“一次函数的应用”专题复习

合集下载

《一次函数的应用》专题复习

《一次函数的应用》专题复习

《一次函数的应用》专题复习1.某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.2. 旅客乘车按规定可免费随身携带一定重量的行李,如果携带行李的重量超过规定重量,那么需购买行李票.设行李费y(单位:元)是行李质量x(单位:kg)的一次函数,其图象如图所示.(1)求y关于x的函数解析式.(2)旅客最多可免费随身携带行李多少千克?3.某学校计划购买若干台电脑,现在从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?4. 为了预防新冠肺炎,某药店销售甲、乙两种防护口罩,已知甲口罩每袋的售价比乙口罩多5元,小丽从该药店购买了3袋甲口罩和2袋乙口罩共花费115元.(1)求该药店甲、乙两种口罩每袋的售价分别为多少元?(2)根据消费者需求,药店决定用不超过10000元购进甲、乙两种口罩共500袋.已知甲口罩每袋的进价为23.4元,乙口罩每袋的进价为19元,要使药店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少?5. 某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?6.某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.7. 5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?8. 2020年以来,新冠肺炎疫情肆虐全球,我市某厂接到订单任务,7天时间生产A、B两种型号的口罩不少于5.8万只,该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只.(1)试求出该厂每天能生产A型口罩或B型口罩多少万只?(2)生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元,且A型口罩只数不少于B型口罩.在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?9. 某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?10. 某宾馆准备购进一批换气扇,从电器商场了解到:一台A型换气扇和三台B型换气扇共需275元;三台A型换气扇和二台B型换气扇共需300元.(1)求一台A型换气扇和一台B型换气扇的售价各是多少元;(2)若该宾馆准备同时购进这两种型号的换气扇共40台并且A型换气扇的数量不多于B型换气扇数量的3倍,请设计出最省钱的购买方案,并说明理由.11. 某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.12.甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为______千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.13. 为了满足开展“阳光体育”大课间活动的需求,某学校计划购买一批篮球.根据学校的规模,需购买A、B两种不同型号的篮球共300个.已知购买3个A型篮球和2个B型篮球共需340元,购买2个A型篮球和1个B型篮球共需要210元.(1)求购买一个A型篮球、一个B型篮球各需多少元?(2)若该校计划投入资金W元用于购买这两种篮球,设购进的A型篮球为t个,求W关于t的函数关系式;(3)在(2)的条件下,若购买B型篮球的数量不超过A型篮球数量的2倍,则该校至少需要投入资金多少元?14. 现有下面两种移动电话计费方式:(1)以x(单位:分钟)表示通话时间,y(单位:元)表示通话费用,分别就两种移动电话计费方式写出y关于x的函数解析式.(2)求出如何选择这两种计费方式更省钱.15. 有一网络平台为7月份某品牌荔枝的销售设计了如下两种方案:A方案:购买量不超过2千克时按标价销售,超过2千克时超过的部分按标价打折销售;B方案:一律按标价的七折销售.设销售量为x千克(x≥0)时,A方案需要支付的费用为y1元(如图所示),B方案需要支付的费用为y2元.(1)该网络平台上这种品牌荔枝的标价为______元/千克;(2)A方案需要支付的费用y1关于x的函数图象如图所示,求y1关于x的函数表达式;(3)当购买量在什么范围内时,选择A方案更优惠,请说明理由.16. 有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:分)之间的关系如图所示:(1)求0≤x≤4时y随x变化的函数关系式;(2)当4<x≤12时,求y与x的函数解析式;(3)每分钟进水、出水各是多少升?17. 某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.18. 某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区.已知一辆甲种货车同时可装蔬菜18吨,水果10吨;一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,请写出具体的租车方案?(2)若甲种货车每辆需付燃油费1400元,乙种货车每辆需付燃油费1000元,则应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?19. 猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?20. 暑假期间,两名教师计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两名教师全额收费,学生都按七折收费;乙旅行社的优惠条件是:教师、学生都按八折收费.请你帮他们选择一下,选哪家旅行社比较合算.21. 北京冬奥会开启了一场全球瞩目的精彩体育盛事,也让吉祥物“冰墩墩”成为新晋顶流,由于生产厂家产能不足,一度造成“一墩难求”的局面,售价直线上升,随着生产厂家全力协调产能配给,吉祥物“冰墩墩”的售价逐渐趋于正常.某玩具商家安排采购员小雷从厂家购进“冰墩墩”、“雪容融”两款毛绒玩具,这两款毛绒玩具的进价和售价如下表:(1)第一次小雷用8400元购进了“冰墩墩”“雪容融”共100个,求“冰墩墩”“雪容融”各购进多少个?(2)第二次小雷在进货时,厂家规定“冰墩墩”的进货数量不得超过“雪容融”进货数量的两倍,小雷计划购进两种毛绒玩具共150个,设小雷购“冰墩墩”m个,售完两款毛绒玩具共获得利润W元,问应如何设计进货方案才能获得最大利润并求出最大利润.22.“精准扶贫,暖心助力”.驻村书记通过某平台直播带货,帮助当地百姓脱贫致富.苹果成本价为每千克5元,销售价为每千克8元;蜜桔成本价为每千克6元,销售价为每千克10元.通过直播,两种水果共销售5000kg,苹果的销售量不少于2000kg.(1)若销售的苹果和蜜桔的总成本为27400元,则销售苹果______ kg,销售蜜桔______ kg.(2)当苹果的销量为多少时,两种水果的总利润最大?最大利润是多少?23.随着5G网络的覆盖,某通信公司推出了两种全国流量套餐业务.套餐一:使用者每月需缴50元月租费,流量按1元/GB收费.套餐二:当流量不超过50GB时,收取90元套餐费;当流量超过50GB时,超过的部分按0.5元/GB收取.设某人一个月内使用5G流量xGB.按照套餐一的费用为y1,按照套餐二所需的费用为y2.(1)分别写出y1,y2与x之间的函数关系式;(2)若每月使用70GB的流量,应选择哪种套餐更合适?24. 已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中DE、OC分别表示甲、乙离开A地的路程s(km)与时间t(ℎ)的函数关系的图象.(1)乙先出发,甲后出发,相差______ ℎ;(2)甲骑摩托车的速度为60km/ℎ,直接写出甲离开A地后s(km)与时间t(ℎ)的函数表达式及自变量t的取值范围;(3)当乙出发几小时后,两人相遇.25. 商家销售某种商品,每件成本50元.经市场调研,当售价为60元时,可销售300件;售价每增加1元,销售量将减少10件.为了提高销售量,当售价为80元时,网络主播直播带货,此时售价每增加1元,需支付给主播300元.物价局对此商品规定:售价最高不超过110元.如图中的折线ABC表示该商品的销售量y(单位:件)与售价x(单位:元)之间的函数关系.(1)求线段BC对应的函数表达式;(2)当售价为多少元时,该商家获得的利润最大?最大利润是多少?(3)直播带货后,售价至少为______ 元,该商家获得的利润不低于直播带货前的最大利润.26. 我国传统数学名著《九章算术》记载:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”译文:有若干只鸡与兔在同一个笼子里,从上面数有35个头,从下面数有94只脚,问笼中各有几只鸡和兔?根据以上译文,回答以下问题:(1)笼中鸡、兔各有多少只?(2)若还是94只脚,但不知道头多少个,笼中鸡兔至少30只且不超过40只.鸡每只值80元,兔每只值60元,问这笼鸡兔最多值多少元?最少值多少元?27. 我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量,应如何购买才能使总费用最少?并求出最少费用.的1228.北京时间2022年4月16日上午,神舟十三号载人飞船返回舱在东风着陆场预定区域着陆,航天员翟志刚、王亚平、叶光富安全顺利出舱,身体状态良好,神舟十三号载人飞行任务取得圆满成功,又一次引起了“宇航”热,某商场欲购进一批宇航员玩偶,其中黄色玩偶的批发价为每只a元,售价为每只20元,蓝色玩偶的批发价为每只b元,售价为每只30元.(1)该商场购进黄色玩偶10只和蓝色玩偶20只共需550元,购进黄色玩偶15只和蓝色玩偶10只共需425元,求a和b的值;(2)该商场决定每周购进两种玩偶共100只,且投入的资金不少于1890元又不多于1900元,设购进黄色玩偶x只,商场把这些玩偶全部销售完的利润为y元,写出y与x的关系式,并求出最大利润.29. 某公司计划组织员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人2000元.经过协商:甲旅行社表示可给予每位游客七五折(按报价75%)优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折(按报价80%)优惠.设该公司参加旅游的人数是x人,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2元.请解答下列问题:(1)请分别写出y1,y2与x之间的关系式.(2)在甲、乙两家旅行社中,你认为选择哪家旅行社更划算?。

一次函数 应用专题(1)(有详细答案)

一次函数  应用专题(1)(有详细答案)

