数据挖掘:第2章 数据预处理与相似性
数据挖掘数据预处理
数据挖掘数据预处理数据挖掘是指从大量的数据中提取出有价值的信息和模式的过程。
在进行数据挖掘之前,数据预处理是非常重要的一步,它可以清洗、转换和集成数据,以便于后续的分析和挖掘工作。
本文将详细介绍数据挖掘中常见的数据预处理方法和步骤。
一、数据清洗数据清洗是数据预处理的第一步,它的目的是去除数据中的噪声、异常值和缺失值,以保证数据的质量和准确性。
常见的数据清洗方法包括:1. 去除重复值:通过对数据进行去重操作,去除重复的记录,避免重复计算和分析。
2. 处理缺失值:对于存在缺失值的数据,可以采取填充、删除或者插值等方法进行处理。
填充可以选择使用均值、中位数或者众数进行填充,删除可以选择删除缺失值较多的记录,插值可以选择线性插值或者多项式插值等方法。
3. 处理异常值:异常值是指与其他观测值相比具有显著偏离的数据点。
可以使用统计方法或者可视化方法来识别和处理异常值,例如使用箱线图、散点图等。
二、数据转换数据转换是将原始数据转换为适合进行数据挖掘的形式和格式的过程。
常见的数据转换方法包括:1. 特征选择:选择对目标变量有较大影响的特征,可以通过相关性分析、卡方检验、信息增益等方法进行选择。
2. 特征缩放:将不同尺度的特征缩放到相同的范围内,常用的方法有标准化和归一化。
标准化将数据转换为均值为0,方差为1的分布,归一化将数据缩放到0到1的范围内。
3. 特征构造:根据已有的特征构造新的特征,例如通过组合、分解、离散化等方式进行特征构造。
三、数据集成数据集成是将来自不同数据源的数据进行整合和合并的过程。
常见的数据集成方法包括:1. 实体识别:对于不同数据源中的实体进行识别和匹配,例如将姓名、地址等信息进行匹配。
2. 数据冗余处理:对于重复的数据进行处理,可以选择保留一条记录或者进行合并。
3. 数据转换:将不同数据源中的数据进行转换,以保证数据的一致性和统一性。
四、数据规约数据规约是将数据集中的数据规模减小的过程,以减少存储空间和计算成本。
(完整版)数据挖掘概念课后习题答案
(b)(b)由基本方体[student,course,semester,instructor]开始,为列出BigUniversity每个学生的CS课程的平均成绩,应当使用哪些特殊的OLAP操作。
(c)如果每维有5层(包括all),如“student<major<status<university<all”, 该立方体包含多少方体?
合,因为它是松散耦合和 紧密耦合的折中。
第2章数据预处理
2.2假设给定的数据集的值已经分组为区间。区间和对应的频率如下。
年龄
频率
1~5
200
5~15
450
15~20
300
20~50
1500
50~80
700
80~110
44
计算数据的近似中位数值。
2.4假定用于分析的数据包含属性age。数据元组的age值(以递增序)是:13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70。
(a)画出一个等宽为10的等宽直方图;
(b)为如下每种抽样技术勾画例子:SRSWOR,SRSWR,聚类抽样,分层抽样。使用大小为5的样本和层“青年”,“中年”和“老年”。
解答:
(b)为如下每种抽样技术勾画例子:SRSWOR,SRSWR,聚类抽样,分层
抽样。使用大小为5的样本和层“青年”,“中年”和“老年”。 元组:
用箱深度为3的分箱均值光滑对以上数据进行光滑需要以下步骤:
�步骤1:对数据排序。(因为数据已被排序,所以此时不需要该步骤。)
�步骤2:将数据划分到大小为3的等频箱中。
数据挖掘的关键技术
数据挖掘的关键技术数据挖掘是指通过大数据中寻找隐藏的、有用的模式和信息的过程。
在当今信息爆炸的时代,数据挖掘已经成为许多领域中不可或缺的关键技术。
本文将介绍数据挖掘的关键技术,包括数据预处理、特征选择、聚类分析、分类与预测、关联规则挖掘等。
一、数据预处理数据预处理是数据挖掘过程中的第一步,其目的是清理、集成和转换数据以供后续分析使用。
数据预处理技术包括数据清洗、数据集成、数据变换和数据归约。
数据清洗主要是对数据中的噪声和异常值进行处理,以保证数据的准确性和一致性。
在这一步骤中,可以使用各种统计学和数学方法来识别和处理异常值。
数据集成是将来自不同数据源的数据进行合并和统一,以便于后续的分析。
在进行数据集成时,需要考虑数据的冗余和一致性,采用适当的数据集成技术进行处理。
数据变换是将原始数据转换为适合进行分析的形式,常用的数据变换技术包括数据规范化、数据离散化、数据聚集和数据抽样等。
数据归约是对数据进行降维处理,以减少数据的维度和复杂性,并保持数据的有效性和信息完整性。
数据归约的常用方法包括主成分分析、因子分析和小波变换等。
二、特征选择特征选择是指从原始数据中选择最具有代表性和重要性的特征,以提高模型的性能和准确性。
特征选择技术主要包括过滤法、包装法和嵌入法。
过滤法是根据特征的某种准则进行选择,如信息增益、相关系数等。
通过计算特征与目标变量的关联性,选择与目标变量高度相关的特征。
包装法是将特征选择看作是一个搜索问题,通过训练具有不同特征子集的模型,并评估其性能来确定最佳特征子集。
嵌入法是在建立模型的同时进行特征选择,通过利用模型的学习能力选择最佳特征。
三、聚类分析聚类分析是一种无监督学习方法,将相似的数据对象进行分组,使得同一组内的对象相似度尽可能高,而不同组之间的相似度尽可能低。
