泥水平衡盾构技术基础

合集下载

泥水平衡盾构简介

泥水平衡盾构简介

支承环
盾尾
刀盘
主驱动
泥水仓
进浆管 破碎机 推进油缸
排浆管 管片拼装机
13 盾构及掘进技术国家重点实验室
2.刀盘系统
刀盘是泥水盾构的主要工作部件,为各种盾构刀具提供安装位置, 根据工程实际需求,可分为常规泥水盾构刀盘和带常压换刀装置的刀盘。 前者厚度跟同尺寸的土压平衡盾构的刀盘厚度相当,后者厚度一般接近 2m或以上。
间接控制型泥水盾构控制 精度高,开挖仓内的泥水 压力波动小,一般在 0.01~0.02MPa之间变化。 掌子面压力的变化被迅速、 准确的平衡,降低了对地 层的扰动。
8 盾构及掘进技术国家重点实验室
3.泥水平衡原理
泥水稳定掌子面的方法源于地下连续墙的泥浆护壁原理,其基本原 理是通过在支撑环前面隔板的密封舱中,注入适当压力的泥浆,在开挖 面形成泥膜,支撑正面土体,并由安装在正面的刀盘切削土体表面泥膜, 与泥水混合后,形成高密度泥浆。
当泥水压力大于地下水压力时,泥水按照达西定律渗入土体,形成
与土壤间隙成一定比例的悬浮颗粒,这些颗粒被捕获并积聚于土体与泥
水的接触区,逐渐形成泥膜。当泥膜抵抗力远大于正面地层压力时,产
生泥水平衡效果。
9
盾构及掘进技术国家重点实验室
泥膜的类型
泥皮泥膜
无泥 膜
渗透泥膜
泥水几乎不渗透,只形 成泥膜
盾构及掘进技术国家重点实验室
14 盾构及掘进技术国家重点实验室
15 盾构及掘进技术国家重点实验室
➢ 刀盘的设计要求 (1) 能够降低对刀具的磨损; (2) 保护刀盘的钢结构,刀盘的结构材料为Q345B 、16MnR、 GS52或相
当于这种材料的铸钢; (3) 能够实现高的贯入度; (4) 选择降低刀具的磨损及维持掌子面稳定的最优刀盘开口率; (5) 幅轮设计以使每个旋转方向都有多个碴土出口; (6) 2 个旋转方向(正/反); (7) 刀盘前面有独立的喷口用于防止刀盘结泥饼; (8) 连接到主驱动的连接臂(厚壁管)保证刀盘良好的稳定性; (9) 出碴通道的几何设计必须满足开挖仓容易出碴; (10) 大的物料通道从刀盘外缘通到刀盘中心区域,这样便于将挖掘的物

泥水平衡盾构施工技术教材

泥水平衡盾构施工技术教材

一、泥水盾构施工技术 3、功能组成
(1) 盾构掘进系统 掘进系统包括泥水加
压平衡盾构掘进部分和 使其运转的动力设备、 装载动力设备以及与掘 进机同时前进的后方车 架。泥水加压平衡盾构 掘进部分由刀盘、盾壳 、刀盘动力驱动马达、 推进千斤顶和管片拼装 机等设备组成。
右图是Φ6260 泥水平 衡式盾构机主体结构简 图
一、泥水盾构施工技术 3、功能组成 (2) 泥水加压和循环系统
泥浆循环模式包括: ①旁通模式(待机模式):拼装管片时用,将开挖面的
泥浆隔离; ②开挖模式:通过流量泵来控制泥浆的压力、流量; ③反循环模式:泥浆逆向流动,在开挖室堵塞或清理管 路时使用; ④隔离模式:与地面泥浆系统完全隔离,在管路延伸时 使用; ⑤长时间停机:开挖室保压、此时泥浆液面自动校正。
左 图 为 新 浆 制 作 流 程 图
一、泥水盾构施工技术 3、功能组成
(3) 控制系统(含自动导向系统)
泥水加压式盾构法, 是用泥水加压密闭的开挖面, 不能直观目视开挖面状态及切削状况。为此, 采用 PLC控制管理送排泥状态、开挖面泥水室压力以及 泥水处理设备等运转状况来进行推测, 以便及时处理 突如其来的异常情况。泥水加压式盾构的控制管理 系统, 不是单纯的信息中心, 而是作为整体运转所不 可缺少的一个体系。将这些信息集中在一起并迅速 作出反应的某一处理称为中央控制, 操作人员的操作 技能是兼下达土木、电气、机械等综合判断指令的 技术于一体, 并在数据分析中起到显著的作用。
②及时把切削土砂形成的混合泥浆输送到地面进行 分离和处理,再将回收的泥浆调整利用。
③泥水系统与盾构机的选型、掘进速度、地质条件 等紧密联系在一起的,不同的地质工况条件取决 了不同的泥水系统模式。
一、泥水盾构施工技术 1、原理

