弹性力学_平面应力_平面应变问题共40页
合集下载
2平面问题的基本理论(平面应力与应变,受力状态,圣维兰原理)
当面积 AB 无限减小而趋于 P 点时,平面 AB 上的 应力就是上述斜面上的应力。 现设斜面上的全应力p可以分解为沿坐标向的分 量( px , py ),或沿法向和切向的分量( σn , τn),如图 2-4b所示。
用n代表斜面AB的外法线方向,其方向余弦为:
cosn, x l, cosn, y m
c
0
,则有
F 0, F Mc 0
x
y
0
yx dy dy dx dx xy dy 1 ( yx dy)dx 1 yx dx 1 0 2 2 y 2 2
力矩方程化简后得到:
xy
1 xy 1 yx dx yx dy 2 x 2 y
x yx fx 0 y x xy y f 0 y x y
4.平衡微分方程适用的条件是,只要求符合连 续性和小变形假定。 5.对于平面应力问题和平面应变问题,平衡微 分方程相同。 6.由于τxy =τyx,以后只作为一个独立未知函数 处理。因此,2个独立的平衡微分方程(2-2) 中含有 3个应力未知函数。
由式(2-4)及(2-5)就可以求得经过P点的任意 斜面上的正应力 n 及切应力 n 。
3.然后,再求出主应力和应力主向
设经过P点的某一斜面上的切应力等于零,则该斜 面上的正应力称为在P点的一个主应力,而该斜面 称为在P点的一个应力主平面,该斜面的法线方向 称为在P点的一个应力主向。
(2)只在侧边上受有平行于板面且不沿厚度变化 的面力和体力,且不沿厚度变化,体力 f x , f y , o 和面 力 f x , f y , o ,只是x,y的函数,并构成平衡力系;
弹性力学-平面应力-平面应变问题
平面应力问题的求解方法
解析法
实验法
通过数学分析的方法,将问题转化为 数学方程进行求解。适用于简单几何 形状和边界条件的问题。
通过实验测试来测量物体的应力分布, 通常需要制作模型并进行加载测试。 适用于无法通过理论分析求解的问题。
有限元法
将物体离散化为有限个小的单元,通 过求解每个单元的平衡方程来得到整 个物体的应力分布。适用于复杂几何 形状和边界条件的问题。
弹性力学的基本方程
描述物体在受力后的应力 与应变之间的关系。
描述物体在受力后发生的 位移和应变关系。
描述物体内部力的平衡关 系03
平面应力问题
平面应力问题的定义
平面应力问题是指在弹性力学中,物 体受到的应力作用在某一平面内,且 在该平面上没有作用力的问题。
平面应力问题通常适用于薄板、薄壳 等二维结构,其中应力分量在某一平 面内变化,而垂直于该平面的方向上 ,应力和应变均为零。
THANKS
感谢观看
04
平面应变问题
平面应变问题的定义
平面应变问题是指在弹性力学中,应变和应力都仅发生在某一平面内的现象。在 此情况下,应变和应力分量都与离开平面的距离无关。
平面应变问题通常出现在薄壁结构、板壳结构等二维结构中,其中主要的变形和 应力分布都在一个平面内。
平面应变问题的求解方法
1 2 3
有限元法
通过将问题离散化为有限个小的单元,利用弹性 力学的平衡方程和变形协调方程,求解每个单元 的应力、应变和位移。
跨学科的研究
与其他学科的交叉研究 可能会带来新的思想和 理论。例如,与物理学 、化学、生物学等学科 的交叉可能会为弹性力 学的研究提供新的视角 和思路。
实验与理论的结 合
实验技术的发展将有助 于更好地验证理论的正 确性和实用性。同时, 理论的发展也将为实验 提供更好的指导。因此 ,实验与理论的结合将 是未来研究的一个重要 方向。
1 平面应力和平面应变
x y v 0 y xy v u 0 x y
由(a)、(b)可求得:
x u 0
(a) (b) (c)
df1 ( y ) dy
积分(e) ,得:
df 2 ( x) dx (d)
(e)
u f1 ( y ) v f 2 ( x)
1 v2 v x ( x y) E2 1 v 1 v v y ( y x) E 1 v 2(1 v) xy xy E
注:
(16)
1 x x v( x z ) E 1 y y v( z x ) E 1 z z v( x y ) E
(15)
—— 平面应力问题的 物理方程
1 x x v( x z ) E 1 y y v( z x ) E 1 z z v( x y ) E
yz
zx
注: (1)
E xy xy 2(1 v)
1 x ( x y) E 1 y ( y x) E 2(1 ) xy xy E
(15)
(9)
未知量数: x , y , xy , x , y, xy , u , v
方程数: 8个 8个
结论: 在适当的边界条件下,上述8个方程可解。
因板很薄,且外力 沿 z 轴方向不变。
z z t 0 2 zx z t 0
y
结论: 平面应力问题只有三个应力分量:
yx
x x ( x, y) y y ( x, y ) xy yx xy ( x, y)
x
xy
弹性力学-2-平面问题的基本理论
2015-1-16
4 弹性力学
2.1 平面应力问题与平面应变问题
弹性力学空间问题共有应力、应变和位
移共15个未知函数,且均为 f (x, y, z)。
弹性力学平面问题共有应力、应变和位
移8个未知函数,且均为f (x, y,)。
2015-1-16
5 弹性力学
2.1 平面应力问题与平面应变问题
什么条件下 空间问题可简化为平面问题
px n l l
py n m m
又由于:
px xl xy m p y xyl y m
32 弹性力学
2015-1-16