聚类分析技术主要包括层次聚类、划分聚类和基于密度的聚类。
层次聚类是将数据对象逐步划分为不同的层次结构,形成一个聚类树,通过计算相似度来决定聚类的合并和划分。
数据挖掘概念与技术原书第3版课后练习题含答案
数据挖掘概念与技术原书第3版课后练习题含答案前言《数据挖掘概念与技术》(Data Mining: Concepts and Techniques)是一本经典的数据挖掘教材,已经推出了第3版。
本文将为大家整理并提供第3版课后习题的答案,希望对大家学习数据挖掘有所帮助。
答案第1章绪论习题1.1数据挖掘的基本步骤包括:1.数据预处理2.数据挖掘3.模型评价4.应用结果习题1.2数据挖掘的主要任务包括:1.描述性任务2.预测性任务3.关联性任务4.分类和聚类任务第2章数据预处理习题2.3数据清理包括以下几个步骤:1.缺失值处理2.异常值检测处理3.数据清洗习题2.4处理缺失值的方法包括:1.删除缺失值2.插补法3.不处理缺失值第3章数据挖掘习题3.1数据挖掘的主要算法包括:1.决策树2.神经网络3.支持向量机4.关联规则5.聚类分析习题3.6K-Means算法的主要步骤包括:1.首先随机选择k个点作为质心2.将所有点分配到最近的质心中3.重新计算每个簇的质心4.重复2-3步,直到达到停止条件第4章模型评价与改进习题4.1模型评价的方法包括:1.混淆矩阵2.精确率、召回率3.F1值4.ROC曲线习题4.4过拟合是指模型过于复杂,学习到了训练集的噪声和随机变化,导致泛化能力不足。
对于过拟合的处理方法包括:1.增加样本数2.缩小模型规模3.正则化4.交叉验证结语以上是《数据挖掘概念与技术》第3版课后习题的答案,希望能够给大家的学习带来帮助。
如果大家还有其他问题,可以在评论区留言,或者在相关论坛等平台提出。
学习使用SPSS进行数据挖掘
学习使用SPSS进行数据挖掘第一章 SPSS简介SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,由IBM公司开发。
它提供了强大的数据分析和数据挖掘功能,被广泛应用于社会科学研究、商业决策分析等领域。
SPSS具备使用简便、功能强大、结果可靠等特点,成为数据挖掘工作者的首选工具。
第二章数据预处理在进行数据挖掘之前,首先需要对原始数据进行预处理。
数据预处理包括数据清洗、数据集成、数据转换和数据规约等步骤。
数据清洗是指通过识别和纠正数据中的错误、缺失、异常、重复等问题,确保数据质量的过程。
数据集成是将来自不同数据源的数据合并成一个一致的数据集的过程。
数据转换是将原始数据转换成适用于数据挖掘算法的形式,包括数值化、正规化、离散化等处理。
数据规约是对数据集进行降维处理,去除冗余信息,以提高数据挖掘效率。
第三章数据探索数据探索是通过可视化和统计分析等手段,对数据的特征和内在关系进行探索和发现。
在SPSS中,可以使用图表、频数分析、描述性统计等工具进行数据探索。
例如,可以通过绘制直方图、散点图等图表,观察数据的分布和趋势。
频数分析可以统计各类别的频数和频率,帮助理解数据的分布情况。
描述性统计可以计算各变量的均值、方差、标准差等统计指标,揭示数据的集中趋势和离散程度。
第四章数据挖掘算法SPSS提供了多种数据挖掘算法,如聚类分析、分类分析、关联规则等。
这些算法可以从不同角度解析数据,挖掘数据背后的隐藏信息。
聚类分析是将相似对象划分到同一类簇的过程,帮助识别数据中的类别。
分类分析是建立预测模型,根据已有特征对新数据进行分类。
关联规则分析是挖掘数据中的关联关系,发现项之间的频繁组合。
第五章模型评估与优化在使用SPSS进行数据挖掘时,需要对构建的模型进行评估和优化。
模型评估是通过一系列评估指标,对模型的精确度、鲁棒性、稳定性等进行评估。
常用评估指标包括准确率、召回率、F值、ROC曲线等。
Microsoft Word - 第二章 数据预处理
由于数据库系统所获数据量的迅速膨胀(已达 或 数量级),从而导致了现实世界数据库中常常包含许多含有噪声、不完整( )、甚至是不一致( )的数据。
显然对数据挖掘所涉及的数据对象必须进行预处理。
那么如何对数据进行预处理以改善数据质量,并最终达到完善最终的数据挖掘结果之目的呢?数据预处理主要包括:数据清洗( )、数据集成( )、数据转换( )和数据消减( )。
本章将介绍这四种数据预处理的基本处理方法。
数据预处理是数据挖掘(知识发现)过程中的一个重要步骤,尤其是在对包含有噪声、不完整,甚至是不一致数据进行数据挖掘时,更需要进行数据的预处理,以提高数据挖掘对象的质量,并最终达到提高数据挖掘所获模式知识质量的目的。
例如:对于一个负责进行公司销售数据分析的商场主管,他会仔细检查公司数据库或数据仓库内容,精心挑选与挖掘任务相关数据对象的描述特征或数据仓库的维度( ),这包括:商品类型、价格、销售量等,但这时他或许会发现有数据库中有几条记录的一些特征值没有被记录下来;甚至数据库中的数据记录还存在着一些错误、不寻常( )、甚至是不一致情况,对于这样的数据对象进行数据挖掘,显然就首先必须进行数据的预处理,然后才能进行正式的数据挖掘工作。
所谓噪声数据是指数据中存在着错误、或异常(偏离期望值)的数据;不完整( )数据是指感兴趣的属性没有值;而不一致数据则是指数据内涵出现不一致情况(如:作为关键字的同一部门编码出现不同值)。