泥水平衡盾构施工技术培训

泥水平衡盾构施工技术培训

根据施工方案,准备所需的管片、砂 浆、盾构机等材料和设备,确保施工 顺利进行。
制定施工方案
根据勘察结果,制定详细的施工方案 ,包括盾构机选型、施工组织、安全 保障等。
盾构掘进施工
安装盾构机
将盾构机安装到始发井或接收井 ,并进行调试和试运行。
泥浆制备
根据地质条件,制备适当比例的泥 浆,用于控制盾构机掘进过程中的 泥水压力。
现状
目前,泥水平衡盾构技术已成为隧道工程建设中的重要技术手段之一,广泛应用 于国内外各类大型隧道工程中,为城市建设和交通发展做出了重要贡献。
02
泥水平衡盾构设备与操作
盾构机的基本结构
01
02
03
04
刀盘
用于切削和破碎土体,是盾构 机的主要工作部分。
盾体
提供保护和支撑,内部安装有 控制、推进、拼装等系统。
泥水平衡盾构施工技术培训
目录
• 泥水平衡盾构技术概述 • 泥水平衡盾构设备与操作 • 泥水平衡盾构施工流程 • 泥水平衡盾构施工中的问题与对策 • 泥水平衡盾构技术案例分析
01
泥水平衡盾构技术概述
定义与原理
定义
泥水平衡盾构是一种隧道掘进技术,通过向切削仓内注入泥浆,保持压力平衡 ,使掘进过程中土仓内的泥水压力和掌子面土压力平衡,以保持掌子面的稳定 。
掘进施工
启动盾构机进行掘进施工,同时通 过泥浆系统将切削下来的土体排出 ,保持泥水平衡状态。
衬砌与管片安装
衬砌预制
在工厂或现场预制混凝土衬砌块 ,确保其质量和尺寸符合设计要
求。
管片拼装
在盾构机掘进过程中,逐块拼装 管片形成隧道结构,同时确保管
片之间的密封性。
衬砌安装
将预制好的衬砌块逐块安装到管 片外侧,形成完整的隧道结构。

泥水平衡盾构施工技术教材-2022年学习资料

泥水平衡盾构施工技术教材-2022年学习资料

一、泥水盾构施工技术-1、原理-支护泥水在泥水盾构掘进中起着重要作用:-①在开挖面土体表面形成泥膜,泥膜厚 随渗透时-间增加而增加,从而有效提高渗透抵抗力。-②-支承、稳定正面开挖面土体。-③盾构借助泥水压力与正面 压产生泥水平衡效-果,有效支承正面土一、泥水盾构施工技术-1、原理-泥水系统的作用-①及时向开挖面密闭舱提供掘进施工需求的泥浆,-用优质膨润土 制的泥浆的比重、粘度等技术指-标必须满足在高透水砂层中形成泥膜和稳定开挖-面的要求;-②及时把切削土砂形成 混合泥浆输送到地面进行-分离和处理,再将回收的泥浆调整利用。-③泥水系统与盾构机的选型、掘进速度、地质条件 等紧密联系在一起的,不同的地质工况条件取决-了不同的泥水系统模式。
一、泥水盾构施工技术-2、适用条件-泥水盾构对硬岩也有较强的适应性:-1泥水盾构可以降低施工风险-2采用泥 盾构能使现场施工条件要求-降低:
一、泥水盾构施工技术-3、功能组成-泥水加压平衡盾构机主要由五大系统组成:-1盾构掘进系统;-2泥水加压和 环系统;-3控制系统;-4泥水分离处理系统;-5壁后注浆系统。
20世纪60年代英国隧道专家建议在隔舱板前用喷水“水力盾-构”,但水不能支护开挖面,无法阻止开挖面不停地流 。-与”一送泥管-置入式地山探查装置-乜卜真円保持装置-力夕-超音波式地山空同探查装置-P」”万-力今题助 -電勒機-了子一-提拌璃-可重川-排泥管
20世纪70年代日本的泥水盾构机
日本的大直径泥水平衡盾构机-8630-8520-1507-3030-2978-2512-4E司-B环-C环 850-2180-0020-图1中6260泥水平面式盾构机主体结构简图
盾构施工技术-现代盾构机主要分为土压平衡式、泥-水平衡式、硬岩式、复合式等类型。传统-的盾构施工法大多有赖 气压、降水、注-浆加固等措施来对付不稳定地层的局面-而泥水加压式盾构是用泥浆加压确保切削-面稳定,用管道输 代替轨道出土,加快-了-掘进速度,改善了劳动条件和施工环境-能较好地稳定开挖面和防止地表隆陷,成-为当今一 划时代的盾构新技术

泥水平衡盾构

泥水平衡盾构

17:30
24
盾构及掘进技术国家重点实验室
17:30
(2)带压进仓更换 ①普通带压进仓 盾构推进到选定地点停机,设定泥水仓内的压力,用压缩空气置换 泥水仓内的部分泥浆,使液位降到隔板密封仓门以下,与此同时人员进 入人仓,对人仓逐步加压,直至与泥水仓压力一致。之后,作业人员进 入泥水仓进行刀具检修更换作业。作业完成后,人员在人仓内减压,减 压结束后退出人仓。 缺点:作业效率低,作业人员有安全风险 ②饱和气体带压进仓 基本作业流程与普通带压进仓类似,不同之处是作业人员呼吸的是 混合气体(如氦氧混合气体),而不是空气,避免高压情况下呼吸普通 空气引起的“氮麻醉”现象,体内溶解的气体达到饱和状态后,作业人 员可以一直生活在人造高压环境中,直至工作完成,再减压即可,避免 普通带压进舱压力反复加减压,避免了患减压病的风险,也提高了作业 效率。
25
盾构及掘进技术国家重点实验室
17:30
饱和气体带压进舱作业流程
进入人员舱等待转运
作业人员在生活舱加压完成 后,进入转运舱
作业人员通过转运舱进 入生活舱休息
整个作业循环中,人员均处于高压环境,待完成带压 进舱作业后,人员一次减压出舱
作业人员 进入转运 舱
作业人员 转运至人 舱
作业人员完成作业后进 入人舱,等待转运
泥水平衡盾构
盾构及掘进技术国家重点实验室 2019年6月
盾构及掘进技术国家重点实验室
提纲
一 泥水平衡盾构概述 二 泥水平衡盾构组成 三 泥水平衡盾构地质适应性范围 四 泥水平衡盾构应用案例
2
盾构及掘进技术国家重点实验室
17:30
一 泥水平衡盾构简介
3
盾构及掘进技术国家重点实验室
17:30

