实数(第一课时)教学设计
6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册
人教版七年级数学下册第六章第三节《实数》教学设计(第1课时)一、教学目标知识技能1.了解无理数及实数的概念,并会对实数进行分类.2.会对实数按照一定标准进行分类,培养分类能力.3.知道实数和数轴上的点一一对应.数学思考1.经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.2.经历对实数进行分类,发展学生的分类意识.解决问题1.通过无理数的引入,使学生对数的认识由有理数扩充到实数.2在交流中学会与人合作,并能与他人交流自己思维的过程和结果.情感态度1.通过无理数的引入,激发学生的求知欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.2.通过了解数系扩充体会数系扩充对人类发展的作用.3.敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、教学重点和难点教学重点:使学生了解无理数和实数的意义,熟练掌握实数的分类教学难点:无理数意义的理解.三、教学方法讲练结合启发教学学生为主四、教学手段多媒体五、课时安排一课时六、教学设计(一).数学故事——无理数的发现:通过俗语“有理走遍天下,无理寸步难行”引入数学故事,古希腊著名的数学家,哲学家毕达哥拉斯有一句名言“万物皆为数。
”他认为宇宙间的一切事物都归为整数或整数的比。
问:整数的比是什么数?答:分数。
问:整数和分数统称为什么数?答:有理数。
〖设计说明〗让学生了解无理数是怎么发现的,经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的,从而对数学充满兴趣(二)、回顾旧知,检查预习:1.有理数怎样分类?有理数分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 或 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负整数负整数负有理数零正分数正整数正有理数有理数 〖设计说明〗让学生进行简单的练习,帮助学生回顾旧知识:有理数,为本节课的迁移伏笔. (三)、创设情境,导入新课:1.展示问题,引导学生探究。
实数全章教学设计北师大版
2.拓展建议:
(1)让学生阅读数学绘本,通过故事的形式了解实数的概念和应用,提高学生的学习兴趣。
(2)让学生阅读科普文章,了解实数在现实世界中的重要性,提高学生的数学应用意识。
(3)利用网络资源,让学生自主学习实数相关的知识,通过练习题进行巩固。
(5)教师可组织课后讨论或展示活动,让学生分享自己的拓展学习成果,促进学生之间的相互学习和交流。
(6)教师应鼓励学生积极参与拓展学习,培养学生的自主学习能力和批判性思维能力。
(7)教师应关注学生的学习态度和表现,及时调整拓展学习的内容和难度,以适应学生的个性化学习需求。
八、课堂小结,当堂检测
1. 课堂小结:
七、课后拓展
1.拓展内容:
(1)阅读材料:推荐学生阅读与实数相关的数学故事、科普文章、数学历史等,如《数学家的故事》、《数学与生活》等,增强学生对实数的理解和兴趣。
(2)视频资源:推荐学生观看与实数相关的数学教学视频、纪录片等,如《数学的力量》、《数学之美》等,帮助学生更直观地理解实数的概念和应用。
(3)在线学习平台:鼓励学生登录在线学习平台,如“中国大学MOOC”、“Coursera”等,选择实数相关的课程进行自主学习,提高学生的数学素养。
(4)数学竞赛与活动:鼓励学生参加数学竞赛、数学建模活动等,锻炼学生的数学思维和实际应用能力。
(5)实地考察与实验:组织学生进行实地考察或实验,如测量长度、计算面积等,让学生亲身体验实数的应用。
2.拓展要求:
(1)学生自主选择拓展内容,根据自己的兴趣和学习进度进行学习和探索。
(2)学生可以进行小组讨论或与他人交流,分享自己的学习心得和发现。
实数教学设计
49 (1)100;(2)1;(3) ;(4)0.0001 64
探究拓展
就是求一个数 x,使 x =100,因为 10 100 提出问题: (课本第 160 页)怎样用两个面积 为 1 的小正方形拼成一个面积为 2 的大正方形?
2
2
2
方法 1:课本中的方法,略; 方法 2:
可还有其他方法,鼓励学生探究。 问题:这个大正方形的边长应该是多少呢? 大正方形的边长是 2 ,表示 2 的算术平方根,它 到底是个多大的数?你能求出它的值吗? 建议学生观察图形感受 2 的大小.小正方形 的对角线的长是多少呢?(用刻度尺测量它与大正 方形的边长的大小)它的近似值我们将在下节课探 究.
