是一个重要的基础理论问题,也是一个广泛性的应用问题。

以下部分主要介绍油水相对渗透率的有关概念及其在实际工作中的应用。

一、油水两相渗流的基本原理天然或注水开发的油藏,正常情况下从水区到油区的油层中,其原始的油水饱和度是逐渐变化的,在水区与油区之间有一个油水过渡带。

生产过程中,当水渗入油区驱替原油时,由于油水流体性质的差异,如油水粘度差、密度差、毛细管现象及岩石的非均质等,使得水驱时水不可能将流过之岩石的可动油部分全部洗净,形成了油水两相区。

在驱替过程中,此两相区不断向生产井推进,当生产井见水后,很长时间内油水同时开采;水驱油试验过程中,出口端见水以后,也是长时间的油水同出。

从整个水驱油的过程可以看出,水驱油的过程为非活塞过程,油水前缘推进过程相当于一个漏的活塞冲程。

二、油水两相相对渗透率曲线【定义】在实验室中,用水驱替原油作出的油相和水相相对渗透率与含水饱和度的关系曲线,称为油水两相相对渗透率曲线。

随着含水饱和度sw 的增加,油相相对渗透率kro减小,水相相对渗透率krw增大。

【说明】1、油水两相相对渗透率曲线共有五个特征点(如图2-1-1):S wi:束缚水饱和度。

它对应着最大含油饱和度S oi,即原始含油饱和度,S oi=1-S wi;S or :残余油饱和度。

它对应着最大含水饱和度S wmax,S wmax=1-S or;K romax :束缚水条件下的油相相对渗透率(最大);K rwmax :残余油条件下的水相相对渗透率(最大);等渗点:油相与水相相对渗透率曲线的交点。

2、油水两相渗流区的含油饱和度变化为ΔS o=1-S wi-S or=S oi-S or。

相渗曲线及其应用 PPT课件

相渗曲线及其应用 PPT课件

fw Sw
Qo
Qw
o
Bo
Qw
1
1
w o o Bo
K ro K rw
1
w
1
o
aebsw
o Bo
2、计算Swf和两相区平均含水饱和度
前缘含水饱和度和两相区平均含水饱和度一般根据分 流量曲线,用图解法求得。
(1)前缘含水饱和度Swf
在分流量曲线上,过(Swi,0)点作分流量曲线的切 线,切点的横坐标即为前缘含水饱和度Swf,切点的纵坐标 为前缘含水fw(Swf)。其计算公式为:
又由于油水两相相对渗透率的比值常表示为含水饱和 度的函数,即:
K ro aebsw K rw
所以有:
1
1
fw
1
K ro
w
1 aebsw w
(*)
Krw o
o
根据此式绘制的fw—Sw关系曲线,称为水相的分流量曲线。 严格地讲,以上求得的水相分流量曲线,应为地层水
的体积分流量曲线,把地层水的体积分流量曲线换算为地 面水的质量分流量曲线,其换算公式为:
n
K
* ro
S
* w
k
K
* ro
(S
* w
)
k
i 1
n
i
n
K
* rw
(
S
* w
)
k
i 1
K
* rw
S
* w
n
k
i
(4)将各样品的Swi、Swmax、Kromax、Krwmax等特征值分别 进行算术平均,并将平均值作为平均相对渗透率曲线的特 征值。计算公式如下:
n
Swi i
(3)岩石孔隙几何形态和大小分布的影响

相对渗透率 ppt课件

相对渗透率  ppt课件
另外,该区内由于油水同时流动,油水之间互相作用、互相干扰,由毛管效应引起 的流动阻力明显,因而油水两相渗透率之和Kro+Krw值会大大降低,并且在两条曲线 的交点处会出现Kro+Krw最小值(见图10—9中的虚线)。
ppt课件
6
C区为纯水流动区。非湿相油的饱和度小于残余油饱和度Sor,非湿相失去了宏 观流动性,油相相渗透率Kro=0;与此同时润湿相占据了几乎所有的主要通 道,非湿相油已失去连续性而分散成油滴分布于湿相水中,滞留于孔隙内。 这些油滴由于贾敏效应对水流造成很大的阻力,因而出现如图10—9的现象, 即含油饱和度越大,分散油滴越多,对水流造成的阻力越大,水相的相对渗 透率离100%越远,反之亦然。
为某相的相渗透率或某相的有效渗透率。
Ko—油的有效(相)渗透率; Kw—水的有效(相)渗透率; Kg—气的有效(相)渗透率。
2、相对渗透率
KO

QO O L AP
101,
KW

QW12 P22 )
101
多相流体共存时,每一相流体的有效渗透率与岩石的渗透率的比值。
£¨üÎ Èë ·¨²â ¶¨£© £¨¾Ý Ñî ÆÕ »ª £¬ 1980£© 1-Ȧ =180¡ã 2-¦È =138¡ã 3-¦È =90¡ã
4-¦È =47¡ã 5-¦È =0¡ã
岩石的润湿性对相对渗透率曲线 的特征影响较大。一般岩石从强水润 湿(θ =0º)到强油润湿(θ =180 º) 时,同一含水饱和度下,油相的相对 渗透率将依次降低;相反,水相的相 对 渗 透 率 将 依 次 升 高 ( 图 10—13 ) 。
ppt课件
16
3、流体物性的影响
(1)流体粘度的影响 在上世纪50年代以前,一般认为相对渗透率与两相的粘度比无关。

相对渗透率及相对渗透率曲线应用课件

相对渗透率及相对渗透率曲线应用课件
采收率评价
根据相对渗透率曲线和油藏类型,预测油田的采收率,评估油田的 开发潜力和经济效益。
动态监测
通过实时监测油田的动态数据,如产液量、注水量等,结合相对渗透 率曲线,分析油田的开发效果和存在的问题。
油田开发方案调整
层间调整
根据相对渗透率数据,了解各油层的渗透率和孔隙度,对层间差 异较大的油田进行层间调整,以提高开发效果。
开发方案优化
井网优化
根据相对渗透率曲线和油藏工程 模型,可以优化井网布置方案,
提高开发效果和经济效益。
采收率预测
通过相对渗透率曲线和油藏工程 模型,可以预测不同开发方案下 的采收率,为制定合理的开发方
案提供依据。
开发策略调整
根据相对渗透率曲线的变化趋势 和开发效果,可以及时调整开发 策略和措施,提高开发效益和油
产能预测
单井产能预测
根据相对渗透率曲线和油藏工程 模型,可以预测单井在不同生产 条件下的产能,为制定合理的开
发方案提供依据。
区块产能预测
通过对区块内各单井的产能进行预 测,可以评估区块的整体产能和开 发潜力,为制定区块开发方案提供 参考。
产能变化趋势分析
通过分析相对渗透率曲线在不同开 发阶段的形态变化,可以了解产能 变化趋势和规律,为优化开发方案 提供依据。
意义
相对渗透率是描述多相流体在多 孔介质中流动特性的重要参数, 对于油藏工程、采油工程和渗流 力学等领域具有重要意义。
计算方法
理论计算方法
基于达西定律和渗流力学理论,推导 相对渗透率公式。
实验测定方法
通过实验测定多相流体在多孔介质中 的渗透率,再计算相对渗透率。
影响因素
孔隙结构
孔隙结构直接影响多相流 体的流动特性,从而影响

相对渗透率及相对渗透率曲线应用共29页

相对渗透率及相对渗透率曲线应用共29页


29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
ห้องสมุดไป่ตู้ 谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
相对渗透率及相对渗透率曲线应用

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档