盾构机操作与维护 课件 项目五 泥水盾构机的基本构造

盾构机操作与维护 课件   项目五 泥水盾构机的基本构造
1)盾尾润滑系统 盾尾润滑系统的作用是不断地泵送盾尾油脂到盾尾密封刷之 间形成的腔室里;在压力下,随着盾体的向前移动,油脂在密封 刷和管片之间形成一层油膜,在保持压力、防止水或其他物质 进入盾体的同时,也可以保证盾尾密封刷的寿命。
5.1 泥水盾构的基本构造
5.1.2泥水盾构的系统构成及主要构造 气动盾尾密封润滑油脂泵安装在后配套系统上,将油脂桶里的 油脂打到密封腔里。在盾尾区域,每个油脂腔都有油脂注入管。 在掘进期间油脂的注入是不间断的。 油脂分配阀可以通过时间和压力控制循环动作。时间可以在 控制面板上通过PLC预先设置。压力优先于时间,也就是说,一 旦达到预先设定的压力值,即转向下一个阀运作,不管时间是 否到达。润滑系统由控制室控制,有自动和人工两种模式。 如果润滑油脂罐空了,油脂泵会自动停止动作并发送一错误信 息到控制室。
5.1 泥水盾构的基本构造
5.1.2泥水盾构的系统构成及主要构造 3)逆冲洗模式 掘进模式下,当P2.1泵前方管路堵塞或气垫仓底部渣土滞排时, 使用逆冲洗模式进行疏通。本设计增加的逆冲洗排浆管能够实 现浆液排放,可实现持续逆向冲洗直至堵塞管路疏通。
5.1 泥水盾构的基本构造
此外,压缩空气具有反应速度快、填充速度快、容易实现远程 精确自动控制的特点,间接控制性泥水盾构可以更快速、更准 确地平衡压力,更有利于控制地表沉降。
5.1 泥水盾构的基本构造
5.1.2泥水盾构的系统构成及主要构造 下面以间接控制型泥水盾构为例,简要介绍泥水盾构的典型系 统构成。泥水盾构由以下五大系统构成: (1) 盾构掘进系统:一边利用刀盘挖掘整个开挖面,一边推进盾 构向前掘进。 (2) 泥水循环系统:将膨润土浆液送至开挖面,保持开挖面稳定, 并把泥水仓里的渣土通过管道以泥浆的形式泵送到地面处理厂 。 (3) 管片衬砌和物料运输系统:运输管片和其他材料,并把管片 安装到位、成形。

泥水平衡盾构机施工原理和过程

泥水平衡盾构机施工原理和过程

泥水平衡盾构机施工原理和过程
泥水平衡盾构机是一种先进的地下隧道施工设备,其施工原理和过程如下:
1. 泥水平衡原理:
泥水平衡盾构机通过在隧道开挖的同时用泥浆来平衡地下水的压力,保持隧道内外的压力平衡。