教科书在边空提出问 题“小正方形的对角 线的长是多少” , 这是为在 10.3 节介 绍在数轴上画出表示
2 的点做准备.
课堂小结
布置作业
小结与作业 提问:1、这节课学习了什么呢? 2、算术平方根的具体意义是怎么样的? 3、怎样求一个正数的算术平方根? 1、 必做题: 课本第 167 页习题 10.1 第 1、 2、 3 题; 168 页第 11 题。 2、 备选题: (1)判断下列说法是否正确: 在本节的第一个 ① 是 25 的算术平方根; “探究”栏目之前, 2 重点是介绍算术平方 ② 一 6 是 6 的算术平方根; 根的概念,因此所涉 ③ 0 的算术平方根是 0; 及的数(包括例题中 ④ 0.01 是 0.1 的算术平方根; ⑤一个正方形的边长就是这个正方形的 的数)都是完全平方 数(能表示成一个有 面积的算术平方根. 理数的平方) , 所求的 (2)下列各式哪些有意义,哪些没有意义? 是这些完全平方数的 2 ①- 3 ② 3 ③ 3 ④ 102 算术平方根. (3)一个正方形的面积为 10 平方厘米,求以 这个正方形的边为直径的圆的面积。
实数教学设计(学案)
课题: 第13.3 实数(1) 一、学习目标1.了解无理数和实数的概念,会对实数按照一定标准进行分类,同时体会“集合”的含义.2.在实数范围内,了解相反数和绝对值的意义,会求一个实数的相反数和绝对值.3.了解实数与数轴上的点一一对应的关系。
二、自学导航P82——P85 三、学习过程【课前准备】做一做探究活动一:1.请使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3= -52=847= 32= 9011=911=我的发现是: 2.请使用计算器计算,把下列有理数写成小数的形式,你有什么发现?2=-3=-25=37=我的发现是: 3.上面的两组数都可以写成小数的形式,但写成小数的形式是不同的,他们的不同之处是: 探究活动二:1.直径为1cm 长度的圆从数轴的原点O 出发,沿数轴向右滚动一周,圆上的一点由原点到达点0’,点O ’的坐标是多少?(画图说明)通过实践可知,00’的长就是直径为1cm 的圆 的 是 cm,点O ’的坐标是 ;若此圆从数轴原点沿数轴向左滚动一周,此时O ”的坐标是 .2.你能在数轴上找到表示出2这个点吗,2-呢?由此可知:有理数能不能将数轴排满?【探究新知】通过上面探究活动一,我们把第一类数叫做 ,我们把第二类数叫做 ,我们把这两类数统称为 ,用字母 表示此数集合.类比有理数的分类标准,此数能也能进行分类,你来试一试?探究活动二让我们了解到,像有理数一样,①每一个无理数都可以用数轴上的 表示出来,这就是说数轴上的点有些表示 ,有些表示 .所以,当从有理数扩充到实数以后,实数与数轴上的点就 是 的关系. ②与有理数一样,对于数轴上的任意两个点,右边的点所表示的数总比左边的点表示的数 . ③有理数关于相反数、倒数、绝对值的意义同样适合于 .【巩固提升】1.写出一个比1-大的负有理数是 ;比1-大的负无理数是 .2.32-的相反数是 ,32-= .3.实数b a 、在数轴上的位置如图所示, 化简:2a b a --b a4.比较各组数中两数的大小: (1)2332和(2)34-53-与(3)21-5与1【课堂小结】1.你能完成知识清单吗?2.你还有哪些收获?或困惑?(可记录下来共同交流)【课堂反馈】1.在实数23-,0π) A .1个B .2个C .3个D .4个2. 下列各组数中,互为相反数的是( )A .2和21 B .-2和-21 C . 2-和|2-| D .2和213.三个实数0.2-,12-,1( ) A.10.212-<-<B .10.212->->C .10.212->>- D.110.22>->-4. 如图,数轴上A B ,两点表示的数分别为1,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A 1B .1C .2D 25. 已知a 、b 为两个连续整数,且a <7<b ,则b a += .6.的点是 .7. 2与2-的大小关系,并说明理由.。
人教版数学七年级下册教学设计6.3《 实数》
人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。
本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。
通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。
二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。
但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。