一次函数 应用专题(1)1.(2014·益阳)某电器超市销售每台进价分别为200元、170元的A ,B 两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A 种 型号B 种 型号 第一周 3台 5台 1 800元 二周4台10台3 100元(进价、售价均保持不变,利润=销售收入-进货成本) 【思路点拨】(1)设A,B 两种型号的电风扇销售单价分别为x 元,y 元,根据3台A 种型号5台B 种型号的电风扇收入1800元,4台A 种型号、10台B 种型号的电风扇收入3100元,列方程组求解.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇()a -30台,根据金额不多于5400元,列不等式求 (3)设利润为1400元,列方程求出a 的值为20,不符合(2)的条件,可知不能实现目标. 解.【自主解答】(1)设A ,B 两种型号电风扇的销售单价分别为x 元,y 元. 依题意得⎩⎨⎧=+=+3100104180053y x y x 解得⎩⎨⎧==5020y x 答:A ,B 两种型号电风扇的销售单价分别为250元,210元. (2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇()a -30台. 依题意得()540030170200≤-+a a ,解得:10≤a .答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元. (3)依题意有()()()140030170210200250=--+-a a解得20=a ,此时,a >10. 所以在(2)的条件下超市不能实现利润1400元的目标.2.(2014·福州)现有A,B 两种商品,买2件A 商品和1件B 商品用了90元,买3件A 商品和2件B 商品共用了160元.(1)求A,B 两种商品每件多少元?(2)如果小亮准备购买A,B 两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低? 【解析】(1)设A 商品每件x 元,B 商品每件y 元. 依题意,得 ⎩⎨⎧=+=+16023902y x y x 解得⎩⎨⎧==210250y x答:A 商品每件20元,B 商品每件50元.(2)设小亮准备购买A 商品a 件,则购买B 商品()a -10件.依题意,()()⎩⎨⎧≤-+≥-+350105020300105020a a a a 得 解得3265≤≤a根据题意,a 的值应为整数,所以a =5或a =6.方案一:当a =5时,购买费用为()35051050520=-⨯+⨯(元); 方案二:当a =6时,购买费用为()32061050620=-⨯+⨯ (元).∵350>320,∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件.其中方案二费用最低.3.( 2014·嘉兴)某汽车专卖店销售A,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售出2辆A 型车和1辆B 型车,销售额为62万元. (1)求每辆A 型车和B 型车的售价各为多少元.(2)甲公司拟向该店购买A,B 两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?【解析】(1)设每辆A 型车的售价为x 万元,每辆B 型车的售价为y 万元. 由题意得⎩⎨⎧=+=+622963y x y x 解得⎩⎨⎧==2618y x 答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元.(2)设购买A 型车a 辆,则购买B 型车(6-a)辆. 由题意得()()⎩⎨⎧≤-+≥-+1406261813062618a a a a 解得4132≤≤a∵a 是正整数,∴2=a 或3=a .∴共有两种方案.方案一:购买2辆A 型车和4辆B 型车. 方案二:购买3辆A 型车和3辆B 型车.4.(2013·宿迁) 某公司有甲种原料260kg ,乙种原料270kg ,计划用这两种原料生产A 、B 两种产品共40件.生产每件A 种产品需甲种原料8kg ,乙种原料5kg ,可获利润900元;生产每件B 种产品需甲种原料4kg ,乙种原料9kg ,可获利润1100元.设安排生产A 种产品x 件.(1)完成下表(2)安排生产A 、B 两种产品的件数有几种方案?试说明理由;(3)设生产这批40件产品共可获利润y 元,将y 表示为x 的函数,并求出最大利润. 解:(1)x 8, ()x -409(2)()()⎩⎨⎧≤-+≤-+27040952604048x x x x 255.22≤≤∴x 23=x 、24、25共有三种方案:方案一:A 产品23件,B 产品17件方案二:A 产品24件,B 产品16件 方案三:A 产品25件,B 产品15件(3)()44000200401100900+-=-+=x y x x y当23=x 时,y 有最大值39400元5.(2011日照)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?解: (1)根据题意知,调配给甲连锁店电冰箱(x -70)台,调配给乙连锁店空调机(x -40)台,电冰箱(10-x )台,则()()()101504016070170200-+-+-+=x x x x y即1680020+=x y .∵⎪⎪⎩⎪⎪⎨⎧≥-≥-≥-≥0100400700x x x x∴10≤x ≤40. ∴1680020+=x y (10≤x ≤40); (2)按题意知:()()()()101504016070170200-+-+-+-=x x x x a y即()1680020+-=x a y .∵a -200>170,∴a <30. 当0<a <20时,40=x ,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台; 当20=a 时,x 的取值在10≤x ≤40内的所有方案利润相同; 当20<a <30时,x =10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台;6. (2011孝感)健身运动已成为时尚,某公司计划组装A 、B 两种型号的健身器材共40套,捐赠给社区健身中心.组装一套A 型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A 、B 两种型号的健身器材时,共有多少种组装方案;(2)组装一套A 型健身器材需费用20元,组装一套B 型健身器材需费用18元.求总组装费用最少的组装方案,最少组装费用是多少? 解:(1)设该公司组装A 型器材x 套,则组装B 型器材(x -40)套,依题意,得73(40)24046(40)196x x x x +-≤⎧⎨+-≤⎩ 解得22≤x ≤30. 由x 为整数,∴x 取22,23,24,25,26,27,28,29,30.∴组装A 、B 两种型号的健身器材共有9种组装方案. (2)总的组装费用()7202401820+=-+=x x x y . ∵2=k >0,∴y 随x 的增大而增大. ∴当x =22时,总的组装费用最少,最少组装费用是2×22+720=764元. 总组装费用最少的组装方案:组装A 型器材22套,组装B 型器材18套.7.(2011济宁)“五一”期间,为了满足广大人民的消费需求,某商店计划用160000元购进一批家电,这批家电的进价和售价如下表:类别 彩电 冰箱 洗衣机 进价 2000 1600 1000 售价 2200 1800 1100(1)若全部资金用来购买彩电和洗衣机共100台,问商家可以购买彩电和洗衣机各多少台?(2)若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润=售价-进价) 解:(1)设商店购买彩电x 台,则购买洗衣机(x -100)台。

2024年中考数学一轮复习考点精讲课件—一次函数的应用

2024年中考数学一轮复习考点精讲课件—一次函数的应用
点的坐标为

【详解】解:如图, = = 6,∵ ∠ = 60°,∴ 4,3 3 ,
∵点在边上且横坐标为8,∴ 8, 3 , 10,3 3 ,
∵直线过定点,∴ ⊥ 时,点到所在直线的距离取得最大值.
∵ 0, −
5 3
3
∴ 3 = 8 −
, 8, 3 ,设解析式为 = −
考点一 一次函数的实际应用
【变式】(2021·河南平顶山·统考二模)小明和小亮相约从学校前往博物馆,其中学校距离博物馆900米.小明因有
事,比小亮晚一些出发,图中1 = 1 、2 = 2 + 分别是小明、小亮行驶的路程与小明追赶时间之间的关系.
(1)观察图象可知,小亮比小明先走了_______米.
2
20
故答案为:5;3; 3
20
km;
3
考点一 一次函数的实际应用
题型03 行程问题
【例3】(2022·浙江绍兴·统考一模)绍兴首条智慧快速路于今年3月19日正式通车.该快速路上,两站相距
20km,甲、乙两名杭州亚运会会务工作志愿者从站出发前往站附近的比赛场馆开展服务.甲乘坐无人驾驶小
巴,乙乘坐无人驾驶汽车.图中,分别表示甲、乙离开站的路程 km 与时间 min 的函数关系的图象.
(2)求1 、2 的值,并解释2 的实际意义.
(3)通过计算说明,谁先到博物馆.
【详解】
(1)根据图像可以看出小明走的时候,小亮已经走了 100 米.故答案为:100.
(2)将 = 20, = 60代入1 = 1 ,得60 = 201 ,∴1 = 3;
分别将 = 0时, = 100; = 20时, = 140代入2 = 2 + 得
∴A种物品购买7个,B种物品购买13个最省钱.

专题20.3 一次函数的应用(第1课时)(解析版)

专题20.3 一次函数的应用(第1课时)(解析版)