2.2 平面问题中一点的应力状态 问题3:若经过该点的某一斜面上的切应力为0, 求此斜面上的主应力σ和应力主方向α 从而可得
2015-1-16 25 弹性力学
2.2 平面问题中一点的应力状态 应力是与作用面有关的。σx,σy和τxy作为 基本未知函数,只是表示一点的坐标平面上的 应力分量(左图)。而校核强度时需要知道过 此点的任意斜面上的应力p。斜面上的应力p可 以按坐标轴分解为(px,py),也可沿法向和切 向分解为正应力σn和切应力τn(右图)。
z , zx , zy 0
2015-1-16 10 弹性力学
2.1 平面应力问题与平面应变问题
因此,此类问题的未知量只剩下Oxy面内 的三个应力分量: x , y , xy
所以此类问题称为平面应力问题。 由于板很薄,等厚度,外力和约束沿z 方向不变,因此应力也沿厚度z方向均匀分 布,应力x,y和xy只是坐标x, y的函数。
取如图所示的微分三角板或三棱柱
PAB,当平面AB无限接近于P点时, 该平面上的应力即为所求。
6-1弹性力学平面问题(基本理论)
l2 cos( N , y) cos
v 0 x x l
x ( sin ) xy cos 0 y cos yx ( sin ) 0
例6-3
图示薄板,在y方向受均匀拉力作用, 证明在板中间突出部分(1 2 )的尖 点A处无应力存在。
(a) (b)
(2) x C ( x 2 y 2 ), y Cy 2, xy 2Cxy;
解:(1) 将式(a)代入平衡方程:
x xy Fbx 0 x y yx y Fby 0 x y
3xy 2 3xy 2 0
y y 0
y
xy
x y y 0 p( x) p0 l (2) BC段(x l): l1 1, l2 0
u |x l 0, v |x l 0
u y 0,
x l
y 0
0
(3) AC段(y x tan):
l1 cos( N , x) cos(90 ) sin
( x ) s l1 ( yx ) s l2 px ( xy ) s l1 ( y ) s l2 p y
px p y 0
x x h 0
xy x h
0
右侧面: x h l1 1, l2 0 px y, p y 0 代入应力边界条件公式,有
l O x a b
z p
y
l a , l b ——近似认为无限长
2. 受力特征
外力(体力、面力)平行于横截面作用,且沿长度 z 方 向不变化。
如水坝、滚柱、厚壁圆筒等。
水坝 3. 简化分析
(1)位移分量
v 0 x x l
x ( sin ) xy cos 0 y cos yx ( sin ) 0
例6-3
图示薄板,在y方向受均匀拉力作用, 证明在板中间突出部分(1 2 )的尖 点A处无应力存在。
(a) (b)
(2) x C ( x 2 y 2 ), y Cy 2, xy 2Cxy;
解:(1) 将式(a)代入平衡方程:
x xy Fbx 0 x y yx y Fby 0 x y
3xy 2 3xy 2 0
y y 0
y
xy
x y y 0 p( x) p0 l (2) BC段(x l): l1 1, l2 0
u |x l 0, v |x l 0
u y 0,
x l
y 0
0
(3) AC段(y x tan):
l1 cos( N , x) cos(90 ) sin
( x ) s l1 ( yx ) s l2 px ( xy ) s l1 ( y ) s l2 p y
px p y 0
x x h 0
xy x h
0
右侧面: x h l1 1, l2 0 px y, p y 0 代入应力边界条件公式,有
l O x a b
z p
y
l a , l b ——近似认为无限长
2. 受力特征
外力(体力、面力)平行于横截面作用,且沿长度 z 方 向不变化。
如水坝、滚柱、厚壁圆筒等。
水坝 3. 简化分析
(1)位移分量
弹性力学平面应力问题和平面应变问题
特点
平面应力问题的定义
平面应力问题的基本假设
假设弹性体是连续的,没有空隙或裂缝。
假设弹性体的材料性质在空间中是均匀的,即各向同性。
假设弹性体的材料性质在不同方向上相同。
假设弹性体的变形是微小的,即变形前后的形状和尺寸变化不大。
连续性
均匀性
各向同性
小变形
解析法
01
通过数学公式和定理求解弹性力学问题的精确解。适用于简单形状和边界条件的平面应力问题。
平面问题的定义
02
CHAPTER
平面应力问题
在弹性力学中,平面应力问题是指应变场和应力场在二维平面上变化的问题。这类问题通常涉及到薄板、薄壳等二维结构,其厚度相对于结构的尺寸较小,可以忽略不计。
平面应力问题
平面应力问题具有对称性,即应变和应力在垂直于平面的方向上为零。同时,由于结构厚度较小,平面应力问题通常只考虑平面内的应变和应力分量,忽略垂直于平面的分量。
弹性力学简介
平面问题是指弹性物体在平面内的变形问题,其中物体与平面平行或与平面垂直。
平面应变问题是指物体在平行于平面的方向上发生变形,而垂直于平面的方向上变形较小或忽略不计。
平面问题可以分为平面应变问题和平面应力问题两类。
平面应力问题是指物体在垂直于平面的方向上发生变形,而平行于平面的方向上变形较小或忽略不计。
03
CHAPTER
平面应变问题
平面应变问题