而数据清洗是指消除数据中所存在的噪声以及纠正其不一致的错误;数据集成则是指将来自多个数据源的数据合并到一起构成一个完整的数据集;数据转换是指将一种格式的数据转换为另一种格式的数据;最后数据消减是指通过删除冗余特征或聚类消除多余数据。
不完整、有噪声和不一致对大规模现实世界的数据库来讲是非常普遍的情况。
不完整数据的产生有以下几个原因:( )有些属性的内容有时没有,如:参与销售事务数据中的顾客信息;( )有些数据当时被认为是不必要的;( )由于误解或检测设备失灵导致相关数据没有记录下来;( )与其它记录内容不一致而被删除;( )历史记录或对数据的修改被忽略了。
数据挖掘第一与第二章概述数据收集讲解学习
2022年3月12日星期六
数据挖掘导论
25
数据集的重要特性
• 维度(Dimensionality) – 数据集的维度是数据集中的对象具有的属性数目 – 维灾难(Curse of Dimensionality) – 维归约(dimensionality reduction)
• 稀疏性(Sparsity) – 具有非对称特征的数据集,一个对象的大部分属性上的值都为 0 – 只存储和处理非零值
数据
– 数据中的联系
• 如时间和空间的自相关性、图的连通性、半结构化文本和XML文 档中元素之间的父子联系
2022年3月12日星期六
数据挖掘导论
9
挑战4
• 数据的所有权与分布
– 数据地理上分布在属于多个机构的资源中
• 需要开发分布式数据挖掘技术
– 分布式数据挖掘算法面临的主要挑战包括
• (1) 如何降低执行分布式计算所需的通信量? • (2) 如何有效地统一从多个资源得到的数据挖掘结果? • (3) 如何处理数据安全性问题?
Single 70K
No
Married 120K No
Divorced 95K
Yes
Married 60K
No
Divorced 220K No
Single 85K
Yes
Married 75K
No
Single 90K
Yes
2022年3月12日星期六
数据挖掘导论
28
记录数据: 数据矩阵
• 如果一个数据集族中所有数据对象都具有相同的数 值属性值,则数据对象可以看做多维空间中的点, 每个维代表对象的一个不同属性。
2.1 数据类型
• 数据集的不同表现在很多方面。例如, 某些数据集包含时间序列或者彼此之间具 有明显联系的对象。毫不奇怪,数据的类 型决定我们应使用何种工具和技术来分析 数据。此外,数据挖掘研究常常是为了适 应新的应用领域和新的数据类型的需要而 展开的。
数据挖掘与分析在商业决策中的应用指南
数据挖掘与分析在商业决策中的应用指南第1章数据挖掘概述 (4)1.1 数据挖掘的定义与价值 (4)1.1.1 提高决策效率:数据挖掘技术能够从海量的数据中快速发觉潜在的规律和趋势,为商业决策提供有力支持,提高决策效率。
(4)1.1.2 增强预测准确性:通过对历史数据的挖掘分析,可以建立预测模型,为未来市场趋势、客户需求等提供更为准确的预测。
(4)1.1.3 优化资源配置:数据挖掘有助于企业了解各业务环节的实际情况,从而合理配置资源,提高运营效率。
(4)1.1.4 提升客户满意度:通过对客户数据进行分析,可以深入了解客户需求,为企业提供个性化服务和精准营销提供依据。
(5)1.2 数据挖掘的主要任务与过程 (5)1.2.1 数据准备:收集并整理数据,进行数据清洗、数据集成、数据变换等操作,为后续挖掘分析提供高质量的数据。
(5)1.2.2 数据挖掘:根据业务需求选择合适的算法和模型进行挖掘,包括分类、回归、聚类、关联规则挖掘等。
(5)1.2.3 模型评估:对挖掘出的模型进行评估,包括准确性、可靠性、泛化能力等方面的评价。
(5)1.2.4 知识表示:将挖掘出的知识以图表、报告等形式展示给决策者,便于理解和应用。
(5)1.3 数据挖掘在商业决策中的应用场景 (5)1.3.1 市场细分:通过对客户数据进行分析,将市场划分为不同细分市场,为企业制定有针对性的市场策略提供依据。
(5)1.3.2 客户关系管理:分析客户行为数据,识别潜在客户、维护现有客户、挽回流失客户,提高客户满意度和忠诚度。
(5)1.3.3 信用评估:利用数据挖掘技术建立信用评估模型,降低信贷风险,提高信贷审批效率。
(5)1.3.4 预测分析:通过对历史销售数据、市场趋势等进行分析,预测未来产品需求,为企业制定生产计划和库存策略提供支持。
(5)1.3.5 优化供应链:分析供应链各环节数据,发觉潜在问题,提高供应链运作效率,降低成本。
数据挖掘实验(二)数据预处理【等深分箱与等宽分箱】
数据挖掘实验(⼆)数据预处理【等深分箱与等宽分箱】本⽂代码均已在 MATLAB R2019b 测试通过,如有错误,欢迎指正。
⽬录⼀、分箱平滑的原理(1)分箱⽅法在分箱前,⼀定要先排序数据,再将它们分到等深(等宽)的箱中。
常见的有两种分箱⽅法:等深分箱和等宽分箱。
等深分箱:按记录数进⾏分箱,每箱具有相同的记录数,每箱的记录数称为箱的权重,也称箱⼦的深度。
等宽分箱:在整个属性值的区间上平均分布,即每个箱的区间范围设定为⼀个常量,称为箱⼦的宽度。
(2)数据平滑将数据划分到不同的箱⼦之后,可以运⽤如下三种策略对每个箱⼦中的数据进⾏平滑处理:平均值平滑:箱中的每⼀个值被箱中数值的平均值替换。
中值平滑:箱中的每⼀个值被箱中数值的中值替换。
边界平滑:箱中的最⼤值和最⼩值称为箱⼦的边界,箱中的每⼀个值被最近的边界值替换。
⼆、Matlab代码实现⾸先⽤rand()函数随机⽣成20*5的矩阵,其数据范围为[0,1]。