第二十章一次函数专题20.3 一次函数的应用(第1课时)基础巩固一、单选题(共6小题)1.一辆货车与客车都从A地出发经过B地再到C地,总路程200千米,货车到B地卸货后再去C地,客车到B地部分旅客下车后再到C地,货车比客车晚出发10分钟,则以下4种说法:①货车与客车同时到达B地;②货车在卸货前后速度不变;③客车到B地之前的速度为20千米/时;④货车比客车早5分钟到达C地;4种说法中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【分析】①由函数图可以得出货车到达B地用时30分钟,客车到达B地用时40分钟,根据货车比客车晚出发10分钟就可以得出货车与客车同时到达B地;②分别求出货车卸货前后的速度并作比较就可以得出结论;③由路程÷时间=速度就可以得出结论;④由函数图象可以得出货车到达C地的时间是80分钟,客车到达C地的时间是85分钟就可以得出,但是客车先出发了10分钟,故货车比客车晚5分钟到达C地.【解答】解:①函数图可以得出货车到达B地用时30分钟,客车到达B地用时40分钟,∵车比客车晚出发10分钟,∴货车与客车同时到达B地.故正确②货车在卸货前的速度为:80÷0.5=160千米/时,货车在卸货后的速度为:120÷0.5=240千米/时.∵160≠240,∴货车在卸货前后速度不相等.故错误;③客车到B地之前的速度为:80÷=120千米/时≠20千米/时.故错误;④由函数图象可以得出货车到达C地所有时间是80分钟,客车到达C地所用时间是85分钟,∵客车先出发了10分钟,∴货车是客车出发90分钟后到达的C地,∴货车比客车晚5分钟到达C地.故错误.故选:A.【知识点】一次函数的应用2.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,而后只出水不进水,直到水全部排出.假设每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则下列说法错误的是()A.每分钟的进水量为5升B.每分钟的出水量为3.75升C.OB的解析式为y=5x(0≤x≤4)D.当x=16时水全部排出【答案】D【分析】根据题意和函数图象可以求得每分钟的进水量和出水量,从而可以解答本题.【解答】解:由题意可得,每分钟的进水量为:20÷4=5(L),∴OB的解析式为y=5x(0≤x≤4);每分钟的出水量为:[5×8﹣(30﹣20)]÷8=3.75(L),30÷3.75=8(min),8+12=20(min),∴当x=20时水全部排出.故选:D.【知识点】一次函数的应用3.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h【答案】D【分析】根据图象逐项分析判断即可.【解答】解:由图象知:A.甲车的平均速度为=60km/h,故A选项不合题意;B.乙车的平均速度为=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.【知识点】一次函数的应用4.如图,表示甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶的路程是()A.0.5千米B.1千米C.1.5千米D.2千米【答案】A【分析】分别根据甲、乙的图象计算出各自的速度即可求出每分钟乙比甲多行驶的路程.【解答】解:由甲的图象可知甲的速度为:12÷24=0.5千米/分,由乙的图象可知乙的速度为:12÷(18﹣6)=1千米/分,所以每分钟乙比甲多行驶的路程是0.5千米.故选:A.【知识点】一次函数的应用5.小明和小亮在同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y(米)与小亮出发的时间x(秒)之间的函数关系如图所示,下列说法错误的是()A.小明的速度是4米/秒B.小亮出发100秒时到达终点C.小明出发125秒时到达了终点D.小亮出发20秒时,小亮在小明前方10米【答案】D【分析】根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:由图可得,小明的速度为8÷2=4(米/秒),故选项A正确;小亮出发100秒时到达终点,故选项B正确;小明出发500÷4=125秒时到达终点,故选项C正确;小亮出发20秒时,小明走的路程是8+4×20=88(米),小亮走的路程是500÷100×20=100(米),此时小亮在小明前方100﹣88=12米处,故选项D错误;故选:D.【知识点】一次函数的应用6.某市体育馆将举办明星足球赛,为此体育馆推出两种团体购票方案(设购票张数为x张,购票总价为y元).方案一:购票总价由图中的折线OAB所表示的函数关系确定;方案二:提供8000元赞助后,每张票的票价为50元.则两种方案购票总价相同时,x的值为()A.80B.120C.160D.200【答案】D【分析】根据题意,可以分别求得方案一和方案二对应的函数解析式,然后令它们的函数值相等,即可得到两种方案购票总价相同时,x的值.【解答】解:设OA段对应的函数解析式为y=kx,12000=100k,得k=120,即OA段对应的函数解析式为y=120x,设AB段对应的函数解析式为y=ax+b,,得,即AB段对应的函数解析式为y=60x+6000,由题意可得,方案二中y与x的函数关系式为y=50x+8000,令50x+8000=120x,得x=,∵x为整数,∴x=应舍去,令60x+6000=50x+8000,得x=200,即当x=200时,两种方案购票总价相同,故选:D.【知识点】一次函数的应用二、填空题(共8小题)7.我国很多城市水资源缺乏,为了加强居民的节水意识,某自来水公司采取分段收费标准,某市居民月交水费y(元)与用水量x(吨)之间的关系如图所示,若某户居民4月份用水20吨,则应交水费元.【答案】44【分析】根据函数图象中的数据,可以求得超出10吨水时,每吨水的价格,从而可以计算出某户居民4月份用水20吨,则应交水费多少元.【解答】解:由图象可知,超出10吨的部分,每吨水的价格是(31﹣18)÷(15﹣10)=2.6(元),当用水20吨时,应交水费:18+(20﹣10)×2.6=44(元),故答案为:44.【知识点】一次函数的应用8.某衬衣定价为100元时,每月可卖出2000件,受成本影响,该衬衣需涨价,已知价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y(件)与衬衣价格x(元)之间的关系式为.【答案】y=-5x+2500【分析】根据某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件,即可得到月售出衬衣的总件数y(件)与衬衣价格x(元)之间的关系式.【解答】解:由题意可得,y=2000﹣×50=﹣5x+2500,故答案为:y=﹣5x+2500.【知识点】一次函数的应用9.空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=x+331;当x=22℃时,某人看到烟花燃放5s后才听到声音,则此人与燃放烟花所在地的距离为m.【答案】1721【分析】根据题意,可以求得当x=22℃时,对应速度y的值,然后根据路程=速度×时间,即可得到当x =22℃时,某人看到烟花燃放5s后才听到声音,则此人与燃放烟花所在地的距离.【解答】解:当x=22时,y=×22+331=344.2,则当x=22℃时,某人看到烟花燃放5s后才听到声音,则此人与燃放烟花所在地的距离为:344.2×5=1721(m),故答案为:1721.【知识点】一次函数的应用10.上海市居民用户燃气收费标准如表:年用气量(立方米)每立方米价格(元)第一档0﹣﹣﹣310 3.00第二档310(含)﹣﹣﹣520(含) 3.30第三档520以上 4.20某居民用户用气量在第一档,那么该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是.【答案】y=3x(0≤x<310)【分析】根据该居民用户用气量在第一档,利用“总价=单价×数量.”即可求出该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式.【解答】解:根据题意得第一档燃气收费标准为3.00(元/立方米),∴该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是y=3x(0≤x<310).故答案为:y=3x(0≤x<310).【知识点】一次函数的应用11.“赛龙舟”是我国的一个传统运动项目.某天,甲乙两队在一个笔直的湖面进行“赛龙舟”比赛,全程300米.两队同时出发,刚出发,乙队就以明显优势领先,甲队发现形式不利,迅速调整比赛状态,把速度提升了,并以提升后的速度赛完全程,假设乙队全程是匀速比赛状态,甲队提速前和提速后也分别是匀速运动,甲、乙两队之间的距离y(米)与乙队行驶x(秒)之间的关系如图所示,则甲队到达终点时,乙队离终点还有米.【分析】根据题意和函数图象中的数据,可以先求出乙的速度,再根据图象中的数据,可以求出甲开始的速度,从而可以得到甲提速后的速度,再根据图象中的数据,可以得到甲到达终点的时间,从而可人计算出甲队到达终点时,乙队离终点的距离.【解答】解:由图可得,乙队的速度为300÷100=3(米/秒),设甲队开始的速度为a米/秒,15(3﹣a)=(45﹣15)×[a(1+)﹣3],解得a=2,∴甲队提速后的速度为2×(1+)=3.5(米/秒),∴甲队到达终点用的时间为:15+(300﹣15×2)÷3.5=15+=15+77=92(秒),∴甲队到达终点时,乙队离终点还有3×(100﹣92)=3×7=3×=(米),故答案为:.【知识点】一次函数的应用12.开学前夕,某服装厂接到为一所学校加工校服的任务,要求5天内加工完220套校服,服装厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止,设甲乙两车间各自加工校服数量y(套)与甲车间加工时间x(天)之间的关系如图①所示;未加工校服w(套)与甲加工时间x(天)之间的关系如图②所示,请结合图象回答下列问题:(1)甲车间每天加工校服套;(2)乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式是.【答案】【第1空】20【第2空】y=35x-55【分析】(1)根据题意和函数图象中的数据,可以计算出甲车间每天加工校服数量;(2)根据函数图象中的数据,可以计算出乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式.【解答】解:(1)由图①可得,甲车间每天加工校服:(220﹣120)÷5=100÷5=20(套),故答案为:20;(2)由图象可得,a=(220﹣185)﹣20=35﹣20=15,设乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式是y=kx+b,∵点(2,15),(5,120)在函数y=kx+b的图象上,∴,解得,即乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式是y=35x﹣55,故答案为:y=35x﹣55.【知识点】一次函数的应用13.某市出租车计费办法如图所示,如果小张在该市乘坐出租车行驶了10千米,那么小张需要支付的车费为元.【答案】30.8【分析】设超过3千米的函数解析式为y=kx+b,根据题意列出方程组,利用待定系数法求得解析式,然后把x=10代入即可求得.【解答】解:由图象可知,出租车的起步价是14元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2.4x+6.8,∴出租车行驶了10千米则y=2.4×10+6.8=30.8(元),故答案为30.8.【知识点】一次函数的应用14.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y(元)与用水量x(吨)之间的函数关系如图所示.按上述分段收费标准,小明家三、四月份分别交水费29元和18元,则四月份比三月份节约用水吨.【答案】4【分析】分别利用待定系数法求出y=2x(0≤x<10),y=3x﹣10(x>10),然后把y=29和y=18代入对应的函数关系式中求出对应的自变量x的值,再求差即可.【解答】解:设0≤x<10的函数解析式为y=mx,把(10,20)代入y=kx得20=10m,解得m=2,所以y=2x(0≤x<10),把y=18代入y=2x,得x=9,即四月份用了9吨水,设x>10的函数解析式为y=kx+b,把(10,20)和(20,50)代入y=kx+b得,解得,所以y=3x﹣10(x>10),当y=29时,把y=29代入y=3x﹣10得3x﹣10=29,解得x=13,即三月份用了13吨水,13﹣9=4(吨),即四月份比三月份节约用水4吨.故答案为:4.【知识点】一次函数的应用拓展提升三、解答题(共6小题)15.甲、乙两人开车匀速从同一地点到距离出发地480千米处的景点旅游,甲出发半小时后,乙以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止.甲、乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲行驶的速度是千米/小时.(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范围.(3)求甲车出发多长时间两车相距75千米.【答案】60【分析】(1)根据题意结合图象列式计算即可;(2)分别求出相应线段的两个端点的坐标,再运用待定系数法解答即可;(3)把y=80代入(2)的结论解答即可.【解答】解:(1)甲行驶的速度为:30÷0.5=60(千米/小时),故答案为:60.(2)如图所示:设甲出发x小时后被乙追上,根据题意得:60x=80(x﹣0.5),解得x=2,即甲出发2小时后被乙追上,∴点A的坐标为(2,0),480÷80+0.5=6.5(时),即点B的坐标为(6.5,90),设AB的解析式为y=kx+b,由点A,B的坐标可得:,解得,所以AB的解析式为y=20x﹣40(2≤x≤6.5);(3)根据题意得20x﹣40=75或60x=480﹣75,解得x=或答:甲车出发小时或小时两车相距75千米.【知识点】一次函数的应用16.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm.(1)写出y与x之间的关系式;(2)当该动物腿长10dm时,其身高为多少?【分析】(1)根据题意,可以先设出y与x的函数关系式为y=kx+b,然后再根据当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm,即可求得该函数的解析式;(2)将x=10代入(1)中的函数解析式,即可得到相应的身高.【解答】解:(1)设y与x之间的关系式为y=kx+b,,得,即y与x之间的关系式是y=7.5x+0.5;(2)当x=10时,y=7.5×10+0.5=75.5,答:当该动物腿长10dm时,其身高为75.5dm.【知识点】一次函数的应用17.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30时,求y与x之间的函数关系式;(2)若小李4月份上网35小时,他应付多少元的上网费用?【分析】(1)根据函数图象中的数据,可以得到当x≥30时,y与x之间的函数关系式;(2)将x=35代入(1)中的函数解析式,即可求得小李4月份上网35小时,他应付多少元的上网费用.【解答】解:(1)设当x≥30时,y与x之间的函数关系式是y=kx+b,,解得,,即当x≥30时,y与x之间的函数关系式是y=3x﹣30;(2)当x=35时,y=3×35﹣30=105﹣30=75,即小李4月份上网35小时,他应付75元的上网费用.【知识点】一次函数的应用18.表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0123…邮箱剩余油量Q(L)100948882…①根据上表可知,每小时耗油升;②根据上表的数据,写出用Q与t的关系式:;③汽车油箱中剩余油量为55L,则汽车行驶了小时.【答案】【第1空】6【第2空】Q=100-6t【第3空】7.5【分析】①根据表中数据即可得到结论;②由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得t与Q的关系式;③求汽车油箱中剩余油量为55L,则汽车行使了多少小时即是求当Q=55时,t的值.【解答】解:(1)据上表可知,每小时耗油100﹣94=6 升;(2)关键题意得:Q=100﹣6t;(3)当Q=55时,55=100﹣6t,6t=45,t=7.5.答:汽车行使了7.5小时.故答案为:①6;②Q=100﹣6t;③7.5.【知识点】一次函数的应用19.某地长途汽车客运公规定旅客可随携带一定质量的行李,如果超过规定需要购买行李票,行李票费用y元是行李质量xkg的一次函数,如图所示.(1)求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量是多少?【分析】(1)利用待定系数法求一次函数解析式解答;(2)令y=0时求出x的值即可.【解答】解:(1)由图可知,函数图象经过点(60,6),(80,10),所以,,解得;所以解析式为:y=0.2x﹣6;(2)令y=0,则0.2x﹣6=0,解得x=30,所以,旅客最多可免费携带行李的质量为30kg.【知识点】一次函数的应用20.为了迎接疫情彻底结束后的购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且甲种运动鞋的数量不超过100双,问该专卖店共有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式组,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【解答】解:(1)依题意得,,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解得95≤x≤100,∵x是正整数,100﹣95+1=6,∴共有6种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,W最大=22000﹣100a,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;W最大=16000;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,W最大=21700﹣92a;即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【知识点】一次函数的应用、一元一次不等式的应用、分式方程的应用。

一次函数的应用专题复习课件

一次函数的应用专题复习课件

(1)、求 k1 、k2 的值
y (2)、根据函数图象可知,当 1 > y2 时,x的取值范围
(3)、过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点. 设直线OP与线段AD交于点E,当 S四边形ODAC :S△ODE =3:1时,求点P的 坐标.
方法点析
利用数形结合,实现数字与图形之间的相互 转化,实现代数与几何之间的相互转化。其实, 其他函数的学习也可以运用数形结合的方法,它 是数学学习的很重要的手段和思想,希望大家注 重运用。
1.汽车由南京驶往相距300千米的上海,当它的平均 速度是100千米/时,下面哪个图形表示汽车距上海 的路程s(千米)与行驶时间t(小时)的函数关系? ()
S(千米) 300
S(千米) 300
S(千米) 300
S(千米) 300
o
3 t(小时)o
3 t(小时)o
A
B
3 t(小时) o
C
3 t(小时) D
长时间?
y(千米)
AB
90
D
0
1 1.5
C
3
x(时)
方法点析
结合函数图象及性质,弄清图象上的一些 特殊点的实际意义及作用,寻找解决问题的突 破口,这是解决一次函数应用题常见的思路。 “图形信息”题是近几年的中考热点考题,解 决此类问题应做到三个方面:
(1)、看图找点 (2)、见形想式 (3)、建模求解
一次函数的图象和性质
2、甲、乙两人同时从相距90千米的A地前往B地,甲乘汽
车,乙骑摩托车,甲到达B地停留半小时后返回A地。如图是
他们离A地的距离y(千米)与时间x(时)之间的函数关系图
象。
(1)、求甲从B地返回A地的过程中,y与x之间的函数关系式,