模拟 aword/noun like "bleepileysing前进 on how toilet b. The first time you feel that there is a word-like "bleepilexamples the first time you具有重要的 first time you feel that there is a word's a word-like "bleepilexamples[c. The first time you feel that there is a word's a word-like b. The first time you feel that there is a word's a word's a word-like "bleepilexamples the first time you's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a way toilet's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's
平面应力问题的定义
平面应力问题的基本假设
假设弹性体是连续的,没有空隙或裂缝。
假设弹性体的材料性质在空间中是均匀的,即各向同性。
假设弹性体的材料性质在不同方向上相同。
假设弹性体的变形是微小的,即变形前后的形状和尺寸变化不大。
连续性
均匀性
各向同性
小变形
解析法
01
通过数学公式和定理求解弹性力学问题的精确解。适用于简单形状和边界条件的平面应力问题。
平面问题的定义
02
CHAPTER
平面应力问题
在弹性力学中,平面应力问题是指应变场和应力场在二维平面上变化的问题。这类问题通常涉及到薄板、薄壳等二维结构,其厚度相对于结构的尺寸较小,可以忽略不计。
平面应力问题
平面应力问题具有对称性,即应变和应力在垂直于平面的方向上为零。同时,由于结构厚度较小,平面应力问题通常只考虑平面内的应变和应力分量,忽略垂直于平面的分量。
弹性力学简介
平面问题是指弹性物体在平面内的变形问题,其中物体与平面平行或与平面垂直。
平面应变问题是指物体在平行于平面的方向上发生变形,而垂直于平面的方向上变形较小或忽略不计。
平面问题可以分为平面应变问题和平面应力问题两类。
平面应力问题是指物体在垂直于平面的方向上发生变形,而平行于平面的方向上变形较小或忽略不计。
03
CHAPTER
平面应变问题
平面应变问题
模拟 aword/noun like "bleepileysing前进 on how toilet b. The first time you feel that there is a word-like "bleepilexamples the first time you具有重要的 first time you feel that there is a word's a word-like "bleepilexamples[c. The first time you feel that there is a word's a word-like b. The first time you feel that there is a word's a word's a word-like "bleepilexamples the first time you's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a way toilet's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's
平面应力问题
设斜面AB上的正应力 为 n ,由投影可得:
o
xy
x
y
B P
yx
fy
y
fx
x
A
px
n lpx mpy
l x m y 2lm xy
2 2
n
py
n
N
p
设斜面AB上的切应力为 n ,由投影可得:
n lpy mpx lm( y x ) (l m ) xy
位移与形变间的关系; —— 几何方程
(3)物理学关系: 应力与应变间的关系。 —— 物理方程 (1)应力边界条件; 建立边界条件: (2)位移边界条件; (3)混合边界条件;
平衡微分方程
下面讨论物体处于平衡状态 o 时,各点应力及体力的相互 关系,并由此导出平衡微分 方程。从图所示的薄板中取 出一个微小的单元体PACB , 它在z方向的尺寸取为一个 y 单位长度,在x方向和y方向 上的长度分别为dx和dy。
x xy xz 共六个应 力分量 yx y yz zx zy z z 0
y
yx
x
xy
zx 0 zy 0
y yx
y
xy
x
x
结论:
平面应力问题只剩 下三个应力分量: 应变分量、位移分量也仅为 x、y 的函数, 与 z 无关。
在实际问题中,任何一个弹性体严 格地说都是空间物体,它所受的外力一 般都是空间力系。但是,当所考察的弹 性体的形状和受力情况具有一定特点时, 如果经过适当的简化和抽象处理,可以 简化为弹性力学平面问题,将使计算工 作量大为减少。
平面应力问题
一、平面应力问题
第七章 结构线性静力学 2平面应变问题.pptx
(2)Utility Menu/File/Change Title,输入工作标题 STRESS ANALYSIS TO A LONG HOLLOW CYLINDER UNDER PRESSURE,单击ok。
(1) Main Menu/Preprocessor/Element Type/Add/Edit/Delete,选择Solid,8node 82, 在element type reference number文本框中输 入1,ok。
(12) Utility Menu/Select/Everything
(13) Utility Menu/File/Save as,输入 EXERCISE22.db,ok.
