浅谈数学中的美 李敬敏

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈数学中的美李敬敏

发表时间:2013-04-19T09:17:45.403Z 来源:《教师教育研究(教学版)》2013年3月供稿作者:李敬敏[导读] 严密。数学逻辑的严密性,既是数学的特点,又是数学所追求的目的。

河北省安平县教师进修学校李敬敏

当下学生学习数学的信心和兴趣在减弱,我想与我们的数学教师对现成的教案迷信、对教材的迷信、对程式化教学模式的迷信、对高分片面的追求从而造成数学课死气沉沉、缺乏活力不无关系。其实数学教育既是向学生传授数学知识的过程,又是一个情感的双向交流过程。而获得美的感受是这个互动过程的动力源泉。

一、数学语言的美

对数学语言存在 “严密”、“准确”、 “情感”、 “风趣”四方面的美,要把握及应用得当,可增强教学语言的穿透力,还可强化要传授的数学知识,教育者要提高水平必须设法使它们和谐统一。

1,严密。数学逻辑的严密性,既是数学的特点,又是数学所追求的目的。恩格斯说:“数学以确定的完全现实的材料作为自己的对象,不过它考察一对象时完全弃其具体内容和本质的特点。”尽管数学概念本身以及它的结论、方法都是反映现实世界的,但它仍是在纯粹形式下进行研究的。因此,数学的教学语言力求做到“严谨简约”,也就是说在教学中语言不可模棱两可,重要语句不冗长,要抓住重点,简洁概括,有的放矢。严密的逻辑结构是数学美的一个表现。

2,准确。数学教师对定义、定理、公理的叙述要准确,不应该使学生产生疑问和误解,因此,作为教师要做到如下两条:一是对概念的实质和术语的含义首先必须有个透彻的了解。例如,“对应角相等”与“角对应相等”,“切线”与“切线长”是完全不同的两个概念;又如“平分弦的直径垂直于弦”,“所有的质数都是奇数”,这类语言就缺乏准确性。二是必须用科学的数学术语来授课,不能用自己生造的土话或方言来表达概念、性质、定理等。比如,把“线段的中点”讲成“在线段中间的点”就不准确。初中学生模仿能力强,教师的语言对学生来说是一个样板,他们对学生语言习惯和能力的影响是潜移默化的,如果教师的语言不够准确规范,会使学生对数学知识产生模糊的理解。因此,数学教师必须熟练数学科学语言的表达,做到言之成序,言之有理,这对培养学生严谨的科学精神和数学思维方法也是大有益处的。 3,情感。数学教学语言应力求亲切,富有情绪。数学语言是师生双方传递和交流思想感情的载体,亲切、感人的教学语言最能使学生保持积极舒畅的学习心境,最能唤起学生的热情,从而产生不可低估的力量。正如古人讲的“感人心者,莫先乎情”。教师在教学中,无论是讲授知识,还是对待学生,语言都应亲切,富有情感。许多专家也认为:智力源于情感,情感支配智力。对人的成功而言,情感智力比通常的心智活动的进行和智力水平的提高,更具有积极的意义,这是其他任何语言所无法替代的。

4、风趣。数学教学的对象是学生,他们需要教学语言的幽默风趣、通俗易懂。在数学教学中巧妙地运用幽默,可使教师的讲课变得风趣、诙谐、睿智,具有一定的艺术魅力,有助于学生去理解、接受和记忆新知识。具体地说,幽默风趣的语言可以激活课堂气氛,调节学生情趣。例如,在讲解平面直角坐标系的过程中,教师可以先讲解数学家欧拉发明坐标系的过程:有一次,欧拉躺在床上静静地思考,如何确定事物的位置,这时发现一只苍蝇粘在了蜘蛛网上,蜘蛛迅速地爬过去把它捉住。欧拉恍然大悟:“啊!可以象蜘蛛一样用网格来确定事物的位置啊。”然后引入正题——怎样用网格来表示位置。这时学生的学习兴致被大大地调动起来了。又如,我在讲授“线段的黄金分割”时,介绍了人体中有许多黄金分割的例子,如人的肚脐是人体长的黄金分割点,而膝盖又是人体肚脐以下部分体长的黄金分割点,使学生大开眼界,学习兴趣倍增。

二、数学形式美

数学的特点决定了数学形式的简单性和应用的广泛性,简单性是美的特征,也是数学所要求的,大千世界无奇不有、杂乱无章的自然现象中抽象出数学概念,再用简单的数学形式表示,然后反过来又解释更多现象,这正是我们数学的威力美的体现。

世界上存在着何其多的三角形,形式之多令人难以想象,然而三角形面积公式12 ah(a为底边,h为底边上的高)适用于任何三角形,以次还能推出所有多边形的面积。形式多么简单,而应用如此之广泛。

众所周知,科学的发展,人类的进步,数学已渗透到了各个领域,数学影响并促进了其它科学的发展,不但像物理学、化学、生物学、天文学等自然科学要应用数学,而且像心理学、教育学、经济学,甚至考古学等社会科学也要用到数学,同样数学应用的广泛性事例在中学数学中也是俯首可拾的。

例如:利用相似三角形的原理,我们可以测量树木、建筑物等的高度;利用微积分,我们可以求得物体运动任一时的速度;利用对数计算,我们可以预测2014年我国的人口数等等……举一些数学广泛应用的实例可以强化学生对数学学习的兴趣。

三、数学对称的美

对称就是整体各部分间的相称与相适应。对称是形式美的要求,它给人们一种圆满的匀称的美感。尽管数学早已枝繁叶茂,硕果累累,但归根结底,数学来自于生产实践,来自于现实世界。因为我们的自然界本身是对称的、和谐的、有规律的,所以反映到数学上即表现为数学的对称性。

数学中的对称性处处可见:古希腊欧几里德的《几何原理》建立了一个美妙的平面几何体系,两千多年来获得了多少的赞叹,以致一些大科学家称它为“雄伟的建筑”。几何中的中心对称、轴对称、镜像对称,多能给人以舒适美观之感、呈现着对称性。当然其它还有很多,像函数和反函数的图像,关于直线y=x对称等等。

总之,数学教学不仅要发展学生对美的感受,而且要培养学生对美的事物的情绪体验。数学语言是一种特殊的语言,它简练、概括、精确,富于形象化、理想化,这就要求我们数学教师必须把握住教学语言的 “严密”、“准确”、 “情感”、 “风趣”,教育过程中使简单性和应用的广泛性、对称性和谐统一,增强学生正确的审美能力。使得优秀的数学文化,变得美丽动人,从而启发学生去观察、联想,去发现问题,以至耐心执着地去解决问题,这样数学教学会变得生气勃勃、有血有肉、光彩照人。

相关文档
最新文档