泥浆被压入钻头,然后通过螺旋输送器将挖掘出的土层推向机尾,形成一个连续的支撑系统,防止隧道塌方。

2. 泥水平衡盾构机施工过程:
(1)初始工作:安装盾构机、钻刀、传动系统、防泥层、螺
旋输送器等设备,并进行前期准备工作。

(2)开挖土层:盾构机启动后,钻刀开始旋转并推进,将土
层挖掘出来。

同时间,泥浆通过喷射系统进入钻刀与土层之间的工作空间,平衡地下水的水压。

(3)土层输送:螺旋输送器将挖掘出的土层推向盾构机后部,同时泥浆通过污泥管道排出。

(4)隧道衬砌:在挖掘过程中,立即进行隧道衬砌,以保持
隧道稳定性。

衬砌材料可以是混凝土预制环块等。

(5)连续推进:盾构机继续进行推进,重复以上步骤,直至
完成整个隧道的开挖。

总之,泥水平衡盾构机通过泥浆的平衡压力和连续推进的工作方式,实现了地下隧道的安全快速施工。

泥水盾构工法

泥水盾构工法
在盾构机掘进完成后,进行管片拼装 ,形成隧道结构。
注浆施工
在管片拼装完成后,进行注浆施工, 对隧道周围土体进行加固处理。
施工监测与评估
施工监测
对施工过程中各项参数进行监测,如 盾构机掘进姿态、泥浆压力和流量、 管片拼装质量等。
施工评估
根据监测数据对施工过程和成果进行 评价,及时发现和解决施工中存在的 问题,确保工程质量和安全。
在施工过程中,泥水舱内的泥水压力需要与地层压力保持动 态平衡,以维持地层的稳定性。同时,泥水舱内的泥水压力 也需要与泥水舱的几何形状相匹配,以确保施工安全。
泥水处理与循环利用
泥水处理与循环利用是泥水盾构工法的关键技术之一,通 过将挖掘出的泥水进行分离、筛选、搅拌等处理,实现泥 水的循环利用。
在施工过程中,挖掘出的泥水需要进行分离,去除其中的 大颗粒和杂质,然后通过搅拌和添加适量的化学药剂,使 其达到所需的物理和化学性能指标。处理后的泥水可以再 次用于控制地层压力、冷却刀盘和润滑管片等施工操作。
泥水盾构工法适用于各种土壤 和软岩地层,具有广泛的适用
性。
泥水盾构工法的缺点
泥水处理问题
挖掘过程中产生的泥水需要妥善处理,否则 会造成环境污染。
成本较高
相对于其他工法,泥水盾构工法的设备成本 和运营成本较高。
施工精度要求高
由于泥水盾构的挖掘精度受多种因素影响, 因此对施工精度要求较高。
施工条件受限
远程监控与决策支持系统
建立远程监控与决策支持系统,实现施工过程的实时监控和远程控 制,提高施工管理的智能化水平。
06 泥水盾构工法案例分析
案例一:某地铁区间隧道泥水盾构施工
总结词:成功应用
详细描述:某地铁区间隧道采用泥水盾构工法进行施工,通过合理的泥水处理和掘进控制,成功穿越了复杂的地质条件和重 要建筑物,保证了施工安全和质量。

泥水平衡盾构泥水压力控制课件

泥水平衡盾构泥水压力控制课件
2.泥水平衡的适用范围 在软弱的淤泥质黏土层、松散的砂土层、砂砾层、 卵石砂砾层、沙砾和硬土等地层,尤其适用于地 层含水量大、上方有大水体的越江隧道和海底隧 道的施工采用泥水平衡式盾构。
适用的具体地质情况:
(1)隧道上方有江、河、湖、海等大水体 地层; (2)由粘性土、砂性土、粉土等多层互层 构成的地层; (3)滞水砂层及其他松散地层; (4)高水压层和高承压水地层; (5)砾石直径不大但砾石数量多的地层。
11.管路延长时的泥水压力调节
在盾构推进过程中,进排泥管路需不断
伸长,管阻亦随之增大。为了保证保证切 口水压力稳定和管道中恒定的流速,排泥 泵转速应随时做相应改变,因而排泥泵必 须自动调整。当泵满足不了要求,必须增 加泵的数量,做好各个泵之间的协调和自 动化控制。为了保证切口泥水压力和盾构 掘进质量,在进、排管路上分别装设流量 计和密度计,及时检测,及时反馈数据, 调节水压。
切口泥水压力应介于理论计算值上下限 之间,并根据地表建筑物的情况和地质条 件做适当调整。
①切口水压上限值的计算 Pfu=P1+P2+P3
=rw×h+K0[(r- rw) ×h+r×(H-h)]+20
式中:Pf1 ,P2—分别指切口水压力下限值、主动土压力(kPa) P1 ,P3—分别指地下水压力、变动土压力(kPa) Ka—主动土压力系数 Cu—土的粘聚力
3.主要特点 (1)在易发生流沙的地层中能稳定开挖面,可
在正常大气压下施工作业,无需用气压法施工;
(2)泥水压力传递速度快而均匀,开挖面平衡 土压力的控制精度高,对周边开挖土体干扰少, 地面沉降量的控制精度高;
(3)盾构出土由泥水管道输送,速度快而连续; 减少了电机车的运输量,施工速度快;

泥水盾构

泥水盾构

中交隧道局南京纬三路过江通道
双管片行车
双管片行车作为管片运输系统中重要设备,最大起重 量为40T,每次可搬运两块管片,节省管片运输时间。 工作时,由2#台车后端起吊,通过台车内部运输至前 端,将管片放置在单管片接收平台上。整个运输过程可 以实现人工及半自动两种控制方式。
中交隧道局南京纬三路过江通道
中交隧道局南京纬三路过江通道
中交隧道局南京Leabharlann 三路过江通道制浆系统 全自动制浆系统QZJ-200从上料(水)、称重、搅 拌到输送全过程均为自动控制运行(亦可人为干预), 具有制浆速度快,浆液搅拌均匀等特点。通过上位机预 设定水灰比,可灵活配制从1.05~1.20g/cm3之间不同 密度的浆液。制浆时间可调,每个制浆周期耗时最多 3~5分钟。足以满足应急补浆所需。
单管片行车
该行车位于1#台车后部,主要用于油脂搬运及接受 平台上管片的转移,最大起重量为20T,每次可起吊一 块管片。当行车起吊接收平台上放置的管片时,运用液 压油缸实现管片开启和闭合,运用旋转马达将管片整体 旋转±90°。通过液压系统还可以调整管片位置精度,并 放置在管片供给装置末端接收段。
中交隧道局南京纬三路过江通道
中交隧道局南京纬三路过江通道
3 泥水处理系统 2
筛分 压滤系统 制浆系统 调浆系统
中交隧道局南京纬三路过江通道
筛分
泥浆处理系统由筛分系统、压滤系统、制浆系统、 调浆系统等构成,通过管路连接使各系统单元组合在一 起,达到盾构机泥水循环泥浆指标要求的目的。
本项目泥水处理系统采用型号为ZX-3000筛分处理 设备,总机泥水处理量为3×1000m3/h,筛分设备分 为三个泥水处理单元,每个单元又由9个框架3层结构构 成,设备总重量108t,装机功率1500KW。筛分设备结 构图如下。