1.等深分箱输⼊箱⼦的深度h(1<h<20),将每列按等深分箱,然后⽤箱均值平滑。
clear;clc;A=rand(20,5); % 随机⽣成20*5的矩阵,其中每个数取值范围[0,1]fprintf("当前⽣成的原数据:"); A% 排序,参数1表⽰按列排序,取2为按⾏排序;'ascend'为升序,'descend'为降序A=sort(A,1,'ascend');fprintf("将原数据的每列排序后:"); Ah=input("请输⼊等深分箱的深度h(1<h<20):");%% 对每列进⾏等深分箱,然后求每个箱⼦的均值[n,m]=size(A); % n⾏m列for j=1:m % 列jfor i=1:h:n % ⾏i% 当前箱⼦第⼀个数位置为i,最后⼀个数位置为min(i+h-1,n)p1=int64(i); % 转换成整数(i默认是double类型,但是索引必须要为整数)p2=int64(min(i+h-1,n));B(p1:p2,j)=mean(A(p1:p2,j)); % 当前箱⼦的均值endendfprintf("\n经过等深分箱,⽤箱均值平滑处理后的数据:"); B代码运⾏结果输⼊的深度为3:当前⽣成的原数据:A =0.4067 0.4504 0.5747 0.5154 0.99690.6669 0.2057 0.3260 0.6575 0.55350.9337 0.8997 0.4564 0.9509 0.51550.8110 0.7626 0.7138 0.7223 0.33070.4845 0.8825 0.8844 0.4001 0.43000.7567 0.2850 0.7209 0.8319 0.49180.4170 0.6732 0.0186 0.1343 0.07100.9718 0.6643 0.6748 0.0605 0.88770.9880 0.1228 0.4385 0.0842 0.06460.8641 0.4073 0.4378 0.1639 0.43620.3889 0.2753 0.1170 0.3242 0.82660.4547 0.7167 0.8147 0.3017 0.39450.2467 0.2834 0.3249 0.0117 0.61350.7844 0.8962 0.2462 0.5399 0.81860.8828 0.8266 0.3427 0.0954 0.88620.9137 0.3900 0.3757 0.1465 0.93110.5583 0.4979 0.5466 0.6311 0.19080.5989 0.6948 0.5619 0.8593 0.25860.1489 0.8344 0.3958 0.9742 0.89790.8997 0.6096 0.3981 0.5708 0.5934将原数据的每列排序后:A =0.1489 0.1228 0.0186 0.0117 0.06460.2467 0.2057 0.1170 0.0605 0.07100.3889 0.2753 0.2462 0.0842 0.19080.4067 0.2834 0.3249 0.0954 0.25860.4170 0.2850 0.3260 0.1343 0.33070.4547 0.3900 0.3427 0.1465 0.39450.4845 0.4073 0.3757 0.1639 0.43000.5583 0.4504 0.3958 0.3017 0.43620.5989 0.4979 0.3981 0.3242 0.49180.6669 0.6096 0.4378 0.4001 0.51550.7567 0.6643 0.4385 0.5154 0.55350.7844 0.6732 0.4564 0.5399 0.59340.8110 0.6948 0.5466 0.5708 0.61350.8641 0.7167 0.5619 0.6311 0.81860.8828 0.7626 0.5747 0.6575 0.82660.8997 0.8266 0.6748 0.7223 0.88620.9137 0.8344 0.7138 0.8319 0.88770.9337 0.8825 0.7209 0.8593 0.89790.9718 0.8962 0.8147 0.9509 0.93110.9880 0.8997 0.8844 0.9742 0.9969请输⼊等深分箱的深度h(1<h<20):3经过等深分箱,⽤箱均值平滑处理后的数据:B =0.2615 0.2013 0.1273 0.0521 0.10880.2615 0.2013 0.1273 0.0521 0.10880.2615 0.2013 0.1273 0.0521 0.10880.4262 0.3195 0.3312 0.1254 0.32790.4262 0.3195 0.3312 0.1254 0.32790.4262 0.3195 0.3312 0.1254 0.32790.5472 0.4519 0.3899 0.2633 0.45270.5472 0.4519 0.3899 0.2633 0.45270.5472 0.4519 0.3899 0.2633 0.45270.7360 0.6490 0.4443 0.4851 0.55410.7360 0.6490 0.4443 0.4851 0.55410.7360 0.6490 0.4443 0.4851 0.55410.8526 0.7247 0.5611 0.6198 0.75290.8526 0.7247 0.5611 0.6198 0.75290.8526 0.7247 0.5611 0.6198 0.75290.9157 0.8478 0.7031 0.8045 0.89060.9157 0.8478 0.7031 0.8045 0.89060.9157 0.8478 0.7031 0.8045 0.89060.9799 0.8979 0.8495 0.9626 0.96400.9799 0.8979 0.8495 0.9626 0.96402.等宽分箱输⼊箱⼦的宽度w(0<w<1),将每列按等宽分箱,然后⽤箱均值平滑。