三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。
2.能够对实数进行分类,了解实数的丰富性和广泛性。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.实数的定义和实数与数轴的关系。
2.实数的分类和各类实数的特征。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。
六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。
2.准备实数的分类表格,方便学生理解和记忆。
3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。
同时,结合案例和图片,使学生直观地理解实数的概念。
例如:“同学们,今天我们要学习的是实数。
实数包括有理数和无理数,它们都可以用数轴上的点来表示。
请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。
”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。
人教版七年级数学下册6.3实数(第1课时)一等奖优秀教学设计
人教版义务教育课程标准实验教科书七年级下册6.3.1实数(第1课时)教学设计一、教材分析1、地位作用:本章内容相当于旧教材《数的开方》一章,但编排顺序有所差别,旧教材先学习平方根,再将算术平方根作为其中的一种特例进行学习,而本套教材先联系实际学习认识算术平方根后,再进一步认识平方根。
这样可以引发学生的疑惑,激发学生学习兴趣,从而使学生积极主动地投入到数学活动中去。
本节篇幅不长,内容也不多,但知识比较抽象,而且与学生以前接触的数学知识差异较大,根据以前的教学经验,我感觉学生学习起来不会很顺手,而且它又是以后学习二次根式、一元二次方程的基础,需要老师在教学中精心构思,认真落实。
2、教学目标:(1)了解无理数和实数的概念.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想。
3、教学重、难点:重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系。
难点:理解实数的概念突破重难点的方法:观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的,从而理解学习实数的必要性。
二、教学准备:多媒体课件、导学案三、教学过程.圆周率及一些含有3、下列结论正确的是( )A.无限小数是无理数B.实数不是正数就是负数合起来就是:数轴上的点。
C.无理数都是带根号的数D.无理数都是无限不循环小数 4、判断:(1).实数不是有理数就是无理数。
( ) (2).无理数都是无限不循环小数。
( ) (3).无理数都是无限小数。
( ) (4).带根号的数都是无理数。
( ) 2、下列说法中,正确的是()、都是无理数234、、A 、B 、无理数都是带根号的数C 、实数分为正实数和负实数D 、实数和数轴上的点是一一对应的D。
实数的教学设计(精编7篇)
实数的教学设计(精编7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实数的教学设计(精编7篇)实数的教学设计(1)教学目标知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。
《实数》(第一课时)教学设计
实数(第一课时)教学设计
一、教材分析
实数是“数与代数”领域的重要内容。
,本章是在有理数的基础上认识实数,对于实数的学习,除本章外,还要在“二次根式”一章中通过研究二次根式的运算,进一步认识实数的运算。
本节是是实数的第一节课,主要通过折纸活动,让学生感受无理数产生的实际背景和引入的必要性,进而将数的范围从有理数扩充到实数.并类比有理数的有关性质得出实数的有关性质.
二、学情分析也使学生感受到无理数
学生在前面已学习了平房根、立方根的知识,已经具有发现无理数的的能力,本节课通过教师创设的折纸的问题情境,让学生体会无理数是从现实世界中抽象出来的,是一种不同于有理数的数.
三、教学目标
1.通过实际问题,让学生经历无理数发现的过程,使学生认识到数的扩充的必要性.2.能对实数按要求进行分类,会用所学定义正确判断所给数的属性.
3.理解在实数范围内,相反数、倒数、绝对值的意义.
4.通过对有关无理数的数学史的了解,进一步增强学生对数学的兴趣.
四、重点、难点
重点:1.让学生经历无理数发现的过程,使学生认识到数的扩充的必要性.
2.无理数概念的探索过程及无理数概念的建立
3. 能对实数进行分类,并判断所给数的属性.
难点:1.无理数概念的探索过程. 2.用所学定义正确判断所给数的属性.