(17) Main Menu/Solution/Solve/Current LS,ok. (18)Utility Menu/File/Save as,输入
由于管道沿长度方向的尺寸远大于管道的直径,在 计算过程中忽略管道的端面效应,认为其在长度方 向无应变产生,即可将该问题简化为平面应变问题;
将单元关键字设置为平面应变属性; 选取管道横截面建立几何模型求解。
1、定义工作文件名和工作标题
(1)Utility Menu/File/Change Jobname, 输入新的 工作文件名EXERCISE2,单击ok。
(10)Utility Menu/WorkPlane/Change Active CS to/Global Cylindrical ;(转换成柱坐标系)
(11) Utility Menu/Select/Entities,第1个下 拉菜单选择Lines,第2个下拉列表选择By Location, 第3栏选择X coordinates,在Min, Max中输入0.5,在第5栏中选择From Full,ok.
(1) Main Menu/Preprocessor/Element Type/Add/Edit/Delete,选择Solid,8node 82, 在element type reference number文本框中输 入1,ok。
(12) Utility Menu/Select/Everything
(13) Utility Menu/File/Save as,输入 EXERCISE22.db,ok.
(17) Main Menu/Solution/Solve/Current LS,ok. (18)Utility Menu/File/Save as,输入
由于管道沿长度方向的尺寸远大于管道的直径,在 计算过程中忽略管道的端面效应,认为其在长度方 向无应变产生,即可将该问题简化为平面应变问题;
将单元关键字设置为平面应变属性; 选取管道横截面建立几何模型求解。
1、定义工作文件名和工作标题
(1)Utility Menu/File/Change Jobname, 输入新的 工作文件名EXERCISE2,单击ok。
(10)Utility Menu/WorkPlane/Change Active CS to/Global Cylindrical ;(转换成柱坐标系)
(11) Utility Menu/Select/Entities,第1个下 拉菜单选择Lines,第2个下拉列表选择By Location, 第3栏选择X coordinates,在Min, Max中输入0.5,在第5栏中选择From Full,ok.
弹性力学平面应力平面应变问题
在工程和机械中,许多结构或构件属于这一类问
题。如直的堤坝和隧道;圆柱形长管受到内水
(油)压力作用;圆柱形长辊轴受到垂直于纵轴
的均匀压力等,均可近似的视为平面应变问题。
y
y
o z
y
o z
y
o
x
o
x
平面应变问题
还有一种情况,当构件的纵向尺寸不很大 但两端面被刚性光滑面固定,不能发生纵向位 移时,若其他条件与上面所述相同,也属于平 面应变问题。 通常,只要是长的等直柱体或板,受到垂直于 其纵轴而且沿长度方向无变化的载荷作用时, 都可以简化为平面应变问题。下面是这种情况 下的应力、应变以及弹性力学的基本方程式。
各个方向上具有相同特性; (4) 线性弹性假定:物体的变形与外来作用力的关系是线性的,
外力去除后,物体可恢复原状; (5) 小变形假定:物体变形远小于物体的几何尺寸。
以上基本假定将作为问题简化的出发点。
§2-2 弹性力学基本方程
回顾
b’ a’
b
zx zx
xz
a
xy
c
zy zy
c’ yz yz
xz
d
研究的基本技巧
采用微小体积元dxdydz 的分析方法(针对任意 变形体)
dz
dy
dx
弹性体的基本假设
回顾
为突出所处理的问题的实质,并使问题简单化和抽 象化,在弹性力学中,特提出以下几个基本假定。
(1) 物质连续性假定:物质无空隙,可用连续函数来描述; (2) 物质均匀性假定:物体内各个位置的物质具有相同特性; (3) 物质(力学)特性各向同性假定:物体内同一位置的物质在
yx
xy
yx
d’
a’
弹性力学平面应力问题和平面应变问题
在弹性力学平面应力问题和平面应变问题中,有限差分法常用于求解偏微 分方程,特别是对于规则的网格划分,计算效率较高。