2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)(提升篇)(含答案)

2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)(提升篇)(含答案)

2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)姓名:___________班级:___________考号:___________1.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,图中的折线表示两车之间距离()kmy与慢车行驶时间()h x之间的函数关系图象,请根据图象提供的信息回答:(1)快车的速度是______km/h.(2)求线段BC所表示的函数关系式.(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同,直接写出第二列快车出发多长时间与慢车相距200km.2.A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中12,分别表示甲、乙l l两人离B地的距离y(km)与甲出发时间x(h)的函数关系图象.(1)求点A的坐标,并说明其实际意义;(2)甲出发多少时间,两人之间的距离恰好相距5km;(3)若用y3(km)表示甲、乙两人之间的距离,请在坐标系(图3)中画出y3(km)关于时间x(h)的函数关系图象,注明关键点的数据.3.快车甲和慢车乙分别从A、B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息.解答下列问题:(1)直接写出快、慢两车的速度及A、B两站间的距离;(2)求快车从B返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.4.甲、乙两人从相距4千米的两地同时、同向出发,乙每小时走4千米,小狗随甲一起同向出发,小狗追上乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直匀速跑下去.如图,折线A B C--,A D E--分别表示甲、小狗在行进过程中,y与甲行进时间x(h)之间的部分函数图象.离乙的路程()km(1)求AB所在直线的函数解析式;(2)小狗的速度为______km/h;求点E的坐标;(3) 小狗从出发到它折返后第一次与甲相遇的过程中,求x为何值时,它离乙的路程与离甲的路程相等?5.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发.设普通列车行驶的时间为x(小时),两车之间的距离为y(千米).图中的折线表示y与x之间的函数关系图像.求:(1)甲、乙两地相距______千米;(2)求动车和普通列车的速度;(3)求C点坐标和直线CD解析式;(4)求普通列车行驶多少小时后,两车相距1000千米.6.甲、乙两车分别从A,B两地同时出发,匀速行驶,先相向而行.途中乙车因故停留1小时,然后以原速继续向A地行驶,甲车到达B地后,立即按原路原速返回A地(甲车掉头的时间忽略不计),到达A地后停止行驶,原地休息;甲、乙两车距B地的路程y(千米)与所用时间x (时)之间的函数图象如图,请结合图象信息解答下列问题:(1)乙车的速度为千米/时,在图中的()内应填上的数是.(2)求甲车从B地返回A地的过程中,y与x的函数关系式.(3)两车出发后几小时相距120千米,请直接写出答案:时.7.甲、乙两人从A地前往B地,先到终点的人在原地休息.已知甲先出发30s后,乙才出发.在运动过程中,甲、乙两人离A地的距离分别为1y(单位:m)、2y(单位:m),都是甲出发时间x(单位:s)的函数,它们的图象如图①.设甲的速度为1v m/s,乙的速度为2v m/s.(1)12:v v=______,=a______;(2)求2y与x之间的函数表达式;(3)在图②中画出甲、乙两人之间的距离s(单位:m)与甲出发时间x(单位:s)之间的函数图象.8.小明从学校出发,匀速骑行前往距离学校2400米的图书馆,小明出发的同时,同学小阳以每分钟80米的速度从图书馆沿同一条道路步行回学校,两人距离学校的路程y(单位:米)与小明从学校出发的时间x(单位:分钟)的函数图象如图所示.(1)点C的坐标为_________;(2)求直线BC的表达式;(3)若小明在图书馆停留7分钟后沿原路按原速返回,请补全小明距离学校的路程y与x的函数图象;(4)在(3)的基础上,小明能否在返校途中追上小阳?若能,请计算此时两人与学校之间的距离;若不能,请说明理由.9.如图,已知:平面直角坐标系中,正比例函数y=kx(k≠0)的图象经过点A(﹣2,﹣2),点B是第二象限内一点,且点B的横、纵坐标分别是一元二次方程x2﹣36=0的两个根.过点B作BC⊥x轴于点C.(1)直接写出k的值和点B的坐标:k=;B(,);(2)点P从点C出发,以每秒1个单位长度的速度沿x轴向右运动,设运动时间为t,若△BPO 的面积是S,试求出S关于t的函数解析式(直接写出t的取值范围)(3)在(2)的条件下,当S=6时,以PQ为一边向直线PQ下方作正方形PQRS,求点R 的坐标.10.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶,乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.根据图像回答下列问题:(1)乙车行驶小时追上了甲车.(2)乙车的速度是;(3)m=;(4)点H的坐标是;(5)n=.11.已知矩形ABCD中,AB=4米,BC=6米,E为BC中点,动点P以2米/秒的速度从A 出发,沿着△AED的边,按照A→E→D→A顺序环行一周,设P从A出发经过x秒后,△ABP 的面积为y(平方米),求y与x间的函数关系式.12.某兴趣小组利用计算机进行电子虫运动实验.如图1,在相距100个单位长度的线段AB 上,电子虫甲从端点A出发,匀速往返于端点A、B之间,电子虫乙同时从端点B出发,设定不低于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员重点探究了甲、乙迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.设甲、乙第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.(1)请直接写出:当x=20时,y的值为_________;当x=40时,y的值为________;(2)兴趣小组成员发现了y与x的函数关系,并画出了部分函数图像(如图2中的线段OM,但不包括点O,因此点O用空心画出)①请直接写出:a=_______;②分别求出各部分图像对应的函数解析式,并在图2中补全函数图像,标出关键点的坐标;(2)小黄在距离学校多少米处遭遇堵车?从小黄遇到堵车到小吴追上小黄用了多少时间?(3)小吴和小黄何时相距520m?15.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.(1)点A的实际意义是什么?(2)求甲、乙两人的速度;(3)求OC和BD的函数关系式;(4)求学校和博物馆之间的距离.16.甲乙两人沿相同的路线同时登山甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲距地面的高度y(米)与登山时间x(分)之间的函数关系式为:y 甲.(2)若乙提速后,乙的速度是甲登山速度的3倍,登山多长时间时,乙追上了甲?此时乙距A 地的高度为多少米?答案:21200 430v=15 6v∴=⨯30 a∴=⨯。

一次函数的应用期末复习

一次函数的应用期末复习

一次函数的应用一、知识点:1、一次函数的应用:用一次函数解决实际问题的步骤:(1)认真分析实际问题中变量之间的关系;(2)若具有一次函数关系,则建立一次函数的关系式;(3)利用一次函数的有关知识解题。

在一次函数应用的过程中,要注意结合实际,确定自变量的取值范围,求出对应的函数值时,也要结合实际舍去不符合题意的部分。

2、二元一次方程组的图象解法⑴一次函数与二元一次方程的关系:般地,一次函数y=kx+b图象上任意一点的坐标都是二元一次方程kx-y+b=0的,以二元一次方程kx-y+b=0的解为坐标的点都在的图象上。

⑵两个一次函数与二元一次方程组的解的关系:一般地,如果两个一次函数的图象有一个交点,那么就是相应的二元一次方程组的解。

用图象法解二元一次方程组的步骤如下:①把二元一次方程化的形式;②在直角坐标系中画出两个一次函数的图像,并标出交点;③就是方程组的解。

二、预习练习1、为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x的关系式.2、已知一次函数y=(m-1)x+1的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y 1<y 2,那么m 的取值范围是( ) A .m>0B . m<0C .m>1D .m<13、某公司市场营部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是( )元.A .280B .290C .300D .3104、某影碟出租店开设两种租碟方式:一种是零星租碟, 每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x 张.(1)写出零星租碟方式应付金额y 1(元)与租碟数量x (张)之间的函数关系式; (2)写出会员卡租碟方式应付金额y 2(元 )与租碟数量x(张)之间的函数关系式;(3)小彬选取哪种租碟方式更合算?三、例题讲解: 例1:填空题和选择题:1、方程组⎩⎨⎧+==-3214x y y x 的解是 ,则一次函数y=4x -1与y=2x+3的图象交点为 。

专题5.5一次函数的应用(举一反三)(浙教版)(原卷版)

专题5.5一次函数的应用(举一反三)(浙教版)(原卷版)