五、教学设计
0.81,
8
2、在数轴上的表示:。
苏科版数学八年级上册4.3《实数》教学设计1
苏科版数学八年级上册4.3《实数》教学设计1一. 教材分析苏科版数学八年级上册 4.3《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统性的认识和理解。
本节课主要内容包括实数的分类、实数与数轴的关系、实数的运算等。
通过本节课的学习,学生能够更好地理解实数的内涵和外延,为后续的数学学习打下坚实的基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对有理数和无理数有一定的了解。
但是,学生对实数的认识还比较片面,对于实数与数轴的关系、实数的运算等知识点的理解还不够深入。
因此,在教学过程中,需要教师引导学生从实际问题出发,通过观察、思考、操作、交流等活动,深化对实数概念的理解。
三. 教学目标1.理解实数的定义,掌握实数的分类。
2.理解实数与数轴的关系,能正确地在数轴上表示实数。
3.掌握实数的运算方法,能熟练地进行实数的运算。
4.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的分类2.实数与数轴的关系3.实数的运算五. 教学方法1.情境教学法:通过实际问题引导学生思考,激发学生的学习兴趣。
2.数形结合法:利用数轴直观地表示实数,帮助学生理解实数与数轴的关系。
3.合作学习法:引导学生分组讨论,培养学生的团队协作能力。
4.练习法:通过适量练习,巩固所学知识,提高学生的实际操作能力。
六. 教学准备1.教学课件:制作精美的课件,辅助教学。
2.数轴教具:准备数轴教具,方便学生直观地理解实数与数轴的关系。
3.练习题:准备适量练习题,用于课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引导学生思考实数的概念,例如:“小明家距离学校2.5公里,小红家距离学校3公里,小明和小红家分别位于学校的哪个方向?他们两家之间的距离是多少?”2.呈现(10分钟)教师利用课件呈现实数的定义和分类,实数与数轴的关系,实数的运算等知识点,引导学生初步认识实数。
3.操练(10分钟)教师引导学生分组讨论,利用数轴表示实数,并进行实数的运算。
最新北师大版八年级数学上册《实数》1教学设计
第二章实数6.实数一、依据新课标制定教学重点:1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
依据新课标制定教学难点:利用数轴上的点表示无理数。
二、教学任务分析1. 教学目标:(1).了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.(2).了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.(3).在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。
(4).在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。
(5).了解数系扩展对人类认识发展的必要性;2. 知识目标:通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理的表达能力。
3. 能力目标:通过对问题的发现和解决,培养学生的相互协作意识及数学表达能力,体验探索、交流与成功。
三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。
效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。
通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。
第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)知识整理:有理数和无理数统称为实数。
数学北师大版八年级上册实数教学设计(1).doc
【教学设计】《“实数(1)”教学设计》梅州市五华县华新中学黄茜花“实数⑴”教学设计梅州市五华县华新中学黄茜花一、学生起点分析:实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。
二、教学任务分析:本节是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》的第六节。
这节内容教材安排了3个课时,本节课为第一课时。
主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义,让学生在动手操作中明确实数和数轴上的点是一一对应的。