泥水平衡盾构机施工原理介绍

泥水平衡盾构机施工原理介绍

泥水平衡盾构机施工原理介绍泥水平衡盾构机是一种用于地下隧道施工的先进设备。

它采用泥浆平衡法进行施工,能够在地下进行高效、安全的隧道开挖。

本文将详细介绍泥水平衡盾构机的施工原理。

1. 泥水平衡盾构机的基本原理泥水平衡盾构机是在隧道掘进过程中,通过注入泥浆控制地下水位,保持隧道工作面正常工作环境的一种盾构机。

它采用了泥浆平衡法,即通过在隧道工作面注入泥浆,使泥浆的密度与地下水的压力平衡,从而达到控制地下水位的目的。

2. 泥水平衡盾构机的工作原理泥水平衡盾构机主要由刀盘、前后密封、螺旋输送机和泥浆系统等部分组成。

在施工过程中,首先将泥浆通过泥浆系统供给到刀盘前部的刀具上。

刀盘旋转时,刀具将地层土壤切削下来,同时将泥浆与土壤混合成泥浆浆体。

泥浆浆体通过螺旋输送机送出隧道,同时通过密封系统保持隧道工作面的压力平衡。

泥浆与地下水的压力平衡可以有效控制地下水位,防止水和土壤的涌入,保护工作面的稳定性。

3. 泥水平衡盾构机的施工过程泥水平衡盾构机的施工过程可以分为以下几个步骤:(1) 预处理:在施工前,需要对隧道工作面进行预处理,包括地下水的降低和土层的加固等。

(2) 开挖:泥水平衡盾构机开始工作后,刀盘旋转切削土壤,并通过螺旋输送机将土壤与泥浆混合成泥浆浆体。

(3) 输送:泥浆浆体通过螺旋输送机将土壤从隧道中输送出去,同时保持隧道工作面的压力平衡。

(4) 支护:在土壤被切削后,需要进行隧道工程的支护,以确保隧道的稳定和安全。

(5) 后续处理:隧道开挖完成后,需要进行后续的清理工作,包括清理刀盘和螺旋输送机等设备。

4. 泥水平衡盾构机的优势和应用泥水平衡盾构机具有以下优势:(1) 施工速度快:泥水平衡盾构机可以实现连续作业,施工速度较快。

(2) 施工安全:泥水平衡盾构机采用了泥浆平衡法,能够有效控制地下水位,减少地层涌水和塌陷的风险。

(3) 对环境的影响小:泥水平衡盾构机在施工过程中,通过注入泥浆控制地下水位,减少对周围环境的影响。

泥水盾构工作原理

泥水盾构工作原理
.
气压调节系统
目前是使用的一般是SAMSON公司产品。其原理为,当压力降低或升高,与设定值有偏差时,通过压力的反馈,调整进气阀或者排气阀,对气仓内进行补气或排气,使压力逐渐升高或降低到设定压力值,直至与设定值平衡。因为掘进时液位总是存在一定的波动,其压力有一定变化,SAMSON系统能根据压力的反馈,及时对气压进行调整。
压力调节器
进排气阀
一般气仓压力一经设定,一个掘进循环内不再进行调整,所以掘进循环内,刀盘压力稳定在某个恒定值。只有当掘进条件发生变化,需要调整掘进压力时,再对压力调节器重新进行压力设定。 气压调节系统功能是保证泥水仓的压力,泥浆循环系统的功能是出渣。
.
四、泥水处理系统
泥水盾构掘进,其泥浆质量是控制盾构掘进质量的重要基础,对于盾构掘进循环回来的污浆,其性能不能满足循环使用要求,为能够保证掘进质量,需要对泥浆的比重、粘度、颗粒等进行处理,其中泥水分离设备是对泥浆性能有最直接影响的设备
.
两种泥水盾构的主要区别如下
日本体系泥水盾构的泥浆压力,在循环掘进时,通过调整进浆泵的转速或者调整进浆泵出口节流阀的开口比值来实现压力控制的。因此掘进速度、地层变化、掘进深度及其掘进长度对压力均有影响。调节泵的压力是通过中心控制室的自动调节完成。
.
德国体系的空气室的压力是根据开挖面需要的支护泥浆压力设定的,空气压力可通过空气控制阀使压力保持恒定。同时由于空气缓冲层的弹性作用,即使液位波动或出现突然的泄漏,对土仓压力也无明显影响。
.
长时间停机模式
这个模式是自动控制的。此时所有泵都停止运转。开挖面压力由压缩气回路来控制。当气垫室泥浆液位低于预定的低限时,便进行校正。
.
3.2泥浆循环参数控制
泥浆循环参数包括泥浆流量和液位、压力、比重等,循环部件包括进出泥浆泵、流量计、比重计、各种泥浆阀门等。对于不同厂家的盾构的,其泥浆循环略有区别。 泥浆循环的控制包括: 流量和液位的控制 泥浆压力的控制 比重的控制等。

概述地铁工程泥水平衡式盾构施工技术

概述地铁工程泥水平衡式盾构施工技术

概述地铁工程泥水平衡式盾构施工技术一、盾构机选型(一)选择盾构机的原则浅谈在选择盾构机时,应该考虑节约性、可靠性以及安全性。

(二)选择好盾构的种类盾构机通过盾壳对机体的防护,便可顺利的做好衬砌以及后续的开挖工作,以开挖出符合规定的隧道,满足后续建设需要。

二、泥水平衡式盾构作业理论概述在隧道施工中,比较常见的泥水平衡式盾构作业有D模式与泥水模式。

所谓的泥水模式,就是将隔板设置在前部的盾构刀盘后,泥水压力空间因其与刀盘得到建立,在泥水压力室中输送加压后的泥水,在保持压力机构与加压作用机构的工作下,便可稳定开挖面。