数据挖掘导论第一二章_924
2.3.4特征创建
常常可以由原来的属性创建新的属性集,更有效地捕获数据集中的重要信息。三种创建新属性的相关方法:特征提取、映射数据到新的空间和特征构造。
特征提取(feature extraction):由原始数据数据创建新的特征集称作特征提取。最常用的特征提取技术都是高度针对具体领域的。因此,一旦数据挖掘用于一个相对较新的领域,一个关键任务就是开发新的特征和特征提取方法。
首先定义测量误差和数据收集错误,然后进一步考虑涉及测量误差的各种问题:噪声、伪像、偏倚、精度和准确度。最后讨论可能同时涉及测量和数据收集的数据质量问题:离群点、遗漏和不一致值、重复数据。
测量误差(measurement error)指测量过程中导致的问题。
数据收集错误(data collection error)指诸如遗漏数据对象或属性值,或不当的包含了其他数据对象等错误。
过滤方法(filter approach):使用某种独立于数据挖掘任务的方法,在数据挖掘算法运行前进行特征选择。
包装方法(wrapper approach):这些方法将目标数据挖掘算法作为黑盒,使用类似于前面介绍的理想算法,但通常不枚举所有可能的子集来找出最佳属性子集。
过滤方法和包装方法唯一的不同是它们使用了不同的特征子集评估方法。对于包装方法,子集评估使用目标数据挖掘算法;对于过滤方法,子集评估技术不同于目标数据挖掘算法。搜索策略可以不同,但是计算花费应当较低,并且应当找到最优或近似最优的特征子集。通常不可能同时满足这两个要求,因此需要这种权衡。搜索的一个不可缺少的组成部分是评估步骤,根据已经考虑的子集评价当前的特征子集。这需要一种评估度量,针对诸如分类或聚类等数据挖掘任务,确定属性特征子集的质量。对于过滤方法,这种度量试图预测实际的数据挖掘算法在给定的属性集上执行的效果如何;对于包装方法,评估包括实际运行目标数据挖掘应用,子集评估函数就是通常用于度量数据挖掘结果的判断标准。
数据挖掘数据预处理
数据挖掘数据预处理数据挖掘是一种从大量数据中发现隐藏模式和关联性的过程。
在进行数据挖掘之前,数据预处理是一个必要且关键的步骤。
数据预处理的目标是清洗、转换和集成原始数据,以便于后续的数据挖掘任务。
一、数据清洗数据清洗是数据预处理的第一步,旨在处理数据中的噪声、缺失值、异常值和重复值。
以下是常用的数据清洗技术:1. 噪声处理:噪声是指数据中的随机误差或者不一致性。
可以使用平滑技术(如挪移平均法)或者离群值检测方法(如箱线图或者Z-score方法)来处理噪声。
2. 缺失值处理:缺失值是指数据中的空白或者未知值。
可以使用删除、插补或者建模方法来处理缺失值。
删除缺失值可能会导致数据丢失,因此插补方法是更常用的选择。
插补方法包括均值插补、中位数插补、回归插补等。
3. 异常值处理:异常值是指与其他观测值明显不同的观测值。
可以使用离群值检测方法(如箱线图或者Z-score方法)来识别和处理异常值。
处理异常值的方法包括删除异常值、替换为可接受范围内的值或者使用插补方法。
4. 重复值处理:重复值是指数据中重复浮现的观测值。
可以使用去重方法来处理重复值,确保每一个观测值只浮现一次。
二、数据转换数据转换是数据预处理的第二步,旨在将原始数据转换为适合数据挖掘算法的形式。
以下是常用的数据转换技术:1. 数据平滑:数据平滑是指通过平均化、插值或者回归等方法减少数据中的波动性。
平滑可以匡助去除数据中的噪声和异常值,使数据更加稳定。
2. 数据会萃:数据会萃是指将数据按照某种规则进行分组或者汇总。
会萃可以匡助减少数据的维度,提取更高层次的信息。
3. 数据规范化:数据规范化是指将数据缩放到特定的范围或者分布。
常用的数据规范化方法包括最小-最大规范化、Z-score规范化等。
4. 数据离散化:数据离散化是指将连续型数据转换为离散型数据。
离散化可以匡助处理连续型数据的不确定性,使其更适合某些数据挖掘算法。
三、数据集成数据集成是数据预处理的第三步,旨在将多个数据源的数据合并为一个一致的数据集。
数据挖掘PPT全套课件
记录数据
记录(数据对象)的汇集,每个记录包含固定的数 据字段(属性)集
Tid Refund Marital Taxable Status Income Cheat
1 Yes 2 No 3 No 4 Yes 5 No 6 No 7 Yes 8 No 9 No 10 No
10
Single 125K No
和三维结构的DNA数据)
数据库技术、 并行技术、分 布式技术
数据挖掘的任务
预测 – 使用已知变量预测未知变量的值.
描述 – 导出潜在联系的模式(相关、趋势、聚类、异
常).