专题5.5 一次函数的应用【八大题型】【浙教版】【题型1 行程问题】 (1)【题型2 工程问题】 (2)【题型3 利润最大问题】 (4)【题型4 费用最低问题】 (6)【题型5 调运问题】 (7)【题型6 体积问题】 (9)【题型7 几何图形问题】 (10)【题型8 其他问题】 (11)【题型1 行程问题】【例1】(2022春•大足区期末)甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当乙车到达A地时,甲车距A地150千米.【变式11】(2022•前进区校级开学)甲、乙两车从佳木斯出发前往哈尔滨,甲车先出发,1h以后乙车出发,在整个过程中,两车离开佳木斯的距离y(km)与乙车行驶时间x(h)的对应关系如图所示:(1)直接写出佳木斯、哈尔滨两城之间距离是多少km?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车在行驶过程中经过多长时间,与乙车相距18km.【变式12】(2022秋•舞钢市期末)甲、乙两人分别从笔直道路上的A、B两地出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x(分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有()A.0个B.1个C.2个D.3个【变式13】(2022春•南川区期末)甲、乙两运动员在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的运动员原地休息.已知甲先出发1秒,两运动员之间的距离y(米)与乙出发的时间x (秒)之间的关系如图所示.给出以下结论:①a=7;②b=63;③c=80.其中正确的是()A.①②③B.②③C.①②D.①③【题型2 工程问题】【例2】(2022•李沧区一模)李沧区海绵工程建设过程中,需要将某小区内两段长度相等的人行道改造为透水人行道,人行道绿篱改造为下沉式绿篱.现分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设人行道的长度y(米)与施工时间x(时)之间关系的部分图象,请解答下列问题:(1)求乙队在2≤x≤6的时间段内,y与x的函数关系式;(2)若甲队施工速度不变,乙队在施工6小时后,施工速度增加到12米/时,结果两队同时完成了任务,求甲队从开始施工到完成,所铺设的人行道共是多少米.【变式21】(2022春•华容县期末)某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元.(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需用较少?【变式22】(2022春•庐江县期末)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x (时)的函数图象为折线BC﹣﹣CD﹣﹣DE,如图所示,从甲队开始工作时计时.(1)直接写出乙队铺设完的路面长y(米)与时间x(时)的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?【变式23】(2022•无锡模拟)甲,乙两人同时各接受了300个零件的加工任务,甲比乙每小时加工的数量多,两人同时开工,其中一人因机器故障停止加工若干小时后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(小时)之间的函数关系,观察图象解决下列问题:(1)其中一人因故障,停止加工小时,C点表示的实际意义是.甲每小时加工的零件数量为个;(2)求线段BC对应的函数关系式和D点坐标;(3)乙在加工的过程中,多少小时时比甲少加工75个零件?(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每小时能加工80个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少小时时开始帮助乙?并在图中用虚线画出丙帮助后y与x 之间的函数关系的图象.【题型3 利润最大问题】【例3】(2022春•遵义期末)钓鱼成为越来越多人休闲娱乐的选择,鱼密度大的鱼塘的门票在300﹣600元不等,这让爱好钓鱼的钓友们喜欢到能回鱼的鱼塘垂钓(回鱼是指钓友钓上的鱼返卖给塘主),如果鱼情和钓鱼技能好的话还能获得一些利润.欢乐鱼塘的门票为450元5小时,回鱼标准为56斤以内为12元/斤,超过56斤的部分7元/斤:云门鱼塘门票为320元5小时,回鱼标准是律按8元/斤.(斤是重量单位,1斤0.5千克),设钓友获得的利润为y元,鱼的重量为x斤.(1)求在两家鱼塘钓鱼时y欢乐、y云门与x之间的函数关系式;(2)如图,在平面直角坐标系中,M,N为图象的交点,m,n分别为点M,N的横坐标,写出图中m,n的值分别为、;(3)钓友会根据自己的钓鱼技能和鱼塘的回鱼标准选择不同的鱼塘垂钓,请帮钓友们分析选择在哪家鱼塘钓鱼更划算?【变式31】(2022春•武汉期末)某商店销售一种产品,该产品成本价为6元/件,售价为8元/件,销售人员对该产品一个月(30天)销售情况记录绘成图象.图中的折线ODE表示日销量y(件)与销售时间x(天)之间的函数关系,若线段DE表示的函数关系中,时间每增加1天,日销量减少5件.(1)第25天的日销量是件,这天销售利润是元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?销售期间日销售最大利润是多少元?【变式32】(2022•济宁二模)某商店购进了A,B两种家用电器,相关信息如下表:家用电器进价(元/件)售价(元/件)A m+2001800B m1700已知用6000元购进的A种电器件数与用5000元购进的B种电器件数相同.(1)求表中m的值.(2)由于A,B两种家用电器热销,该商店计划用不超过23000元的资金再购进A,B两种电器总件数共20件,且获利不少于13300元.请问:有几种进货方案?哪一种方案才能获得最大利润?最大利润是多少?【变式33】(2022•长垣市模拟)某营业厅销售3部A型号和2部B型号的营业额为10800元,销售4部A型号和1部B型号的营业额为10400元.(1)求每部A型号和B型号的售价;(2)该营业厅计划一次性购进两种型号共50部,其中B型号的进货数量不超过A型号数量的3倍.已知A型和B型的进货价格分别为1500元/部和1800元/部,设购进A型号a部,这50部的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号各多少部时,才能使销售总利润最大,最大利润为多少元?【题型4 费用最低问题】【例4】(2022春•前郭县期末)共享电动车是一种新理念下的交通工具,主要面向3~10km的出行市场现有A、B品牌的共享电动车,收费与骑行时间之间的函数关系如图所示,其中A品牌收费方式对应y1,B 品牌的收费方式对应y2.(1)请求出两个函数关系式.(2)如果小明每天早上需要骑行A品牌或B品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为20km/h,小明家到工厂的距离为6km,那么小明选择哪个品牌的共享电动车更省钱呢?(3)直接写出第几分钟,两种收费相差1.5元.【变式41】(2022春•碑林区校级期末)某校张老师寒假准备带领他们的“三好学生”外出旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人400元,经协商,甲旅行社表示:“如果带队张老师买一张全票,则学生可半价”;乙旅行社表示:“所有游客全部享受6折优惠.”则:(1)设学生数为x(人),甲旅行社收费为y甲(元),乙旅行社收费为y乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?【变式42】(2022春•滦南县期末)某人因需要经常去复印资料,甲复印社直接按每次印的张数计费,乙复印社可以加入会员,但需按月付一定的会员费.两复印社每月收费情况如图所示,根据图中提供的信息解答下列问题:(1)乙复印社要求客户每月支付的会员费是元;甲复印社每张收费是元;(2)求出乙复印社收费情况y关于复印页数x的函数解析式,并说明一次项系数的实际意义;(3)当每月复印多少页时,两复印社实际收费相同;(4)如果每月复印200页时,应选择哪家复印社?【变式43】(2022春•石河子期末)某种黄金饰品在甲、乙两个商店销售,甲店标价280元/克,按标价出售,不优惠,乙店标价300元/克,但若买的黄金饰品重量超过3克,则超出部分可打八折出售.(1)分别写出到甲、乙商店购买该种黄金饰品所需费用y(元)和重量x(克)之间的函数关系,并写出定义域;(2)李阿姨要买一条重量不超过10克的此种黄金饰品,到哪个商店购买最合算?请说明理由.【题型5 调运问题】【例5】(2022•贺兰县模拟)云南某县境内发生地震,某市积极筹集救灾物资260吨从该市区运往该县甲、乙两地,若用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:甲地(元/辆)乙地(元/辆)车型运往地大货车720800小货车500650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【变式51】(2022春•扎鲁特旗期末)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)试问有无可能一天获得总租金是80050元?若有可能,请写出相应的调运方案;若无可能,请说明理由.【变式52】(2022春•海淀区校级期末)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾民安置点从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:C D总计/tA200B x300总计/t240260500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.【变式53】(2022春•巴南区月考)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A县10辆,调往B县8辆,已知调运一辆农用车的费用如表:县名A B费用仓库甲4080乙3050(1)设从乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式.(2)若要求总运费不超过900元.共有哪几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?【题型6 体积问题】【例6】(2022秋•邗江区月考)某水池的容积为90m3,水池中已有水10m3,现按8m3/h的流量向水池注水.(1)写出水池中水的体积y(m3)与进水时间t(h)之间的函数表达式,并写出自变量t的取值范围;(2)当t=1时,求y的值;当y=50时,求t的值.【变式61】(2022春•北京期末)如图,有一个装水的容器,容器内的水面高度是10cm,水面面积是100cm2.现向容器内注水,并同时开始计时.在注水过程中,水面高度以每秒0.2cm的速度匀速增加.容器注满水之前,容器内水面的高度h,注水量V随对应的注水时间t的变化而变化,则h与t,V与t满足的函数关系分别是()A.正比例函数关系,正比例函数关系B.正比例函数关系,一次函数关系C.一次函数关系,一次函数关系D.一次函数关系,正比例函数关系【变式62】(2022春•梁子湖区期末)水龙头关闭不严会造成漏水浪费,已知漏水量与漏水时间之间满足一次函数关系,八年级同学进行了以下实验:在漏水的水龙头下放置一个能显示水量的容器,每10分钟记录一次容器中的水量.下表是一位同学的记录结果,老师发现有一组数据记录有较大偏差,它是()组别12345010203040时间t(min)1 2.4 3.8 5.2 6.8水量w(ml)A.第2组B.第3组C.第4组D.第5组【变式63】(2022•宣城模拟)某容器有一个进水管和一个出水管,从某时刻开始的前4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水.已知进水管进水的速度与出水管出水的速度是两个常数,容器内水量y (升)与时间x (分钟)之间的关系如图所示.则每分钟的出水量为( )A .4升B .152升C .154升D .134升 【题型7 几何图形问题】【例7】(2022春•交城县期末)菜农张大叔要用63米的篱笆围一个矩形的菜地,已知在菜地的一边AB 边上留有1米宽的入口.设AB 边的长为x ,BC 边的长为y ,则y 与x 之间的函数关系式是( )A .y =63−2x 2B .y =63−2x+12C .y =63﹣2xD .y =632−12x 【变式71】(2022春•阿荣旗期末)已知等腰三角形周长为20(1)写出底边长y 关于腰长x 的函数解析式(x 为自变量);(2)写出自变量的取值范围;(3)在直角坐标系中,画出函数图象.【变式72】(2022秋•富民县校级期末)如图,正方形ABCD 的边长为6cm ,动点P 从A 点出发,在正方形的边上由A ⇒B ⇒C ⇒D 运动,设运动的时间为t (s ),△APD 的面积为S (cm 2),S 与t 的函数图象如图所示,请回答下列问题:(1)点P 在AB 上运动的速度为 ,在CD 上运动的速度为 ;(2)求出点P 在CD 上时S 与t 的函数关系式;(3)t为何值时,△APD的面积为10cm2?【变式73】(2022春•泰和县期末)如图1是一个大型的圆形花坛建筑物(其中AB与CD是一对互相垂直的直径),小川从圆心O出发,按图中箭头所示的方向匀速散步,并保持同一个速度走完下列三条线路:①线段OA、②圆弧A→D→B→C、③线段CO后,回到出发点.记小川所在的位置距离出发点的距离为y(即所在位置与点O之间线段的长度)与时间t之间的图象如图2所示,(注:圆周率π取近似值3)(1)a=,b=.(2)当t≤2时,试求出y关于t的关系式;(3)在沿途某处小川遇见了他的好朋友小翔并聊了两分钟的时间,然后继续保持原速回到终点O,请回答下列两小问:①小川渝小翔的聊天地点位于哪两点之间?并求出此时他距离终点O还有多远;②求他此行总共花了多少分钟的时间.【题型8 其他问题】【例8】(2022春•昌平区期末)某旅客携带x(公斤)的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李质量x(公斤)的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李质量x(公斤)的对应关系,行李的质量x(公斤)快递费不超过1公斤10元超过1公斤但不超过5公斤的3元/公斤部分5元/公斤超过5公斤但不超过15公斤的部分(1)如果旅客选择托运,求可携带的免费行李的最大质量为多少公斤?(2)如果旅客选择快递,当1≤x≤15时,求快递费y2(元)与行李质量x(公斤)的函数关系式;(3)某旅客携带25公斤的行李,设托运m(公斤)行李(10≤m<24,m为正整数),剩下的行李选择快递,m为何值时,总费用y的值最小,总费用的最小值是多少?【变式81】(2022春•正定县期中)弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm),与所挂物体质量x(kg)之间有下面的关系:x/kg01234…y/cm88.599.510…下列说法不正确的是()A.x与y都是变量,x是自变量,y是x的函数B.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式为y=8+0.5xD.挂30kg物体时,弹簧长度一定比原长增加15cm【变式82】(2022秋•和平县期末)某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)之间的关系,并画出如图所示的图象(AC是线段,射线CD平行于x轴).有下列说x+6;③观察第40天时,法:①从开始观察起,60天后该植物停止长高;②直线AC的函数表达式为y=15该植物的高度为14厘米;④该植物最高为15厘米.其中说法正确的是()A.①②③B.②④C.②③D.①②③④【变式83】(2022•阿城区模拟)某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中240度仍按照“基础电价”计费,超过的部分按照“提高电价”收费,设每个家庭月用电量为x度时,应交电费为y元.具体收费情况如折线图所示,下列叙述错误的是()A.“基础电价”是0.5元/度B.“提高电价”是0.6元/度C.小红家5月份用电260度的电费是132元D.小红家4月份198元电费的用电量是129度。

数学中考一轮复习专题14一次函数的应用课件

数学中考一轮复习专题14一次函数的应用课件

知识点梳理
知识点1:一次函数解析式的确定
1.确定一次函数解析式的方法: (1)待定系数法; (2)根据题意中等量关系直接列出解析式; (3)通过几何变换(通常为平移)前后的解析式特征(自变量“左加右减”, 函数值“上加下减”)确定新函数解析式.
知识点1:一次函数解析式的确定
知识点梳理
2.用待定系数法求一次函数表达式的一般步骤:
7k b b 4
3

解得
k
1 7

b 4
∴直线BD的解析式为 y 1 x 4 . 7
故选:A.
知识点2:一次函数的几何应用
典型例题
【例6】(3分)(202X•呼伦贝尔•兴安盟17/26)如图,点B1在直线l:y
1 2
x
上,
点B1的横坐标为1,过点B1作B1A1⊥x轴,垂足为A1,以A1B1为边向右作正方形
典型例题
知识点1:一次函数解析式的确定
【解答】解:(1)把点P的横坐标为2代入得,y=-2+5=3,
∴点P(2,3),