间接控制模式即D模式,构成部分有泥水系统、空气系统。

半隔板是安装在该模式的盾构泥水室当中的,并产生了两个泥水室空间。

压力泥浆充满于隔板之前,将压缩空气冲入在半隔板前,挖掘时需要控制的支护压力便可以由空气与泥水这两个系统实现。

三、泥水盾构机的结构与参数明确常见的泥水盾构机的结构示意可以参见下列图示。

参数的明确要考虑到工程的实际情况。

盾构结构形式、管片外径、盾尾厚度、管片安装等影响着盾构外径。

盾构的外径通常确定公式为,管片外径为g,盾尾间隙为,盾尾壁厚为t。

四、基本的施工步骤在进行地铁的盾构施工前,应该对设计资料、工程勘探资料有明确,考虑地铁线路的水文、环境的外部条件,做好基本施工程序的选择,确保选择的施工方案的合理性。

基本的施工程序是:施工準备→盾构始发施工→盾构掘进施工→盾构到达施工等,具体施工程序可见下图。

图 2 基本施工程序图示五、关键的施工技术(一)盾构机吊装盾构机筒体部分最盾构机重量最大的部件,并有若干后配套台车等。

盾构机吊装时应做好施工场地的布置,吊装场地应满足盾构机吊装的要求。

利用履带吊或汽车吊将盾构机筒体和后配套台车调至盾构始发井,然后进行盾构机组装。

(二)盾构机始发1、始发基座的安装。

通常的地铁施工中,钢板的厚度要大于20mm,以此作为基座,并在C30以上混凝土底板上做放置,对基座横梁进行焊接。

泥水平衡盾构施工技术概论章龙管课件

泥水平衡盾构施工技术概论章龙管课件
细颗粒含量多则碴土能形成不透水的流 塑体,能够充满土仓的每个部位,以便建立 压力并传递到切削面支撑土体,压力平衡可 以实现。
粗颗粒含量高的碴土不能形成具备这种 功能的碴土,因而不能实现土压平衡,只能借 助于泥水平衡盾构大比重的泥浆悬浮液,形 成泥膜并传递压力。
从掘进的角度,泥水平衡盾构机也适用 于细颗粒土层,但细颗粒浆液的泥水分离难 度大,投入大,场地要求高。
31
4、管片安装和盾尾壁后注浆系统
主要作用是为开挖后的空间提供支撑和及时充填盾构机外 壳前移后留下的空间。包括管片安装机、吊机、注浆泵和相 应管路。
管片安装机结构示意图
同步注浆示意图
32
第四章 术
泥水平衡盾构施工关键技
33
盾构始发 盾构到达
34
(一) 盾构始发、到达
一般来说,盾构始发和到达技术的关键在于洞口地基加固范围、效 果和洞圈止水密封的效果。
运输轨线
高压电缆 备用管路 循环水管 排污管
人行走道
40
成型隧洞
(二)泥水压力设置 • 泥水压力采用静止土压力(水土分算)作为控制上限,
主动土压力作为控制下限。穿越密集建筑物时压力设定 值靠近上限。一般根据地层性质,砂土、粉土、粉质粘 土等渗透系数较大的地层,采用水土分算。地面荷载偏 压的情况下,压力设定值宜取超载和无荷载的中间值。 • 判断合理性的依据: • A、压力设定要不断摸索,通过地表沉降及时修正。 • B、在渗透性大的地层,利用泥浆漏失量作为检验压力 设定是否合理为依据是可行的。 • 工程施工过程中,根据各项参数分析,总结出适应于该 工程的泥水压力参考计算公式。
44
盾构控制
盾构掘进同步注浆控制
盾构掘进
45
(四)壁后注浆