在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。
中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。
三、教学目标:1、知识与技能:通过自主学习、小组合作探究,了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小。
了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
会对实数按照一定的标准进行分类,培养分类能力。
2、过程与方法:通过动手操作加深“实数与数轴上的点的一一对应关系”的理解,渗透“数形结合”的数学思想。
3、情感态度与价值观:感受人类(特别是我国古代)在数的发展研究中的伟大成就,从中得到启发和教育。
四、教学重点:1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
五、教学难点:利用数轴上的点表示无理数。
六、课前准备:学生准备:预习新课,制作学具教师准备:多媒体课件七、教学过程设计:本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:⑴什么是有理数?有理数怎样分类? ⑵什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。
《实数》教学设计(第一课时)
《实数》教学设计(第一课时)一、教学目标【知识与技能目标】1、了解无理数和实数的概念,会将实数按一定的标准进行分类。
2、理解实数与数轴上的点一一对应关系,会根据实数在数轴上的位置比较大小。
【过程与方法目标】1、通过对实数分类的研究、增强学生的分类意识。
2.通过学习“实数与数轴上的点的一一对应关系”,让学生进一步体会数形结合的思想。
【情感态度目标】1、通过对实数的分类练习、让学生体会分类的思想方法。
2、在探究数轴上表示点的过程,培养学生团结合作的精神。
【教学重点】1、理解实数,能对实数进行分类。
2、理解数轴上点与实数是一一对应的关系。
【教学难点】对“实数与数轴上的点一一对应关系”的理解。
二、教学过程(一)创设情境,导入新课活动一 学生以前学过有理数,可以请学生简单地说一说有理数的基本概念、分类。
活动二 大家知道有理数包括整数和分数,请把下列分数写成小数的形式,你有什么发现?、 、 、 、学生以小组为单位,用笔和计算器去计算,得出结果总结规律。
教师进一步引导学生思考,整数是否可以看成小数的形式?例如:3教师归纳总结:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等。
引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?2553 427911119小结:任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数。
(二)思考探究,获取新知活动三 让学生计算下面几个数的平方根和立方根,发现结果有什么特点。
,,,学生发现,这些运算的结果是无限小数并且还不循环,这种数属于哪一类?引出无理数的概念。
(1)试着写出几个无理数。
(2)判断下列各数中,哪些是有理数?哪些是无理数?由学生小组合作完成上述问题后,要求学生思考:1、用根号形式表示的数一定是无理数吗?2、如何把实数分类?教师归纳总结:注意带根号的数,判断它是不是无理数的方法。
初中阶段还有一个特殊数,它也是无理数。
实数 教学设计(一)
关注学生的理解能力和应用能力.
根据学生自身情况,总结出任意的一点,教师都应加以表扬与鼓励.
八、板书设计
课题
做一做例1例2练一练
九、教学反思
应该让学生进行充分的说理.
建议让学生对每一步进行说理
用类比的方法,引入实数的运算律.
1、关注学生的计算能力.
2、关注学生参与讨论交流的积极性.
关注学生的归纳、总结能力、语言表达能力.
关注学生运用法则进行化简的能力,及对每一步进行说理的能力和语言表达能力.
关注学生的类比能力.
七、练习设计
例2化简:
(1)
教学内容
教学活动
教学建议
教学评价
一、实数和有理数一样,可以进行加、减、乘、除、乘方运算.
做一做:
(1) =
=
=
=
(2)利用计算器计算:
议一议:
你发现了什么规律?
例1:化简:
(1)
(2)
(3)
(4)
二、有理数的运算法则与运算律对实数仍然适用.
如:
教师直接告诉学生.
鼓励学生计算、归纳、交流,自己总结得出结论.
一、课题名称
实数教学设计(一)
课型
新授课
二、教学目标
1、了解有理数的运算法则与运算律对实数仍然适用.
2、能利用实数的运算法则与运算律进行有关实数的简单运算.
三、教学重点、难点
能利用实数的运算法则与运算律进行有关实数的简单运算.
利用实数的运算法则进行化简.
四、教学手段
五、教学方法