S△AOP
1 2
43
(2)当S=4时,即
6 1
; 4
y
4

2
∴y=2,
当y=2时,即2=-x+5,
解得x=3,
∴点P(3,2);
典型例题
知识点1:一次函数解析式的确定
(3)由题意得, S 1 OA y 2y 2(x 5) 2x 10 ,
(2)把x=﹣2代入 y= 1 x 1 ,求得y=﹣2, 2
∴函数y=mx(m≠0)与一次函数 y= 1 x 1 的交点 2
为(﹣2,﹣2),
把点(﹣2,﹣2)代入y=mx,求得m=1,

初三数学中考复习《一次函数的应用》专项训练(含答案)

初三数学中考复习《一次函数的应用》专项训练(含答案)

初三数学中考复习 一次函数的应用 专项训练1. 大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广生的业余文化生活,大剧院制定了两种优惠方案,方案①:购买一张成人票赠送一张学生票;方案②:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别求出两种优惠方案中y 与x 的函数关系式;(2)请计算并确定出最节省费用的购票方案.2. 小李是某服装厂的一名工人,负责加工A ,B 两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A 型服装1件可得20元,加工B 型服装1件可得12元.已知小李每天可加工A 型服装4件或B 型服装8件,设他每月加工A 型服装的时间为x 天,月收入为y 元. (1)求y 与x 的函数关系式;(2)根据服装厂要求,小李每月加工A 型服装数量应不少于B 型服装数量的35,那么他的月收入最高能达到多少元?3. 某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式;(不要求写出自变量x的取值范围)(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.4. 昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?5. 胡老师计划组织朋友暑假去革命圣地两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.6. 科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y与x的函数关系式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?7. 小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1 kg收费22元,超过1 kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5 kg樱桃,请你求出这次快寄的费用是多少元?8. “十一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?9. 由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量;(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x 的范围.10. 周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为____km/h,H点坐标为__________________;(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?11. 根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.12. 小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500 m,如图是小明和爸爸所走的路程s(m)与小明的步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20 min到达公园,则小明在步行过程中停留的时间需作怎样的调整?13. 某物流公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A,B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?14. 某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:A型客车B型客车载客量(人/辆) 45 28租金(元/辆) 400 250经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的代数式填写下表:车辆数(辆) 载客量(人) 租金(元)A型客车x 45x 400xB型客车13-x ____________ ______________ (2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?15. 为了节约资源,科学指导居民改善居住条件,小强向房管部门提出了一个购买商品房的政策性方案:人均住房面积(平方米) 单价(万元/平方米)不超过30(平方米)部分0.4超过30平方米部分0.9设一个3口之家购买商品房的人均面积为x平方米,缴纳房款y万元.(1)请求出y关于x的函数关系式;(2)若某3口之家欲购买120平方米的商品房,求其应缴纳的房款.16. 保障我国海外维和官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:运费(元/吨)港口甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明费用最低时的调配方案. 参考答案:1. 解:(1)按优惠方案①可得y 1=20×4+(x -4)×5=5x +60(x≥4),按优惠方案②可得y 2=(5x +20×4)×90%=4.5x +72(x≥4) (2)因为y 1-y 2=0.5x -12(x≥4),①当y 1-y 2=0时,得0.5x -12=0,解得x =24,∴当x =24时,两种优惠方案付款一样多.②当y 1-y 2<0时,得0.5x -12<0,解得x <24,∴4≤x <24时,y 1<y 2,优惠方案①付款较少.③当y 1-y 2>0时,得0.5x -12>0,解得x >24,当x >24时,y 1>y 2,优惠方案②付款较少2. 解:(1)由题意得y =20×4x+12×8×(22-x)+900,即y =-16x +3012 (2)依题意得4x≥35×8×(22-x),∴x≥12.在y =-16x +3012中,∵-16<0,∴y 随x 的增大而减小.∴当x =12时,y 取最大值,此时y =-16×12+3012=2820.答:当小李每月加工A 型服装12天时,月收入最高,可达2820元 3. 解:(1)因为购买大型客车x 辆,所以购买中型客车(20-x)辆.y =62x +40(20-x)=22x +800(2)依题意得20-x <x.解得x >10,∵y =22x +800,y 随着x 的增大而增大,x 为整数,∴当x =11时,购车费用最省,为22×11+800=1042(万元),此时需购买大型客车11辆,中型客车9辆,答:购买大型客车11辆,中型客车9辆时,购车费用最省为1042万元4. 解:(1)设线段AB 所表示的函数关系式为y =kx +b ,依题意有⎩⎪⎨⎪⎧b =192,2k +b =0,解得⎩⎪⎨⎪⎧k =-96,b =192.故线段AB 所表示的函数关系式为:y =-96x +192(0≤x≤2)(2)12+3-(7+6.6)=1.4(小时),112÷1.4=80(千米/时),(192-112)÷80=1(小时),3+1=4(时).答:他下午4时到家 5. 解:(1)甲旅行社的总费用:y 甲=640×0.85x=544x ;乙旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x ;当x >20时,y 乙=640×0.9×20+640×0.75(x-20)=480x +1920(2)当x =32时,y 甲=544×32=17408(元),y 乙=480×32+1920=17280,因为y 甲>y 乙,所以胡老师选择乙旅行社6. 解:(1)设y =kx +b(k≠0),则⎩⎪⎨⎪⎧b =299,2000k +b =235,解得⎩⎪⎨⎪⎧k =-4125,b =299,∴y=-4125x +299(2)当x =1200时,y =-4125×1200+299=260.6(克/立方米),答:该山山顶处的空气含氧量约为260.6克/立方米7. 解:(1)由题意得,当0<x≤1时,y =22+6=28;当x >1时,y =28+10(x-1)=10x +18.∴y=⎩⎪⎨⎪⎧28(0<x≤1)10x +18(x >1)(2)当x =2.5时,y =10×2.5+18=43,∴这次快寄的费用是43元8. 解:(1)设OA 段图象的函数表达式为y =kx ,∵当x =1.5时,y =90,∴1.5k =90,∴k=60,∴y=60x(0≤x≤1.5),∴当x =0.5时,y =60×0.5=30,故他们出发半小时时,离家30千米(2)设AB 段图象的函数表达式为y =k′x+b ,∵A(1.5,90),B(2.5,170)在AB上,∴⎩⎪⎨⎪⎧1.5k′+b =90,2.5k′+b =170,解得⎩⎪⎨⎪⎧k′=80,b =-30,∴y=80x -30(1.5≤x≤2.5) (3)∵当x =2时,y =80×2-30=130,∴170-130=40,故他们出发2小时时,离目的地还有40千米9. 解:(1)设y 1=k 1x +b 1,把(0,1200)和(60,0)代入到y 1=k 1x +b 1,得⎩⎪⎨⎪⎧b 1=1200,60k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-20,b 1=1200.∴y 1=-20x +1200,当x =20时,y 1=-20×20+1200=800(2)设y 2=k 2x +b 2,把(20,0)和(60,1000)代入到y 2=k 2x +b 2中,得⎩⎪⎨⎪⎧20k 2+b 2=0,60k 2+b 2=1000, 解得⎩⎪⎨⎪⎧k 2=25,b 2=-500,∴y 2=25x -500,当0≤x≤20时,y =-20x +1200,当20<x≤60时,y =y 1+y 2=-20x +1200+25x -500=5x +700,y≤900,则5x +700≤900,x≤40,当y 1=900时,900=-20x +1200,x =15,∴发生严重干旱时x 的范围为15≤x≤4010. 解:(1)由函数图象可以得出,小芳家距离甲地的路程为10 km ,花费时间为0.5 h ,故小芳骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H 的纵坐标为20,横坐标为:43+16=32,故点H 的坐标为(32,20)(2)设直线AB 的解析式为:y 1=k 1x +b 1,将点A(0,30),B(0.5,20)代入得:y 1=-20x +30,∵AB∥CD,∴设直线CD 的解析式为:y 2=-20x +b 2,将点C(1,20)代入得:b 2=40,故y 2=-20x +40,设直线EF 的解析式为:y 3=k 3x +b 3,将点E(43,30),H(32,20)代入得:k 3=-60,b 3=110,∴y 3=-60x +110,解方程组⎩⎪⎨⎪⎧y =-60x +110,y =-20x +40,得⎩⎪⎨⎪⎧x =1.75,y =5,∴点D 坐标为(1.75,5),30-5=25(km ),所以小芳出发1.75小时候被妈妈追上,此时距家25 km (3)将y =0代入直线CD 的解析式有:-20x +40=0,解得x =2,将y =0代入直线EF 的解析式有:-60x +110=0,解得x =116,2-116=16(h )=10(分钟),故小芳比预计时间早10分钟到达乙地11. 解:(1)暂停排水需要的时间为:2-1.5=0.5(小时).∵排水时间为:3.5-0.5=3(小时),一共排水900 m 3,∴排水孔排水速度是:900÷3=300(m 3/h ) (2)当2≤t≤3.5时,设Q 关于t 的函数表达式为Q =kt +b ,易知图象过点(3.5,0).∵t =1.5时,排水300×1.5=450,此时Q =900-450=450(m 3),∴(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎪⎨⎪⎧2k +b =450,3.5k +b =0,解得⎩⎪⎨⎪⎧k =-300,b =1050,∴Q 关于t 的函数表达式为Q =-300t +105012. 解:(1)s =⎩⎪⎨⎪⎧ 50t (0≤t≤20),1000(20<t≤30),50t -500(30<t≤60)(2)设小明的爸爸所走的路程s 与小明的步行时间t 的函数关系式为:s =kt +b ,则⎩⎪⎨⎪⎧25k +b =1000,b =250,解得,⎩⎪⎨⎪⎧k =30,b =250,则小明的爸爸所走的路程与小明的步行时间的关系式为:s =30t +250,当50t -500=30t +250,即t =37.5 min 时,小明与爸爸第三次相遇(3)30t +250=2500,解得t =75,则小明的爸爸到达公园需要75 min ,∵小明到达公园需要的时间是60 min ,∴小明希望比爸爸早20 min 到达公园,则小明在步行过程中停留的时间需减少5 min13. 解:(1)设y B 关于x 的函数解析式为y B =kx +b(k≠0).将点(1,0),(3,180)代入得⎩⎪⎨⎪⎧k +b =0,3k +b =180.解得k =90,b =-90.所以y B 关于x 的函数解析式为y B =90x-90(1≤x≤6)(2)设y A 关于x 的解析式为y A =k 1x.根据题意得3k 1=180.解得k 1=60.所以y A =60x.当x =5时,y A =60×5=300(千克);x =6时,y B =90×6-90=450(千克).450-300=150(千克).答:如果A ,B 两种机器人各连续搬运5小时,B 种机器人比A 种机器人多搬运了150千克14. (1) 28(13-x) 250(13-x)(2) 解:设租车的总费用为W 元,则有:W =400x +250(13-x)=150x +3250.由已知得:45x+28(13-x)≥500,解得:x≥8.∵在W=150x+3250中150>0,∴当x=8时,W取最小值,最小值为4450元.故租A型车8辆,B型车5辆时,总的租车费用最低,最低为4450元15. 解:(1)当0≤x≤30时,y=3×0.4x=1.2x;当x>30时,y=3×0.9×(x -30)+3×0.4×30=2.7x-45(2)由题意知:该3口之家人均住房面积为:120÷3=40>30,在y=2.7x-45中,令x=40,则y=2.7×40-45=63.∴应缴纳的房款为63万元16. 解:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80-x)吨,从乙仓库运往A港口的有(100-x)吨,运往B港口的有50-(80-x)=(x-30)吨,所以y=14x+20(100-x)+10(80-x)+8(x-30)=-8x+2560,x的取值范围是30≤x≤80(2)由(1)得y=-8x+2560,y随x的增大而减少,所以当x=80时总运费最小,当x=80时,y=-8×80+2560=1920,此时方案为:把甲仓库的物资全部运往A港口,再从乙仓库运20吨往A港口,乙仓库余下的物资全部运往B港口。