泥水平衡盾构技术基础

泥水平衡盾构技术基础
ห้องสมุดไป่ตู้13
1825/43, Brunel’ shield
14
1825/43, Brunel’ shield
15
1882, Thames Irruption water
16
1876, mechanised shield
17
自Brunel的方形盾构以后,盾构技术又经过了23 年的改进,到1869年建造横贯泰晤士河上的第二 条隧道,首次采用圆形断面,外径2.18m,长402m, 这项工程由Burlow和Great两人负责。Great采用了 新开发的圆形盾构,使用铸铁扇形管片直到隧道 掘削结束未出任何事故。随后Great在1887年南伦 敦铁道隧道施工中使用了盾构和气压组合工法获 得成功,这为现在的盾构工法奠定了基础。从起 初Torevix反复失败和受挫折,到引出Brunel的盾 构工法,及进而改进成为Great的盾构工法前后经 过80年的漫长岁月。
20
21
22
20世纪60~80年代盾构工法继续发展完善,成 绩显著。
1960年英国伦敦开始使用滚筒式挖掘机; 同年美国纽约最先使用油压千斤顶盾构; 1964年日本埼玉隧道中最先使用泥水盾构; 1969年日本在东京首次实施泥水加压盾构施工; 1972年日本开发土压盾构成功;1975年日本推出泥土加
12
1818年Brunel观察了小虫腐蚀木船底板成洞的经过,从而得 到启示,在此基础上提出了盾构工法,并取得了专利。这就 是所谓的开放型手掘盾构的原型。Brunel对自己的新工法非 常自信,并于1823年拟定了伦敦泰晤士河两岸的另一条道路 隧道的计划。随后,这个计划由当时的国会确认,工程于 1825年动工。隧道长458m,隧道断面为11.4m×6.8m。工程 进展顺利,但因地层下沉,致使工程被迫中止。但Brunel并 没有因此而灰心失望,他总结了失败的教训,对盾构做了7 年的改进,后于1834年工程再次开工,又经过7年的精心施 工,终于在1841年贯通隧道。Brunel在该隧道中采用的是方 形铸铁框盾构。自Brunel向泰晤士河隧道挑战到隧道峻工前 后经历了20个春秋,Brunel经过不懈的努力,克服了种种困 难,终于最后取得了胜利 。此时,他已是72岁的老人。 Brunel对盾构工法的贡献极为卓著,这是后人的一致公论。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20 10 0 0,001 0,002 0,006 0,02 Grain Diameter d in mm
Slurry
0,06 0,2 0,6 2,0
-5 Coarse sand 10 -6 Medium sand 10 -7 Fine sand 10 Sandy, Silty clay 10- 8 Silt -9 10
泥水盾构技术介绍
盾构技术基础内容
1、盾构机概述(基本概念,历史与现状)
2、盾构机的分类 3、泥水盾构基本工作原理 4、泥水盾构机与配套设备 5、泥水平衡盾构施工 6、关键技术问题
泥水盾构机
1、盾构概述(基本概念,历史与现状) 1.1盾构基本概念


盾 构 机 ( Shield Machine, Tunnel Boring Machine,TBM) —也称为隧道掘进机。 综合配有各种不同的挖掘、顶进、转向、支护、排 渣、衬砌、运输机械,和自身配备的传感、测量与 控制装置一起,形成一个完整的施工机械系统。
Mittel-
Permeability
Cobbles Coarse gravel
–– –– –– –– ––
10 1 10 10 10 10
-1 -2 -3 -4
Siebkorn
Fein-
Medium gravel
Mittel-
Massenanteile der Körner <d in % der Gesamtmenge
人工开挖式;机械开挖式 敞开式;密闭式 土压平衡式;泥水平衡式 软土盾构;硬岩盾构 现代盾构机主要分为土压平衡式、泥水平衡式、硬岩 式、复合式等类型。

泥水平衡式
开式
复合式盾构
盾构类型
硬岩式
土压平衡式
盾构机选型依据
Grain Size Distribution
Kö rnungslinie Schlä mmkorn Silt




1990 年 ~2003 年这一段时间里盾构工法 的技术进步极为显著。归纳起来有以下 几个特点: ① 盾构隧道长距离化、大直径化 ② 盾构多样化 ③ 施工自动化
1.3 我国盾构应用情况



1.盾构台数多。现有各类盾构机150多台 2.盾构种类齐全。土压平衡式,泥水平衡式, 双护盾式,硬岩,复合式…盾构直径大、小均 有,最大为15.4米,目前世界最大。 3.盾构适应地质范围不断扩大。 4.盾构应用范围广,地铁,铁路,公路,水利, 观光,市政,燃气等。得到广泛认可。 5.盾构施工技术水平提高。
1904/08, 9.35m