有限差分法的精度取决于差分格式的选择和网格的划分,同时需要注意数 值稳定性和计算精度的问题。
边界元法
边界元法是一种基于边界积 分方程的数值分析方法,通 过将微分方程转化为边界积
分方程来求解。
变形特点
应用领域
在平面应力问题中,变形主要发生在作用 面上,而在平面应变问题中,变形可以发 生在整个结构中。
平面应力问题在桥梁、建筑和机械等领域 有广泛应用,而平面应变问题在岩土、地 质和材料等领域有广泛应用。
06
结论与展望
结论总结
平面应力问题和平面应变问题在弹性力学中具有重要地位,它们是描述物体在应力作用下的变形和应 力分布的基础。
弹性模量表示材料在受力作用下的刚度,是衡量材料抵 抗弹性变形能力的重要参数。
剪切模量表示材料在剪切力作用下的刚度,与弹性模量 和泊松比有关。
03
平面应变问题
应变状态分析
平面应变条件
应变分量中,只有$varepsilon_{x}$ 、$varepsilon_{y}$和 $gamma_{xy}$不为零,其余分量为 零。
有限元法在弹性力学平面应力问题和平面应变问题中广泛 应用,因为它能够处理复杂的几何形状和边界条件,且计 算精度高。
有限元法的实现需要建立离散化的模型、选择合适的单元 类型和求解算法,并进行数值稳定性和误差分析。
有限差分法
有限差分法是一种基于差分原理的数值分析方法,通过将微分方程转化为 差分方程来求解。
薄板弯曲问题
考虑一个矩形薄板,受到一对相距较远的集中力作用,使板发生弯曲。根据平面应力问题,可以分析 板的应力分布、中性面位置以及挠度等。
有限差分法的精度取决于差分格式的选择和网格的划分,同时需要注意数 值稳定性和计算精度的问题。
边界元法
边界元法是一种基于边界积 分方程的数值分析方法,通 过将微分方程转化为边界积
分方程来求解。
变形特点
应用领域
在平面应力问题中,变形主要发生在作用 面上,而在平面应变问题中,变形可以发 生在整个结构中。
平面应力问题在桥梁、建筑和机械等领域 有广泛应用,而平面应变问题在岩土、地 质和材料等领域有广泛应用。
06
结论与展望
结论总结
平面应力问题和平面应变问题在弹性力学中具有重要地位,它们是描述物体在应力作用下的变形和应 力分布的基础。
弹性模量表示材料在受力作用下的刚度,是衡量材料抵 抗弹性变形能力的重要参数。
剪切模量表示材料在剪切力作用下的刚度,与弹性模量 和泊松比有关。
03
平面应变问题
应变状态分析
平面应变条件
应变分量中,只有$varepsilon_{x}$ 、$varepsilon_{y}$和 $gamma_{xy}$不为零,其余分量为 零。
有限元法在弹性力学平面应力问题和平面应变问题中广泛 应用,因为它能够处理复杂的几何形状和边界条件,且计 算精度高。
有限元法的实现需要建立离散化的模型、选择合适的单元 类型和求解算法,并进行数值稳定性和误差分析。
有限差分法
有限差分法是一种基于差分原理的数值分析方法,通过将微分方程转化为 差分方程来求解。
薄板弯曲问题
考虑一个矩形薄板,受到一对相距较远的集中力作用,使板发生弯曲。根据平面应力问题,可以分析 板的应力分布、中性面位置以及挠度等。
平面应力问题与平面应变问题
• (u,v)≠0,They are functions of x and y only u v 通常不为零,且只是x y的函数。
• Plane displacement problem 平面位移问题
2021/1/23
弹性力学 第二章
12
G. Stresses for plane strain problem 平面应变问题的应力
Symmetric condition对称条件:zx=0,zy=0
A
B
w0
2021/1/23
弹性力学 第二章
14
' zy
将mn作为对称面,按作用反作用关系,左部分某点若
有
zy
,右部分则有
' zy
,大小与 zy
相等。
'
由对称性,对称点切应力应具有相同方向,右边又可
zy
有
" zy
,而
" zy
' zy
y)
dx
F 2 ( x, y) 2!x 2
dx2
F (x, y) F (x, y) dx
F (x,
y
dy)
x F (x,
y)
ቤተ መጻሕፍቲ ባይዱ
F (x, y
y)
dy
F 2 (x, y) 2!y 2
dy 2
F (x, y) F (x, y) dy y
2021/1/23
弹性力学 第二章
27