一次函数的应用中考复习课件

一次函数的应用中考复习课件

B:在实际问题中应怎样探讨自变量的取值范围。
①:注意题中的等量关系和不等关系的转化。
②:题中一些特殊要求。
(2)旅客最多可免费携带多少 O 行李的重量。 解:(1)设一次函数关系式为y=kx+b(k≠0)
把x=60,y=5和x=90,y=10代入得
5=60k+b 10=90k+b
k=- 6 b=-5
1
x(kg)
1
∴一次函数关系式为y=- 6 x-5(x≥30)
(2)当y=0时,x=30 ∴旅客最多可免费携带的行李重量是30kg 。
一次函数 y = k x + b(k≠0)会产生最大值或最小值吗?
①:不会。原因:一般情况下自变量x的取值范围为全体实数。
做一做以下各题并用心观察思考上述问题?
一次函数: y = x + 1 , 1≤ x ≤ 9 时
当 x = 1 时, 此时:y = 2 当 x = 9 时, 此时:y = 10 一次函数: y = x -1 , 1≤ x ≤ 9 时 当 x = 1时, 此时:y = 0
一:温 故
A:一次函数 y = k x + b(k≠0)解析中自变量 x 的取值范围?
一般情况下取全体实数,但对于实际问题还要 考虑实际需求。
B:一次函数 y = k x + b(k≠0)函数变化规律?
当:K > 0 y 随 x 的增大而增大。 当:K < 0 y 随 x 的增大而减小。
二:思 索
x = c 时, 此时 y 的值:y = c x + b 就是最小值。
学校组织冬令营需要租用汽车,准备与汽车租赁公 司签订租车合同,以用车路程 x km计算.甲汽车租赁公司 的租费是y1元,乙汽车租赁公司的租费是y2元.

一次函数的应用知识点梳理及经典例题讲解

一次函数的应用知识点梳理及经典例题讲解

一次函数的应用知识点梳理及经典例题讲解知识梳理10 min.1、一次函数的概念若两个变量x 、y 间的关系式可以表示成y=kx+b (k 、b 为常数,k≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)特别地,当b=0时,称y 是x 的正比例函数。

2、一次函数的图象①一次函数y=kx+b 的图象是一条经过(0,b )(- b k ,0)的直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线。

②在一次函数y kx b =+中当0k >时,y 随x 的增大而增大,当0b >时,直线交y 轴于正半轴,必过一、二、三象限; 当0b <时,直线交y 轴于负半轴,必过一、三、四象限.当0<k 时,y 随x 的增大而减小,当0b >时,直线交y 轴于正半轴,必过一、二、四象限;当0b <时,直线交y 轴于负半轴,必过二、三、四象限.意图:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k 、b 的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.典例精讲27 min.例1 .已知函数21y x =-的图象如图所示,请根据图象回答下列问题:(1)当0x =时,y 的值是多少? (2)当0y =时,x 的值是多少? (3)当x 为何值时,0y >?(4)当x 为何值时,0y <?答案:解:(1)当0x =时,1y =-;(2)当0y =时,12x =; (3)当12x >时,0y >;(4)当12x <时,0y <. 例2、如图,直线对应的函数表达式是()答案:A例3、(2008 江苏常州)甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:【 】(1)他们都骑行了20km; (2)乙在途中停留了0.5h; (3)甲、乙两人同时到达目的地; (4)相遇后,甲的速度小于乙的速度. 根据图象信息,以上说法正确的有 A.1个B.2个C.3个D.4个答案:B例4.某产品的生产流水线每小时可生产100件产品.生产前没有产品积压,生产3h 后安排工人装箱,若每小时装产品150件,未装箱的产品数量()y 是时间()t 的函数,那么这个函数大致图象只能是( ) 答案:A例5.如图所示,是某企业职工养老保险个人月缴费y (元)随个人月工资x (元)变化的图象.请你根据图象回答下列问题:(1)张总工程师五月份工资是3 000元,这个月他应缴个人养老保险费 元;A .B .C.D.(2)小王五月份工资为500元,他这个月应缴纳个人养老保险费 元.(3)当月工资在600~2 800元之间,其个人养老保险费y (元)与月工资x (元)之间的函数关系式为 .答案:(1)200 (2)40(3)4405511y x =-例6.已知A B 、两市相距80km .甲乙两人骑自行车沿同一公路各自从A 市、B 市出发,相向而行,如图所示,线段EF CD 、分别表示甲、乙两人离B 市距离s (km) 和所用去时间t (h)之间的函数关系,观察图象回答问题: (1)乙在甲出发后几小时才从B 市出发? (2)相遇时乙走了多少小时? (3)试求出各自的s 与t 的关系式. (4)两人的骑车速度各是多少? (5)两人哪一个先到达目的地?)答案:解:(1)乙在甲出发后1h ,才从B 市发出; (2)7721199-=(h),即相遇时,乙走了719h ;(3)设甲的函数关系式为11S k t b =+甲,将7(080)2409⎛⎫⎪⎝⎭,,代入得111802540.9b k b =⎧⎪⎨+=⎪⎩,解得1172580.k b ⎧=-⎪⎨⎪=⎩,∴甲的函数关系式为72805s t =-+甲. 设乙的函数关系式为22s k t b =+乙.将7(10)2409⎛⎫⎪⎝⎭,、,代入得222202540.9k b k b =+⎧⎪⎨=+⎪⎩,,解得2245245.2k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴乙的函数关系式为454522s t =-乙; (4)14.4v =甲km/h ,22.5v =乙km/h ; (5)在72805s t =-+甲中,当0s =甲时,720805t =-+. 509t ∴=, 在454522s t =-乙中,当80s =乙时,即45454180229t t =-=,. 504199> , ∴乙先到达目的地.例7、已知两条直线y1=2x-3和y2=5-x . (1)在同一坐标系内做出它们的图像; (2)求出它们的交点A 坐标;(3)求出这两条直线与x 轴围成的三角形ABC 的面积;(4)k 为何值时,直线2k +1=5x +4y 与k =2x +3y 的交点在每四象限.分析 (1)这两个都是一次函数,所以它们的图像是直线,通过列表,取两点,即可画出这两条直线.(2)两条直线的交点坐标是两个解析式组成的方程组的解.(3)求出这两条直线与x 轴的交点坐标B 、C ,结合图形易求出三角形ABC 的面积. (4)先求出交点坐标,根据第四象限内的点的横坐标为正,纵坐标为负,可求出k 的取值范围. 解 (1)(2)⎩⎨⎧-=-=.5,3221x y x y 解得⎪⎪⎩⎪⎪⎨⎧==.37,38y x 所以两条直线的交点坐标A 为⎪⎭⎫⎝⎛37,38.(3)当y1=0时,x =23所以直线y1=2x-3与x 轴的交点坐标为B(23,0),当y2=0时,x =5,所以直线y2=5-x 与x 轴的交点坐标为C(5,0).过点A 作AE ⊥x 轴于点E ,则124937272121=⨯⨯=⨯=∆AE BC S ABC .(4)两个解析式组成的方程组为⎩⎨⎧+=+=+.32,4512y x k y x k解这个关于x 、y 的方程组,得⎪⎪⎩⎪⎪⎨⎧-=+=.72,732k y k x由于交点在第四象限,所以x >0,y <0.即⎪⎪⎩⎪⎪⎨⎧<->+.072,0732k k 解得223<<-k .例8:旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y (元)可以看成他们携带的行李质量x (千克)的一次函数为561-=x y .画出这个函数的图像,并求旅客最多可以免费携带多少千克的行李?分析求旅客最多可以免费携带多少千克的行李数,即行李费为0元时的行李数.为此只需求一次函数与x 轴的交点横坐标的值.即当y =0时,x =30.由此可知这个函数的自变量的取值范围是x ≥30. 解函数561-=x y (x≥30)图像为:当y =0时,x =30.所以旅客最多可以免费携带30千克的行李.例9:今年入夏以来,全国大部分地区发生严重干旱.某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y (元)是用水量x (吨)的函数,当0≤x ≤5时,y =0.72x ,当x >5时,y =0.9x -0.9. (1)画出函数的图像;(2)观察图像,利用函数解析式,回答自来水公司采取的收费标准.分析画函数图像时,应就自变量0≤x ≤5和x >5分别画出图像,当0≤x ≤5时,是正比例函数,当x >5是一次函数,所以这个函数的图像是一条折线.解(1)函数的图像是:(2)自来水公司的收费标准是:当用水量在5吨以内时,每吨0.72元;当用水量在5吨以上时,每吨0.90元例10.如图所示的曲线表示一辆自行车离家的距离与时间的关系,骑车者9点离开家,15点回家,根据这个曲线图,请你回答下列问题:(1)到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度各是多少?(6)他在何时至何时停止前进并休息午餐?(7)他在停止前进后返回,骑了多少千米?(8)返回时的平均速度是多少?(9)11:30和13:30时,分别离家多远?(10)何时离家22km?答案:解:(1)到达离家最远地方的时间是12点到13点,离家30km . (2)10点半开始第一次休息,休息了半小时. (3)第一次休息时离家17km . (4)11:00到12:00,他骑了13km .(5)9:00~10:00的平均速度是10km/h ;10:00~10:30的平均速度是14km/h. (6)从12点到13点间停止前进,并休息午餐较为符合实际情形. (7)返回骑了30km .(8)返回30km 共用了2h ,故返回时的平均速度是15km/h . (9)设直线DE 所在直线的解析式为:s kt b =+.将(1117)(1230)D E ,、,的坐标代入,得11171230.k b k b +=⎧⎨+=⎩,解得13126.k b =⎧⎨=-⎩,所以13126s t =-. 当11.5t =时,23.5s =,故11:30时,离家23.5km .(在用样的方法求出 13:30,离家22.5km 之后,你是否能想出更简便的方法?) (10)由(9)的解答可知,直线DE 的解析式为13126s t =-,将22S =代入得11.3t =,即11点18分时离家22km ,在FG 上同样应有一点离家22km ,下面可以这样考虑:13点至15点的速度为15km/h ,从F 点到22km 处走了8km ,故需815h (即32min ),故在13点32分时间同样离家22km .例11..假定甲、乙两人一次赛跑中,路程s (m)与时间t (s)的关系如图所示,那么可以知道: (1)这是一次 米赛跑;(2)甲、乙两人中先到达终点的是 ; (3)乙在这次赛跑中的速度为 .答案:(1)100(2)甲(3)8m/s例12.某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为1Q 吨,加油飞机的加油油箱余油量2Q 吨,加油时间为t 分钟,12Q Q 、与t 之间的函数图象如图所示,结合图象回答下列问题: (1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2)全加油过程中,求运输飞机的余油量1Q (t)与时间t (min)的函数关系式.(3)运输飞机加完油后,以原速继续飞行,需10h 到达目的地,油料是否够用? 说明理由.y (m)答案:解:(1)由图象知,加油飞机的加油油箱中装载了30t 油.全部加给运输飞机需10min .(2)设1Q kt b =+,把(040),和(1069),代入,406910.b k b =⎧⎨=+⎩,解得 2.940.k b =⎧⎨=⎩,1 2.940(010)Q t t ∴=+≤≤;(3)由图象可知运输飞机的耗油量为0.1t/min . ∴10h 耗油量为:10600.160t 69t =<××.故油料够用.例13:.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2h 时血液中含药量最高,达6ug/ml (1ug 310-=mg ),接着逐渐衰减,10h 时的血液中含药量为每毫升3ug ,每毫升血液中含药量y (ug)随时间t (h)的变化如图.当成人按规定剂量服药后:(1)分别求出2x ≤和2x ≥时,y 与x 之间的函数关系式;(2)如果每毫升血液中含药量为4ug 或4ug 以上时在治疗疾病时是有效的,那么这个有效时间多长?答案:解:当2x ≤时,设1y k x =,由题意,得162k =, 133.k y x ∴=∴=,当2x ≥时,设2y k x b =+由题意得2262310.k b k b =+⎧⎨=+⎩,解得23827.4k b ⎧=-⎪⎪⎨⎪=⎪⎩,32784y x ∴=-+;(2)当2x ≤时,4y ≥,即4343x x ≥,≥; 当2x ≥时,4y ≥,即327224843x x -+≥,≤. ∴有效治疗时间为:224633-=.即这个有效治疗时间为6h .例14:.两个物体A B 、所受的压强分别为A B P P ,(都为常数)它们所受压力F 与受力面积S 的函数关系图象分别是射线A B l l ,如图所示,则( )A.A B P P < B.A B P P = C.A B P P >D.A B P P ≤答案:A例15.如图是某固体物质在受热熔解过程中物质温度T (℃)与时间(s)的关系图,其中A 阶段物质为固态,B 阶段为固液共存,C 阶段为液态.(1)物质温度上升温度最快的是 阶段,最慢的是 阶段; (2)物质的温度是60℃,那么时间t 的变化范围是 .答案:(1)C B (2)2050t ≤≤例16.某图书出租店,有一种图书的租金y (元)与出租天数x (天)之间的关系如图所示,则两天后,每过一天,累计租金增加 元.t)答案:0.5例17甲、乙两辆汽车同时从相距280km 的A B 、两地相向而行,s (km)表示汽车与A 地的距离,t (min)表示汽车行驶的时间,如图所示,12l l 、分别表示两辆汽车的s 与t 的关系.(1)1l 表示哪辆汽车到A 地的距离与行驶时间的关系; (2)汽车乙的速度是多少?(3)1h 后,甲、乙两辆汽车相距多少千米? (4)行驶多长时间,甲、乙两辆汽车相遇?答案:解:(1)1l 表示汽车乙到A 地的距离与时间之间的关系; (2)汽车乙的速度是80km/h ;(3)1h 后,甲、乙两辆汽车相距140km ;(4)280(6080)2+=÷,即行驶2h ,甲、乙两辆汽车相遇.例18:.水库的库容通常是用水位的高低来预测的.下表是某市一水库在某段水位范围内的库容与水位高低的相关水文资料,请根据表格提供的信息回答问题.(1)将上表中的各对数据作为坐标()x y ,,在给出的坐标系中用点表示出来:(2)用线段将(1)中所画的点从左到右顺次 连接.若用此图象来模拟库容y 与水位高低x 的函数 关系.根据图象的变化趋势,猜想y 与x 间的函数关系,求出函数关系式并加以验证;(3)由于邻近市区连降暴雨,河水暴涨,抗洪形势十分严峻,上级要求该水库为其承担部分分洪任 务约800万立方米.若该水库当前水位为65米,且最 高水位不能超过79米.请根据上述信息预测:该水库 能否承担这项任务?并说明理由.(第25题)答案:(1)描点如图所示. (2)连线如图所示.猜想:y 与x 具有一次函数关系. 设其函数解析式为(0)y kx b k =+≠.把(103000)(203600),、,代入得:300010360020.k b k b =+⎧⎨=+⎩,解得:602400.k b =⎧⎨=⎩,602400y x ∴=+将(304200),、(40,4800)分别代入上式, 得:420060302400=⨯+,480060402400.=⨯+所以(304200),、(40,4800)均在 602400y x =+的图象上.(3)能承担.当79x =时,179602400y =⨯+. 当65x =时,265602400y =⨯+.1260(7965)6014840y y -=-=⨯=.840800> . ∴该水库能接受这项任务.例19:.种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10日内售出.(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y (元)与运往省城直接批发零售商的草莓量x (吨)之间的函数关系式; (1) 怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润. 答案:解:(1)所求函数关系式为12002000(22)y x x =+-即80044000y x =-+(2)由于草莓必须在10天内售完 则有22104xx +-≤ 解之,得16x ≥在函数80044000y x =-+中,8000-<y ∴随x 的增大而减小∴当16x =时,y 有最大值31200(元)22166-=,1644÷=,616÷=答:用4天时间运往省城批发,6天时间在本地零售.(回答销量也可)才使获利 润最大,最大利润为31200元.例20.已知一次函数y ax b =+(a 、b 是常数),x 与y 的部分对应值如下表:那么方程0ax b +=的解是 ;不等式0ax b +>的解集是 .答案:1x =;1x <.。