数据挖掘的任务
分类 [预测] 聚类 [描述] 关联分析 [描述] 异常检测 [预测]
分类 例子
Tid Refund Marital Taxable Status Income Cheat
矿石硬度、{好, 较好,最好}、 成绩
中值、百分位、 秩相关、游程 检验、符号检 验
日历日期、摄氏、 均值、标准差、
华氏温度
皮尔逊相关、
t和F检验
绝对温度、货币 量、计数、年龄 、质量、长度、 电流
几何平均、调 和平均、百分 比变差
属性类 型
标称
变换 任何一对一变换
序数
值的保序变换
新值 = f(旧值)
– (1)统计学的抽样、估计、假设检验
– (2)人工智能、模式识别、机器学习
的搜索算法/建摸技术、学习理论
– (3)最优化、进化算法、
信息论、信号处理、 可视化、信息检索
统计学
人工智能、 机器学习
– (4)数据库技术、并行计算
和模式识别
、分布式计算
传统的方法可能不适合
数据挖掘
部编教材《数据挖掘与分析》教学设计
部编教材《数据挖掘与分析》教学设计1. 介绍《数据挖掘与分析》是一本由部编教材中的一本教材,旨在帮助学生掌握数据挖掘和分析的基本概念、原理和应用技术。
本教学设计将为本教材的教学提供指导,并以提高学生的数据分析能力和解决实际问题的能力为目标。
2. 教学目标- 了解数据挖掘和分析的基本概念和原理- 掌握常用的数据挖掘和分析技术和工具- 学会应用数据挖掘和分析方法解决实际问题3. 教学内容安排本教学设计将按照以下内容安排进行教学:第一章:数据挖掘介绍- 数据挖掘的定义和概述- 数据挖掘的基本任务和流程- 数据挖掘的应用领域和挑战第二章:数据预处理与清洗- 数据预处理的重要性- 数据清洗的方法和工具- 数据集成和转换技术第三章:数据挖掘方法- 数据挖掘的主要方法和模型- 分类和回归算法- 聚类和关联规则挖掘第四章:数据可视化- 数据可视化的目的和原则- 常用的数据可视化工具和技术- 数据可视化的案例分析第五章:实际案例应用- 学生将通过实际案例应用所学知识和技术- 学生将解决真实的数据挖掘和分析问题4. 教学方法本教学设计将采用以下教学方法:- 理论讲授:通过讲授基本概念、原理和方法来帮助学生建立起对数据挖掘和分析的理论基础- 实践操作:学生将亲自进行数据挖掘和分析的实践操作,通过实际操作提高实际问题解决能力- 案例研究:通过案例研究来让学生将所学知识应用到实际问题中,提升综合能力和创新思维5. 教学评估为了评估学生的研究效果和掌握程度,本教学设计将采用以下评估方法:- 课堂小测验:用于检测学生对基本概念和原理的理解程度- 实践项目:学生将完成一个实践项目,用于评估学生应用所学知识解决实际问题的能力- 作业和考试:用于综合评估学生对整个教学内容的掌握情况以上是部编教材《数据挖掘与分析》教学设计的基本内容安排和教学方法,希望能够帮助学生全面掌握数据挖掘和分析的知识和技术,并能够应用到实际的问题中。
时间序列数据挖掘中相似性和趋势预测的研究
时间序列数据挖掘中相似性和趋势预测的研究时间序列是指按照时间顺序进行排列的一组数据,具有非常广泛的应用,包括经济预测、环境监测、医疗诊断等领域。
时间序列数据挖掘是指通过机器学习、数据挖掘等方法,对于时间序列数据进行分析和处理,以达到对数据的深度理解、事件预测、系统优化等目的。
其中,相似性分析和趋势预测是时间序列数据挖掘中的两个重要方面,本文将着重对这两个方面进行综述和分析。
一、相似性分析相似性分析是对于时间序列中的不同数据进行比较和匹配,以寻找数据之间的相似性和相关性。
在时间序列数据挖掘中,相似性分析有非常广泛的应用,包括图像和声音识别、交通流量预测等。
下面我们将从数据表示、距离度量、相似性度量、采样率和插值等几个方面来讨论相似性分析的方法和技术。
1.数据表示对于时间序列数据的表示,常见的方式包括时间区间和时间点。
时间区间表示是指将时间序列数据分段表示,每一段代表一个时间区间的数据;时间点表示则是在时间轴上标注数据采集的时间戳,随着采集时间的增加,时间序列也在不断地增加。
时间区间表示的优点在于可以更好地处理时序数据的不确定性和噪声,但需要更多的计算资源;时间点表示则更直观和易于理解,但需要特殊处理不规则或不完整的数据。
根据具体应用场景和数据的特点,选择合适的数据表示方法非常重要。
2.距离度量距离度量是指对于两个时间序列的距离进行计算的方法。
常见的距离度量包括欧氏距离、曼哈顿距离、切比雪夫距离等,具体选择方法要根据数据特征进行处理。
例如,在处理具有线性关系的数据时可以使用欧氏距离;而在处理非线性数据时则可以使用切比雪夫距离。
3.相似性度量相似性度量是指对于两个时间序列相似性程度进行计算的方法。
常见的相似性分析方法包括最近邻方法、K-Means聚类和模式匹配等。
最近邻方法是指寻找与目标时间序列最相似的历史序列,并将其作为预测结果的依据。
K-Means聚类是指对于时间序列进行聚类分析,确定各个聚类中心,以此来寻找相似性更高的时间序列。
数据预处理与相似性
数据是数据挖掘的目标对象和原 始资源,对数据挖掘最终结果起 着决定性的作用。现实世界中的 数据是多种多样的,具有不同的 特征,这就要求数据的存储采用 合适的数据类型,并且数据挖掘 算法的适用性会受到具体的数据 类型限制。
另外,原始数据通常存在着噪声、 不一致、部分数据缺失等问题, 为了达到较好的挖掘结果,有必 要对这些数据进行预处理加工从 而提高数据的质量