Review: Taylor’s series: 泰勒级数
可见弹力的平衡微分方程的推导并不是全新的内容其所用的方法取单元体考虑单元体的平衡在材力中早已用过2013814弹性力学第二章25?弹力的单元体变小了所得方程从反力内力的四则运算和常微分关系变成了应力体力的偏微分关系
• Plane displacement problem 平面位移问题
2021/1/23
弹性力学 第二章
12
G. Stresses for plane strain problem 平面应变问题的应力
Symmetric condition对称条件:zx=0,zy=0
A
B
w0
2021/1/23
弹性力学 第二章
14
' zy
将mn作为对称面,按作用反作用关系,左部分某点若
有
zy
,右部分则有
' zy
,大小与 zy
相等。
'
由对称性,对称点切应力应具有相同方向,右边又可
zy
有
" zy
,而
" zy
' zy
y)
dx
F 2 ( x, y) 2!x 2
dx2
F (x, y) F (x, y) dx
F (x,
y
dy)
x F (x,
y)
ቤተ መጻሕፍቲ ባይዱ
F (x, y
y)
dy
F 2 (x, y) 2!y 2
dy 2
F (x, y) F (x, y) dy y
2021/1/23
弹性力学 第二章
27
Review: Taylor’s series: 泰勒级数
可见弹力的平衡微分方程的推导并不是全新的内容其所用的方法取单元体考虑单元体的平衡在材力中早已用过2013814弹性力学第二章25?弹力的单元体变小了所得方程从反力内力的四则运算和常微分关系变成了应力体力的偏微分关系
02《弹性力学》教案:第二章:平面问题的基本理论
二、弹性力学平面问题
弹性力学平面问题的特点有两个: ( 1) 、从几何尺寸的角度看,物体一个方向的尺寸,较之其它两个方向的尺 寸要大得多,或小得多。 ( 2) 、从受力分析的角度看,物体所受的体力分量和面力分量,以及由此产 生的应力分量、应变分量和位移分量,都与某一个坐标轴(例如 z 轴)无关。 有 两 种 典 型 情 况 , 分 别 是 平 面 应 力 问 题 ( pla ne s tre ss pr obl e m ) 和 平 面 应 变 问 题 ( pla ne stra i n pr obl e m ) 。分别讨论。 1、 平 面 应 力 问 题 几 何 尺 寸 : 物 体 是 很 薄 的 等 厚 度 平 板 , 沿 z 方 向 的 厚 度 为 t; 沿 x 方 向 和 y 方 向的尺寸,远大于厚度 t。 坐 标 系 : 以 薄 板 的 中 面 为 xoy 面 , z 轴 垂 直 于 xoy 面 。 受力特点:体力作用于板内,平行于板面且不沿厚度变化, ( X、Y) ,沿厚 度均匀分布。 面力作用于板边,平行于板面且不沿厚度变化, ( X 、Y ) ,沿厚 度均匀分布。
σ x = σ x ( x, y ) , 则 在 c d 面 上 , 由 于 长 度 增 加 了 dx , 则 c d 面 上 的 正 应 力 分 量 应 随
之 变 化 。应 力 分 量 的 这 种 变 化 可 用 泰 勒 级 数 展 开 求 得 。实 际 上 ,在 c d 面 上 ,我 们 有
σ x ( x + dx, y ) = σ x ( x, y ) +
11
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
《弹性力学教学课件》2-1平面应力和平面应变问题
数学模型的比较
平面应力问题
需要建立三个方向的应力分量,即$sigma_{x}$、$sigma_{y}$ 和$tau_{xy}$,以及三个方向的应变分量,即$epsilon_{x}$、 $epsilon_{y}$和$gamma_{xy}$。
平面应变问题
需要建立两个方向的应变分量,即$epsilon_{x}$、 $epsilon_{y}$和$gamma_{xy}$,以及三个方向的应力分量, 即$sigma_{x}$、$sigma_{y}$和$tau_{xy}$。
04
弹性力学在工程中的应用
弹性力学在建筑领域的应用
结构设计
建筑结构中的梁、柱、板等构件 的受力分析,需要考虑弹性力学 的基本原理,以确保结构的稳定 性和安全性。
地震工程
地震工程中,建筑物的抗震设计 需要利用弹性力学的基本原理, 研究地震作用下的结构响应和破 坏机制。