19世纪末到20世纪中叶盾构工法相继传入美国、法国、德国、日本、 苏联等国,并得以不同程度的发展。 美国于1892年最先开发了封闭式盾构; 同年法国巴黎使用混凝土管片建造了下水道隧道; 1896年~1899年德国使用钢管片建造了柏林隧道;1913年德国建造了 断面为马蹄形的易北河隧道; 1917年日本采用盾构工法建造国铁羽越线,后因地质条件差而停止使 用; 1931年苏联用英制盾构建造了莫斯科地铁隧道,施工中使用了化学注 浆和冻结工法;1939年日本采用手掘圆形盾构建造了直径7m的关门隧 道;1948年苏联建造了列宁格勒地铁隧道; 1954年中国阜新建造φ2.6m的圆形盾构疏水隧道;1957年中国北京建 造了φ2m、2.6m的盾构下水道隧道;1957年日本采用封闭式盾构建造 东京地铁隧道。 总之在这50~60 年的时间里盾构工法虽然也有进步,但这一时期的特 点是盾构工法在世界各国得以推广普及。
1.2 盾构发展历史
1806, Brunel’ shield
18世纪未英国人提出在伦敦地下修建横贯泰晤士河隧道的构 想,并对具体的掘削工法和使用机械等问题做了讨论。到 1798年开始着手希望实现这个构思,但由于竖井挖不到预定 的深度,故计划受挫。但横贯泰晤士河隧道的设想与日俱增, 4年后Torevix 决定由另一地点建造连结两岸的隧道,随后工 程再次开工。施工中克服了种种困难,当掘进到最后30m时, 开挖面急剧浸水隧道被水淹没,横贯泰晤士河的设想再次破 灭,工程从开工到被迫终止用了 5 年时间。横贯泰晤士河的 计划在以后10年中未见显著进展。
Permeability Factor k (m/s)
Slurry / Hydro
10 10 10
- 10 - 11 - 12
EPB
Tunnelling Equipment
Clay
––
泥水平衡式盾构机与土压平衡盾构机工作特点对比表 泥水平衡式盾构 土压平衡式盾构
砂、粉砂和粘土等各类软土地层
通过改良充满土舱的开挖土并保持适当 的压力来支承开挖面的土压力和水压
地层情况与盾构选型的关系
不同类型的盾构对地层有一定的适应范围,土压平衡式盾构较适应于粉细颗粒地层, 使切削的碴土易获得塑性流动性和不透水性。而泥水平衡式盾构机较适应于较粗颗粒地层 及水压较高的地层,通过泥浆在砂土地层形成泥膜,以保持开挖面的稳定。两种盾构机的 适应范围见地层颗粒粒径分布与盾构机选型关系图。
1.
1、适应土 层
2、工作面 稳定
中细砂、粗砂和砂砾石等各类软 土地层
通过注入适当压力的泥浆来支承 开挖面的土压力和水压
1.
3、压力波 动敏感程度 及地表沉降
2.
泥水中,压力波动敏感, 即泥水压力传递速度快而 均匀 开挖面平衡土压力的控制 精度高,对开挖面周边土 体的干扰减少,从而地面 沉降量的控制精度提高
1818年Brunel观察了小虫腐蚀木船底板成洞的经过,从而得 到启示,在此基础上提出了盾构工法,并取得了专利。这就 是所谓的开放型手掘盾构的原型。Brunel对自己的新工法非 常自信,并于 1823 年拟定了伦敦泰晤士河两岸的另一条道 路隧道的计划。随后,这个计划由当时的国会确认,工程于 1825年动工。隧道长458m,隧道断面为11.4m×6.8m。工 程进展顺利,但因地层下沉,致使工程被迫中止。但Brunel 并没有因此而灰心失望,他总结了失败的教训,对盾构做了 7 年的改进,后于 1834 年工程再次开工,又经过 7 年的精心 施工,终于在1841年贯通隧道。Brunel在该隧道中采用的是 方形铸铁框盾构。自Brunel向泰晤士河隧道挑战到隧道峻工 前后经历了20个春秋,Brunel经过不懈的努力,克服了种种 困难,终于最后取得了胜利。此时,他已是 72 岁的老人。 Brunel对盾构工法的贡献极为卓著,这是后人的一致公论。
2.
因为原状土的塑流性较差,相对 泥水压力波动敏感度较差即土压 力传递速度较慢 开挖面平衡土压力的控制精度相 对较低,对开挖面周边土体的干 扰较大,从而对地面沉降量的控 制精度降低
4、刀盘及 刀具寿命
切削面及土仓中充满泥水,对刀 刀盘与开挖面的摩擦力大,土仓中土碴 具、刀盘起到一定的润滑作用, 与添加材料搅拌阻力也大,故其刀具、 摩擦阻力与土压盾构相比要小, 刀盘的寿命比泥水盾构要短,刀盘驱动 因而相对土压盾构而言,其刀具、 扭矩比泥水盾构大 刀盘的寿命要长,刀盘驱动扭矩 小
1
1. Zeile bleibt immer frei
2
EPB / Mixshield Range. 粒径分布与盾构选型图
Sieve Size Sand Medium
3
4
5
Portion of grains < d in % of the total amount
100 90 80 70 60 50 40 30 20 10 0
1825/43, Brunel’ shield
1825/43, Brunel’ shield
1882, Thames Irruption water
1876, mechanised shield

自Brunel的方形盾构以后,盾构技术又经过了23 年的改进,到1869年建造横贯泰晤士河上的第二 条隧道,首次采用圆形断面,外径2.18m,长 402m,这项工程由Burlow和Great两人负责。 Great采用了新开发的圆形盾构,使用铸铁扇形 管片直到隧道掘削结束未出任何事故。随后 Great在1887年南伦敦铁道隧道施工中使用了盾 构和气压组合工法获得成功,这为现在的盾构工 法奠定了基础。从起初Torevix反复失败和受挫折, 到引出Brunel的盾构工法,及进而改进成为Great 的盾构工法前后经过80年的漫长岁月。



ห้องสมุดไป่ตู้

盾构实际上是盾构机的简称。它是一个横断面外形与隧道 横断面外形相同、尺寸稍大,内藏挖土、排土机具,自身设 有保护外壳的暗挖隧道的机械。 以盾构为核心的一整套完整的隧道施工方法称为盾构工法。 盾构工法的设想19世纪初产生于英国,已有200年的历史。 盾构工法问世以前隧道施工主要靠开挖法。但就城市隧道施 工而言,开挖法存在受地形、地貌、环境条件的限制;开挖 法给城市交通带来极大不便;开挖产生的地层沉降较大;施 工机械的噪声和振动;施工对环境构成的污染等诸多不利因 素。相对而言,盾构工法不存在这些缺陷,故受到人们的极 大重视,并得以迅速发展。 人们不仅开发了软土盾构工法,而且还开发了适于卵石地层 等多种其它地层的盾构工法。此外,还在提高安全性、提高 工程质量、缩短工期及降低成本等方面作了精心的研究和开 发,并取得了较大的成功。目前盾构工法在城市隧道施工技 术中已确立了稳固的统治地位,且已成为一种必不可少的通 用隧道施工技术。
100 90 80 70 60 50 40 30
Clay
Fein-
Grob-
Sand
Mittel-
Grob-
Fein-
Gravel
Grob-
0 10 20 30 40
Fine gravel
–– –– –– –– –– –– –– ––
相关文档
最新文档