3 of 44
2.1 数据类型
第二章 数据预处理与相似性
2.1.1属性与度量
属性的测量值与属性的值的意义并不是完全对等的,比如数学上24.4是12.2的两倍,但 作为摄氏温度值24.4并不代表比12.2温暖两倍。天气属性值中“晴天”和“多云”也可 以用不同的数字来表示,它们没有前后次序关系,也不能进行加减运算,只能测试相等 或不等才有意义。在数据挖掘中知道属性的类型可以避免使用错误的统计操作。
图形数据对象之间存在显式或隐式的联系,相互之间有一定的复杂依 赖关系,构成图形或网状结构,如互联网中的超链接。
5 of 44
高级大数据人才培养丛书之一,大数据挖掘技术与应用
第二章 数据预处理与相似性
2.1 数据类型 2.2 数据预处理 2.3 数据的相似性 习题
6 of 44
2.2 数据预处理
数据挖掘工作始终是以数据为中心开 展的,分类、聚类、回归、关联分析 以及可视化等工作的顺利进行完全是 建立在良好的输入数据基础之上。软 件开发行业有句格言:“GarbageIn-Garbage-Out”,这句话同样适用 于数据科学。
2.2.1 数据清理
由于人工输入错误或仪器设备测量精度以及数据收集过程机制缺陷等方面原因都 会造成采集的数据存在质量问题,主要包括:测量误差、数据收集错误、噪声、 离群点(outlier)、缺失值、不一致值、重复数据等问题。数据清理阶段的主要 任务就是通过填写缺失值,光滑噪声数据、删除离群点和解决属性的不一致性等 手段来清理数据。
《大数据技术原理与操作应用》第2章习题答案
《大数据技术原理与操作应用》第2章习题答案
一、单选题
1.数据挖掘技术主要是()。
A.数据处理技术
B.数据库技术
C.数据分析技术
D.数据模式技术
答案:C
2.下列不属于企业应用的大数据技术的是()。
A.客户关系管理
B.企业资源规划
C.财务风控分析
D.人工智能
答案:D
3.根据观测指标,将相似特征的样本聚类在一起,这一分析过程属于()。
A.数据预处理
B.数据分析
C.聚类分析
D.关联分析
答案:C
4.大数据技术中,批处理指()。
A.在计算机上定义一系列的任务,然后将它们提交给系统,并让系统依次执行任务
B.针对一个个独立的任务,将任务提交给系统
C.实时地处理事件
D.查询数据库
答案:A
二、多选题
5.下列不属于具有大数据处理特点的是()。
A.实时性
B.持续性
C.连续性
D.批处理性
答案:C
6.大数据技术可以分为()和业务数据两大类。
A.结构化数据
B.半结构化数据
C.非结构化数据
D.混合型数据
答案:A、B、C
三、判断题
7.利用大数据技术进行市场营销活动时,可以采用决策树模型进行客户分群分析,从而获取客户价值分类。
数据挖掘 第2章--认识数据
二元属性
二元属性
二元属性是一种标称属性,只有两个类别或状态:0或1,其中0通常表示该属性 不出现,而1表示出现。如果两种状态对应于true和false的话,二元属性又称布 尔属性。 如果一个事物的两种状态具有同等价值并且携带相同的权重,则称一个二元属性 是对称的。如:属性gender中的男、女。 如果其状态的结果不是同等重要的,则称一个二元属性是非对称的。如:HIV化 验的阴性、阳性结果。
于部门1,我们看到销售商品单价的中位数是80美元,Q1是60美元,Q3是100
美元。注意,该部门的两个边远的观测值被个别的描绘出,因为它们的值175和 202都超过IQR的1.5倍,这里IQR=40.
200 180 160 140 120 100 80 60 40 20 0 部门1 部门2 部门3 部门4
离散属性与连续属性
离散属性与连续属性
离散属性具有有限或无限可能个值,可以用或不用整数表示。如:属性
hair_color 、 smoker 、 medical_test 和 drink_size 都有有限个值,因此是
离散的 如果属性不是离散的,则它是连续的。在文献中,数值属性与连续属性可以
互换使用
2.通过zif代替第i个对象的rif来实现数据规格化:
zif
rif 1 M f 1
3.利用数值属性的距离度量计算,使用zif作为第i个对象的f值。
28
32
相异性
混合类型属性的相异性
假设数据集包含p个混合类型的属性,对象i与j之间的相异性d(i,j)定义为:
(f) (f) p dij f 1 ij d (i, j) (f) p f 1 ij
第一个四分位数Q1 第三个四分位数Q3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 数据预处理与相似性
数据是数据挖掘的目标对象和原 始资源,对数据挖掘最终结果起 着决定性的作用。现实世界中的 数据是多种多样的,具有不同的 特征,这就要求数据的存储采用 合适的数据类型,并且数据挖掘 算法的适用性会受到具体的数据 类型限制。
另外,原始数据通常存在着噪声、 不一致、部分数据缺失等问题, 为了达到较好的挖掘结果,有必 要对这些数据进行预处理加工从 而提高数据的质量
3 of 44
2.1 数据类型
第二章 数据预处理与相似性
2.1.1属性与度量
属性的测量值与属性的值的意义并不是完全对等的,比如数学上24.4是12.2的两倍,但 作为摄氏温度值24.4并不代表比12.2温暖两倍。天气属性值中“晴天”和“多云”也可 以用不同的数字来表示,它们没有前后次序关系,也不能进行加减运算,只能测试相等 或不等才有意义。在数据挖掘中知道属性的类型可以避免使用错误的统计操作。