弹性力学在机械领域的应用
机械零件设计
机械零件如轴承、齿轮、弹簧等的受 力分析,需要考虑弹性力学的基本原 理,以确保零件的稳定性和可靠性。
疲劳寿命预测
弹性力学在机械领域中广泛应用于疲 劳寿命预测,通过分析材料的应力分 布和应变历程,预测零件的疲劳寿命。
弹性力学在航空航天领域的应用
飞机结构分析
飞机结构中的机翼、机身等部件的受力分析,需要考虑弹性力学的基本原理,以确保飞机的安全性和稳定性。
假设物体在平面内的应力分量与垂直于平面的应力分量相比很小,因此可以忽略不 计。
平面应变问题的求解方法
基于弹性力学的基本方程,建 立平面应变问题的数学模型。
利用边界条件和初始条件,求 解数学模型中的未知量。
常用的求解方法包括有限元法、 有限差分法和变分法等数值计 算方法,以及解析法等理论计 算方法。
弹性力学平面应力问题和平面应变问题
跨学科融合
弹性力学与材料科学、计算科学、生物学等学科的交叉融合,为解决 复杂工程问题提供了新的思路和方法。
数值模拟与计算
随着计算机技术的进步,数值模拟和计算在弹性力学领域的应用越来 越广泛,能够更精确地模拟和预测材料的力学行为。
多尺度分析
从微观到宏观的多尺度分析方法,能够更好地理解材料的微观结构和 宏观性能之间的关系。
它们简化了问题的复杂性,使得 弹性力学成为一种实用的工程工 具。
02
基本假设的局限性
03
限制条件的考虑
在某些情况下,这些假设可能不 成立,例如在处理非均匀、非各 项同性或大变形问题时。
在应用弹性力学时,必须考虑这 些限制条件,以确保结果的准确 性和可靠性。
06 弹性力学的发展趋势和未 来研究方向
弹性力学的发展趋势
非线性力学
随着工程结构的复杂性和非线性特征的增加,非线性力学的研究越来 越受到重视,为解决复杂工程问题提供了新的理论和方法。
未来研究方向
新材料和新结构的力学行为
智能材料的力学行为
研究新型材料和复杂结构的力学行为,探 索其性能优化和设计方法。
研究智能材料的响应机制和调控方法,探 索其在传感器、驱动器和自适应结构等领 域的应用。
生物医学中的弹性力学问题
研究生物组织的力学行为和生理功能,探 索其在生物医学工程和再生医学等领域的 应用。
环境与可持续发展的弹性力学问 题
研究环境因素对材料和结构的影响,探索 其在环保和可持续发展等领域的应用。
THANKS FOR WATCHING
感谢您的观看
材料力学性能的测试
材料弹性模量的测定
通过实验测定材料的弹性模量,可以了解材料的力学性能,为工程设计和材料选择提供依据。
弹性力学与材料科学、计算科学、生物学等学科的交叉融合,为解决 复杂工程问题提供了新的思路和方法。
数值模拟与计算
随着计算机技术的进步,数值模拟和计算在弹性力学领域的应用越来 越广泛,能够更精确地模拟和预测材料的力学行为。
多尺度分析
从微观到宏观的多尺度分析方法,能够更好地理解材料的微观结构和 宏观性能之间的关系。
它们简化了问题的复杂性,使得 弹性力学成为一种实用的工程工 具。
02
基本假设的局限性
03
限制条件的考虑
在某些情况下,这些假设可能不 成立,例如在处理非均匀、非各 项同性或大变形问题时。
在应用弹性力学时,必须考虑这 些限制条件,以确保结果的准确 性和可靠性。
06 弹性力学的发展趋势和未 来研究方向
弹性力学的发展趋势
非线性力学
随着工程结构的复杂性和非线性特征的增加,非线性力学的研究越来 越受到重视,为解决复杂工程问题提供了新的理论和方法。
未来研究方向
新材料和新结构的力学行为
智能材料的力学行为
研究新型材料和复杂结构的力学行为,探 索其性能优化和设计方法。
研究智能材料的响应机制和调控方法,探 索其在传感器、驱动器和自适应结构等领 域的应用。
生物医学中的弹性力学问题
研究生物组织的力学行为和生理功能,探 索其在生物医学工程和再生医学等领域的 应用。
环境与可持续发展的弹性力学问 题
研究环境因素对材料和结构的影响,探索 其在环保和可持续发展等领域的应用。
THANKS FOR WATCHING
感谢您的观看
材料力学性能的测试
材料弹性模量的测定
通过实验测定材料的弹性模量,可以了解材料的力学性能,为工程设计和材料选择提供依据。
《弹性力学》第二章_平面问题的基本理论
o
xy
x
y
P
yx
y
A
XN
x
设AB面在xy平面内的长度为dS, 厚度为一个单位长度,N为该面的外 法线方向,其方向余弦为:
B
N
N
N
cos(N , x) l , cos(N , y) m
9
YN S
图2 - 4
斜面AB上全应力沿x轴及y轴的投影分别为XN和YN。由PAB 的平衡条件 Fx 0 可得: X N dS xldS yxmdS
2.主应力的方向
1 与 2 互相垂直。
11
§2-4
几何方程、刚体位移
在平面问题中,弹性体中各点都可能产生任意方向的位移。 通过弹性体内的任一点P,取一单元体PAB,如图2-5所示。弹性 体受力以后P、A、B三点分别移动到P′、A′、B′。 一、P点的正应变
u (u dx) u u x x dx x
二、P点的剪应变
线段PA的转角:
同理可得线段PB的转角:
u y
所以
xy
v u x y
13
因此得到平面问题的几何方程:
u x x v y y v u xy x y
由几何方程可见,当物体的位移分量完全确定时,形变 分量即可完全确定。反之,当形变分量完全确定时,位移分 量却不能完全确定。
z
E
( x y )
16
二、平面应变问题的物理方程 1 2 x ( x y ) E 1 1 2 y ( y x ) E 1 2(1 ) xy xy E 三、平面应力的应力应变关系式与平面应变的关系式之间的 变换关系 1 ( ) y 将平面应力中的关系式: x E x
第6章弹性力学的平面问题
2
2
+
∂y
2
4
=0
有
x d f d f1 d f2 d f + x 4 + 4 +2 2 = 0 4 2 dy dy dy dy
4
值上式都满足, 由于对于任何 x值上式都满足,所以各次 幂的系数都应为零 即
x
d4 f d4 f1 d4 f2 d2 f = 0, = 0, +2 2 = 0 4 4 4 dy dy dy dy
2 2 2
本构方程
τxy 1 ' εx = ( x − µσy) εxy = σ ' E 2G 1 ' εy = ( y − µσx) σ ' E
材料常数
E ’ E = E 1− µ2
平 应 面 力 平 应 面 变
µ ’ µ = µ 1− µ
平 应 面 力 平 应 面 变
代入平面问题本构方程可以得到: 将 ϕ代入平面问题本构方程可以得到: ∂2ϕ ∂2ϕ εx = E ’ 2 −µ ’ 2 y ∂ x ∂
εy εxy
∂2ϕ ∂2ϕ =E ’ 2 −µ ’ 2 x ∂ y ∂ 1 ∂2ϕ =− ⋅ 2 G ∂ ∂ x y
将上式代入应变协调方程
6.3 平面问题应力函数
在平面问题中,当忽略体力时,平衡方程可简化为: 在平面问题中,当忽略体力时,平衡方程可简化为:
∂σ x ∂τ xy + =0 ∂x ∂y ∂τ yx ∂σ y + =0 ∂x ∂y
由平衡方程有
∂ τ yx ∂σ y ∂ τ xy ∂σ x =− (1) =− (2) ∂x ∂y ∂y ∂x ∂A ∂A =σx =− yx τ 引入 ∂y ∂x
2
+
∂y
2
4
=0
有
x d f d f1 d f2 d f + x 4 + 4 +2 2 = 0 4 2 dy dy dy dy
4
值上式都满足, 由于对于任何 x值上式都满足,所以各次 幂的系数都应为零 即
x
d4 f d4 f1 d4 f2 d2 f = 0, = 0, +2 2 = 0 4 4 4 dy dy dy dy
2 2 2
本构方程
τxy 1 ' εx = ( x − µσy) εxy = σ ' E 2G 1 ' εy = ( y − µσx) σ ' E
材料常数
E ’ E = E 1− µ2
平 应 面 力 平 应 面 变
µ ’ µ = µ 1− µ
平 应 面 力 平 应 面 变
代入平面问题本构方程可以得到: 将 ϕ代入平面问题本构方程可以得到: ∂2ϕ ∂2ϕ εx = E ’ 2 −µ ’ 2 y ∂ x ∂
εy εxy
∂2ϕ ∂2ϕ =E ’ 2 −µ ’ 2 x ∂ y ∂ 1 ∂2ϕ =− ⋅ 2 G ∂ ∂ x y
将上式代入应变协调方程
6.3 平面问题应力函数
在平面问题中,当忽略体力时,平衡方程可简化为: 在平面问题中,当忽略体力时,平衡方程可简化为:
∂σ x ∂τ xy + =0 ∂x ∂y ∂τ yx ∂σ y + =0 ∂x ∂y
由平衡方程有
∂ τ yx ∂σ y ∂ τ xy ∂σ x =− (1) =− (2) ∂x ∂y ∂y ∂x ∂A ∂A =σx =− yx τ 引入 ∂y ∂x