探究讨论、讲练结合
六、教学过程
(2)
(3)
(4)
实数第一课时说课教案及反思
实数第一课时说课教案及反思实数第一课时说课教案及反思【教学目标】1. 了解实数的概念和特性。
2. 掌握实数的分类和表示方法。
3. 理解实数的比较和运算规则。
【教学重点】1. 实数的概念和特性。
2. 实数的分类和表示方法。
【教学难点】1. 实数的比较和运算规则。
【教学准备】1. 教材:教科书、课件。
2. 教具:黑板、彩色粉笔、计算器。
【教学过程】一、导入(5分钟)1. 引入实数的概念:请学生回顾一下我们之前学过的数的分类,回答数的分类有哪些。
2. 提问:请学生举例说明有理数和无理数的区别。
二、新课讲解(25分钟)1. 讲解实数的概念和特性:通过课件和黑板,向学生介绍实数的定义和特性。
2. 讲解实数的分类和表示方法:分别介绍有理数和无理数的分类和表示方法,并结合实际例子进行说明。
三、实践练习(15分钟)1. 练习1:给出一些数,请学生判断它们是有理数还是无理数,并说明理由。
2. 练习2:请学生利用计算器计算一些无理数的近似值,并将结果写在黑板上。
四、归纳总结(5分钟)1. 请学生回答:实数的分类有哪些?有理数和无理数的表示方法分别是什么?2. 教师进行总结,并强调实数的重要性和应用。
【教学反思】本节课的教学目标是让学生了解实数的概念和特性,掌握实数的分类和表示方法,理解实数的比较和运算规则。
通过导入部分的提问,能够激发学生对实数的兴趣,为后续的学习做好铺垫。
在新课讲解环节,通过课件和黑板的结合使用,能够更直观地向学生介绍实数的概念和特性,以及分类和表示方法。
在实践练习环节,通过练习题的设计,能够让学生运用所学知识进行实际操作,提高他们的实际运用能力。
最后,在归纳总结环节,通过提问和总结,能够巩固学生对实数的理解和记忆。
整体而言,本节课的教学设计能够较好地达到预期的教学目标,但在实践练习环节,可以增加一些更具挑战性的题目,以提高学生的学习兴趣和思维能力。
同时,在教学过程中,要注意与学生的互动和沟通,及时解答学生的问题,确保教学效果的达成。
初中数学_【课堂实录】实数(一)教学设计学情分析教材分析课后反思
《实数(一)》教学设计课题实数(一)课型新授课主备人地点录播教室教材分析这一章是初中阶段代数运算的重要章节,是对小学数学知识的发展,又是初中代数知识的基础,本节课是在有理数和无理数的基础上引进的概念,并将数从有理数范围扩充到实数范围。
在中学阶段,大多数问题是在实数的范围内研究的,它也是进一步二次根式、一元二次方程以及函数等知识的基础。
因此,让学生正确而深刻地理解实数是非常重要的实数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数美的有效载体,也是发展学生逻辑思维能力的重要内容,因而具有重要地位。
教学目标知识与技能目标1、了解实数的概念和意义,经历探索实数分类的过程,引领学生领会分类思想。
2、了解实数范围内,相反数、倒数、绝对值的意义,了解有理数的运算法则在实数范围内仍然适用,渗透类比思想。
3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数,形成初步的数形结合意识。
过程与方法目标1、经历借助小游戏引入新课,引发学生思考,渗透分类思想,进一步发展学生的数形结合意识。
2、让学生用类比方法获取新知,发展有条理思考和语言表达能力。
情感与态度目标1、在学习的过程中,使学生感受丰富的数学文化,让学生感受数学,激发兴趣,引发数学思考。
2、在运用数学表述和解决问题的过程中,敢于发表自己的想法,敢于质疑,敢于创新,养成独立思考,合作交流等学习习惯,体会数学的价值。
教学重点: 1.了解实数的意义,能对实数进行分类,2.明确数轴上的点与实数一一对应。
教学难点:用数轴上的点来表示无理数。
教学方法:自学探究,合作交流教学用具:游戏用的数字卡片、音频、微视频、投影仪、多媒体电教平台等。
教学过程:教学环节教师引导活动学生活动设计理念一、创设游戏情景,引入实数概念!1.把下列各数分别填入相应的集合内。
,,,,,,,,,1、学生积极参与小游戏。
华东师大版八年级上册数学教学设计《实数》
华东师大版八年级上册数学教学设计《实数》一. 教材分析华东师大版八年级上册数学的《实数》章节,是学生在掌握了有理数知识的基础上,进一步学习实数的理论。
本章主要包括实数的定义、实数的分类、实数的运算以及实数与数轴的关系等内容。
通过本章的学习,使学生能够更深入地理解数的概念,掌握实数的运算方法,以及实数与几何图形之间的联系。
二. 学情分析八年级的学生已经具备了一定的数学基础,对有理数的概念和运算规则有了初步的了解。
但学生在学习实数时,可能会对实数的抽象概念和实数与数轴的关系产生困惑。
因此,在教学过程中,需要引导学生通过实例来理解实数的定义,并通过数轴来直观地理解实数与数轴的关系。