9 of 44
2.2 数据预处理
第二章 数据预处理与相似性
2.2.3 数据规范化
在对数据分析前,通常需要先将数据规范化(Normalization),也称为标 准化。不同性质属性数据直接相加不能正确反映出不同作用的正确结果。数据规 范化主要包括数据同趋化处理和无量纲化处理两个方面,可以使属性值按比例落 入到一个特定区间,如[-1,1]或[0,1]。
数据规范化一方面可以简化计算,提升模型的收敛速度;另一方面,在涉及 一些距离计算的算法时防止较大初始值域的属性与具有较小初始值域的属性相比 权重过大,可以有效提高结果精度。
10 of 44
2.2 数据预处理
x'
第二章 数据预处理与相似性
2.2.3 数据规范化
1.最小—最大规范化 也称离差标准化,是对原始数据的线性变换,假定min,max分别为属性A的最小 值和最大值。转换函数如下:
图形数据对象之间存在显式或隐式的联系,相互之间有一定的复杂依 赖关系,构Байду номын сангаас图形或网状结构,如互联网中的超链接。
5 of 44
高级大数据人才培养丛书之一,大数据挖掘技术与应用
第二章 数据预处理与相似性
2.1 数据类型 2.2 数据预处理 2.3 数据的相似性 习题
6 of 44
2.2 数据预处理
数据挖掘工作始终是以数据为中心开 展的,分类、聚类、回归、关联分析 以及可视化等工作的顺利进行完全是 建立在良好的输入数据基础之上。软 件开发行业有句格言:“GarbageIn-Garbage-Out”,这句话同样适用 于数据科学。
缺失值处理
• 1.忽略元组 • 2.数据补齐
噪声数据
• 1.分箱 • 2.孤立点分析
8 of 44
2.2 数据预处理
第二章 数据预处理与相似性
2.2.2 数据集成
数据集成就是将若干个分散的数据源中的数据,逻辑地或物理地集成到一个统一 的数据集合中。这些数据源包括关系数据库、数据仓库和一般文件。数据集成的 核心任务是要将互相关联的分布式异构数据源集成到一起,使用户能够以透明的 方式访问这些数据源。
摄氏温度,日期
有自然零值,可以进行任何数学 运算(*,/)
年龄,长度,重量
4 of 44
2.1 数据类型
第二章 数据预处理与相似性
2.1.2 数据集的类型
数据集的类型是从集合整体上分析数据的类型。从数据对象之间的结构关系角度 进行划分,比较常见的有记录数据、有序数据、图形数据。
记录数据 有序数据 图形数据
记录数据是最常见的数据集类型,数据集是一个二维表格,其中表中 行代表记录,列代表属性。例如一张普通的Excel表格文件或一张关 系数据库中的表。
有序数据对象之间存在时间或空间上的顺序关系。例如股票价格波动 信息,医疗仪器监视病人的心跳、血压、呼吸数值,用户上网购物会 产生鼠标点击网页等操作指令序列,这些信息可以用来挖掘用户的上 网习惯。
x ' = x − min (new _ max− new _ min) + new _ min max− min
将x转换到区间[new_min,new_max]中,结果为 。这种方法有一个 缺陷就是当有新的数据加入时,可能导致max,min值的变化,需要重 新定义。如果要做0-1规范化,上述式子可以简化为:
1 of 44
高级大数据人才培养丛书之一,大数据挖掘技术与应用
第二章 数据预处理与相似性
2.1 数据类型 2.2 数据预处理 2.3 数据的相似性 习题
2 of 44
2.1 数据类型
第二章 数据预处理与相似性
2.1.1 属性与度量
属性是数据对象的性质或特性,属性又可称为特征。每一个数据对象用一组属性描述, 数据集是用结构化数据表表示,其中列是存放在表中的对象的属性,行代表一个对象实 例,表中单元格是实例对应属性的属性值。
x ' = x − min max− min
11 of 44
2.2 数据预处理
x'
第二章 数据预处理与相似性
2.2.3 数据规范化
2.z-score规范化 也叫标准差标准化,经过处理的数据符合标准正态分布,即均值为0,标准差为1。 属性A的值基A的均值 和标准差 规范化,转化函数为:
分类的 (定性的)
数值的 (定量的)
属性类别 标称
序数
二元 区间 比率
描述
例子
类型的名称或编号(=,≠)
工号,鱼的种类{草鱼,鲢鱼, 黑鱼}
值有大小或前后关系(<,>)
气温{炎热,温暖,冷},成绩{ 优,良,中,差}
只有两个类别或状态(=,≠)
抽烟{0,1},其中1表示是,0表 示非
有序,可加减不可乘除(-,+)
事实上,我们采集到的原始数据通常 来自多个异种数据源,数据在准确性、 完整性和一致性等方面存着多种多样 的问题,这些数据并不适合直接进行 挖掘。在进行挖掘算法执行之前,它 们需要进行一些诸如:移植、清洗、 切片、转换等预处理工作。
7 of 44
第二章 数据预处理与相似性
2.2 数据预处理
第二章 数据预处理与相似性
2.2.1 数据清理
由于人工输入错误或仪器设备测量精度以及数据收集过程机制缺陷等方面原因都 会造成采集的数据存在质量问题,主要包括:测量误差、数据收集错误、噪声、 离群点(outlier)、缺失值、不一致值、重复数据等问题。数据清理阶段的主要 任务就是通过填写缺失值,光滑噪声数据、删除离群点和解决属性的不一致性等 手段来清理数据。