三. 教学目标1.知识与技能:使学生理解实数的定义,掌握实数的分类,以及实数的运算方法;能够利用数轴表示实数,并理解实数与数轴的关系。
2.过程与方法:通过实例分析,培养学生的抽象思维能力;通过数轴的直观表示,培养学生的几何直观能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力,使学生体验到数学的严谨性和美感。
四. 教学重难点1.重点:实数的定义,实数的分类,实数的运算,实数与数轴的关系。
2.难点:实数的抽象概念,实数与数轴的关系。
五. 教学方法采用问题驱动法、实例教学法和数形结合法。
通过问题引导,激发学生的思考;通过实例分析,使学生理解实数的定义和运算;通过数形结合,使学生直观地理解实数与数轴的关系。
六. 教学准备1.教学PPT:制作涵盖实数的定义、分类、运算和数轴关系的PPT。
2.教学实例:准备一些与生活实际相关的实例,用于解释实数的概念。
3.数轴教具:准备数轴教具,用于直观地展示实数与数轴的关系。
七. 教学过程1.导入(5分钟)通过一个实际问题引出实数的概念,例如:“某商店进行打折活动,原价为200元,打8折后的价格是多少?”让学生思考并回答,从而引出实数的概念。
2.呈现(10分钟)讲解实数的定义,以及实数的分类,包括有理数和无理数。
人教版数学七年级下册6.3《实数》教学设计
人教版数学七年级下册6.3《实数》教学设计一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数知识的基础上,进一步学习实数的定义、性质和运算。
本节内容是整个初中数学的重要基础,对学生来说是全新的概念。
教材从学生的实际出发,通过引入无理数的概念,让学生感受实数的广泛性,进而引入实数的概念,使学生对实数有一个直观的认识。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的知识,对数的运算、大小比较等有一定的基础。
但实数是一个全新的概念,与有理数有很大的区别。
学生在学习过程中,可能对无理数的概念、实数的性质和运算产生困惑。
因此,在教学过程中,要注重引导学生从实际出发,理解实数的定义,掌握实数的性质和运算。
三. 教学目标1.了解实数的定义,掌握实数的性质和运算。
2.能够运用实数解决实际问题,提高解决问题的能力。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.实数的定义和性质。
2.实数的运算。
五. 教学方法1.情境教学法:通过生活实例,引导学生从实际出发,理解实数的定义和性质。
2.互动教学法:引导学生参与课堂讨论,提高学生的思维能力和解决问题的能力。
3.实践操作法:通过大量的练习,让学生掌握实数的运算方法。
六. 教学准备1.准备相关的生活实例,用于导入新课。
2.准备PPT,展示实数的性质和运算。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如计算房屋面积、身高、体重等,引导学生从实际出发,了解无理数的概念。
进而引出实数的概念,让学生对实数有一个直观的认识。
2.呈现(10分钟)通过PPT展示实数的性质和运算,让学生对实数有一个全面的认识。
主要包括实数的定义、性质(如正实数、负实数、零实数等)和运算(如加法、减法、乘法、除法等)。
3.操练(10分钟)让学生进行实数运算的练习,巩固所学知识。
可以设置一些具有挑战性的题目,让学生在解决问题过程中,加深对实数运算的理解。
实数经典教案
主动地参与到数学学习过程中,亲自体验知识的形成过程.
课题: 10.3 实数(2)
1、知道实数与数轴上的点一一对应,有序实数对与平面上的点一
一对应;
2、学会比较两个实数的大小;
教学目标
母了解在有理数范围内的运算及运算法则、运算性质等在实数范围 内仍然成立,能熟练地进行实数运算;在实数运算时,根据问题的
的绝对值是它的相反数;0 的绝对值是 0.
练一练
例 1 求下列各数的相反数和绝对值:
2.5,- 7 , ,0, 3 2 , -3 5
例 2 一个数的绝对值是 3 ,求这个数。
例 3 求下列各式的实数 x:
3
(1)|x|=|- |;
2
教学中应该给学生充 分发表自己想法的时 间,自己体会有理数 关于相反数和绝对值 的意义同样适用于实 数。
循环小数都能化成分数吗?引入了无理数和实数的概念后要求学生对所学过的数按照一
定的标准进行分类.分类思想是解决数学问题的常用的思想,在教学过程中,教师应该
创造条件,让学生体会分类标准与分类结果之间的关系.本课提出的问题“你能尝试着
找出三个无理数来吗?”具有较大的开放性,给学生提供了思维空间,能促使学生积极
轴上的点之间的对应
试一试
教师启发学生得出结论:每一个无理数都可 以用数轴上的一个点表示出来.
关系. 通过练习,让学
练习:学生自己完成课本第 178 页练习第 1 生对于实数可以用数
题.
抽上的点表示,数抽
在此基础上,教师引导学生进一步得出结论: 上的一个点表示一个
在数从有理数扩充到实数后,实数与数轴上的点 实数有了直现的认识,
算一算
出 2 的近似值,再通过比较它们近似值(取近似
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计
学科数学年级七年级教学形式新授教师单位
课题名称实数(第一课时)
学情分析
在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。
教材分析
本节是义务教育课程标准鲁教版七年级上册第四章《实数》的第六节。
这节内容教材安排了2个课时,本节课为第一课时。
主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义,让学生在动手操作中明确实数和数轴上的点是一一对应的。
教学目标
●知识与技能目标
1.了解实数的意义,能对实数按要求进行分类;
2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
3.了解实数和数轴上的点一一对应。
●过程与方法目标
1.通过对实数分类的探究,增强学生的分类意识;
2.在利用数轴上的点来表示实数的过程中,将数和图形结合在一起,让学生进一步体会数形结合的思想。
●情感与态度目标
1.通过对实数进行分类的练习、进一步领会分类的思想方法;
2.在探究利用数轴上的点表示实数的过程中,训练学生多角度思维,培养和发展学生的合作意识。
教学重难点
重点:
1.了解实数意义,能对实数进行分类;
2.在实数范围求相反数、倒数和绝对值;
3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
难点:建立实数概念及分类,用数轴上的点来表示无理数
教学策略:
多媒体课件、投影仪、电脑
自主探究—交流—发现
教学过程与方法
教学环节教师活动学生活动设计意图
导入新授问题:
(1)什么是有理数?有理数怎样分类?
(2)什么是无理数?带根号的数都是无理数
吗?
(一)实数概念
内容:把下列各数分别填入相应的集合内:
32,
4
1
,7,π,
2
5
-,2,
3
20
,5
-,
38
-,
9
4
,0,0.3737737773……(相邻
两个3之间7的个数逐次增加1)
知识整理:有理数和无理数统称为实数。
(二)实数分类
内容:
1.你能把上面各数分别填入下面相应的集合
内吗?
2.0属于正数吗?0属于负数吗?
知识整理:无理数和有理数一样,也有正负
之分。
1.从符号考虑,实数可以分为正实数、零、
负实数,即:
自主完成
自主完成,
同桌之间互
查
回顾以前学习
过的内容,为进
一步学习引入
无理数后数的
范围的扩充作
准备。
通过将以上各
数填入有理数
集合和无理数
集合,建立实数
概念。
在实数概念形
成的基础上对
实数进行不同
的分类。
上面的
数中有0,0不
能放入上面的
任何一个集合
中,学生容易遗
漏,强调0也是
实数,但它既不
是正数也不是
负数,应单独作
一类。
提醒学生
分类可以有不
同的方法,但要…
有理数
集合
…
无理数
集合
…
正数集
合\
…
负数集
合\
⎪⎩
⎪⎨⎧负实数零正实数实数
2.另外从实数的概念也可以进行如下分类:
⎩⎨
⎧无理数有理数实数
(三)实数的相关概念 内容1:在有理数中,数a 的相反数是什么?绝对值是什么?当a 不为0时,它的倒数是什么?
内容2:小结
a 是一个实数,它的相反数是,它的绝对值是,当a ≠0时,它的倒数是。
知识整理
(1)相反数:a 与—a 互为相反数;0的相反数仍是0;
(2)倒数:当a ≠0时,a 与
a
1
互为倒数(0没有倒数);
(3)绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;
即:⎪⎩
⎪
⎨⎧<-=>=)
0()0(0
)0(||a a a a a a 四)探究——实数与数轴上点之间的对应关系
内容1:如图所示,认真观察,探讨下列问题:
议一议:
(1)如图,OA =OB ,数轴上A 点对应的数表示什么?它介于哪两个整数之间?
(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗? 知识整理
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个
同桌两人分工合作,一人任意说一实数,另一人分别说出对应的相反数、倒数、绝对值。
小组合作交流,组长展示成果
按同一标准不重不漏。
从复习入手,类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的。
加深学生对相关概念的理解
探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小。
0 1 2 -1 -2 A
B。