一次函数的应用专题复习讲义

一次函数的应用专题复习讲义

一次函数专题复习要点一、函数的相关概念一般地,在一个变化过程中. 如果有两个变量 x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数. y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值. 函数的表示方法有三种:解析式法,列表法,图象法. 要点二、一次函数的相关概念一次函数的一般形式为y kx b =+,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y kx b =+即y kx =(k ≠0),是正比例函数.要点三、一次函数的图象及性质 1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 要点诠释:直线y kx b =+可以看作由直线y kx =平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).说明通过平移,函数y kx b =+与函数y kx =的图象之间可以相互转化.2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点四、用函数的观点看方程、方程组、不等式一次函数数习题精讲注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明1.小亮租用共享单车从家出发,匀速骑行到相距2400米的邮局办事,在邮局停留了5分钟后仍沿原路匀速骑行返回.小亮离家的距离y(单位:米)与他出发的时间t(单位:分)之间的函数关系如图所示,下列叙述正确的是()A.小亮共骑行了30分钟B.小亮返回途中的骑行速度是80米/分C.小亮返回时的骑行速度比出发时的骑行速度快D.出发20分钟时小亮离家1600米(第1题)(第2题)2.如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A.3个B.2个C.1个D.0个3.甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y(米)与时间x(秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有()A.4个B.3个C.2个D.1个(第3题)(第4题)(第5题)4.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:(1)出租车的速度为100千米/时;(2)客车的速度为60千米/时;(3)两车相遇时,客车行驶了3.75小时;(4)相遇时,出租车离甲地的路程为225千米.其中正确的个数有()A.1个B.2个C.3个D.4个5.某培植基地出售幼苗的销售价格是y(元)与销售数量x(棵)的函数图象如图所示,则该培植基地的销售单价正确的是()A.每棵销售单价为7.2元B.每棵销售单价为8元C.销售不超过20棵,每棵8元;超过20棵的部分,每棵6.4元D.销售不超过20棵,每棵8元;超过20棵的部分,每棵7.2元6.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米7.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x (min)之间的关系如图所示,则每分钟的进水量与出水量分别是()A.5L,3.75L B.2.5L,5L C.5L,2.5L D.3.75L,5L第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明8.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a),求(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形的面积.9.已知一次函数y=ax﹣2(a≠0)的图象过点A(3,1).(1)求实数a的值;(2)设一次函数y=ax﹣2(a≠0)的图象与y轴交于点B.若点C在y轴上且S△ABC =2S△AOB,求点C的坐标.10.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P (x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OP A的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OP A的面积为24时,求点P的坐标.11.如图,已知一次函数y=x+m的图象与x轴交于点A(﹣6,0),交y轴于点B.(1)求m的值与点B的坐标;(2)若点C在y轴上,且使得△ABC的面积为12,请求出点C的坐标.(3)若点P在x轴上,且△ABP为等腰三角形,请直接写出点P的坐标.12.如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.13.某公司出售A、B两种型号的电脑,A型电脑的进价为4000元,利润率为15%,B 型电脑的进价比A型电脑的进价少500元,利润率高5个百分点.虽然B型电售出的台数比A型电脑少100台,但销售所得利润比A型电脑多了10000元.设销售A型电脑x台(1)请用含x的式子表示出销售A型电脑所得利润;(2)求A、B型电脑各售出了多少台.14.如图(含备用图),在直角坐标系中,已知直线y=kx+3与x轴相交于点A(2,0),与y轴交于点B.(1)求k的值及△AOB的面积;(2)点C在x轴上,若△ABC是以AB为腰的等腰三角形,直接写出点C的坐标;(3)点M(3,0)在x轴上,若点P是直线AB上的一个动点,当△PBM的面积与△AOB的面积相等时,求点P的坐标.15.如图,一摞相同规格的碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答问题:(1)请将下表补充完整:式;(3)你认为多个这种规格的碗摞放起来总高度能到36cm吗?为什么?16.如图,直线l:y=﹣x+2与x轴,y轴分別交于点A,B,在y轴上有一点C(0,4),动点M从点A出发以毎秒1个単位长度的速度沿x轴向左运动,设运动的时间为t 秒.(1)求点A的坐标;(2)请从A,B两题中任选一题作答.A.求△COM的面积S与时间t之间的函数表达式;B.当△ABM为等腰三角形时,求t的值.17.如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.18.某酒厂每天生产A、B两种品牌的白酒共1000瓶,A、B两种品牌的白酒每瓶的成本和利润如下表:y元,(1)写出y关于x的函数表达式;(2)如果该酒厂每天对这两种酒投入成本51000元,那么这两种酒每天获利多少元?19.小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的函数关系式;(3)当量桶中水面上升至距离量桶顶部3cm时,应在量桶中放入几个小球?20.李明4月份想去某海岛度年假,通过网上收集资料发现,该海岛的两家度假酒店有特价房.甲酒店:一次性付300元可以住5天,五天后续住,每天房费120元;乙酒店:前三天每天房费100元,三天后续住,每天的房费打八折.设住酒店的天数为x天,总房费为y元.(1)若李明在乙酒店住4天,求房费;(2)分别写出住两家酒店的房费y(元)与住店天数x(天)的函数关系式;(3)若李明确定去该海岛度假,选择哪家酒店可以节省房费.21.如图,已知在平面直角坐标系xOy中,正比例函数y=kx与一次函数y=﹣x+b的图象相交于点A(4,3).过点P(2,0)作x轴的垂线,分别交正比例函数的图象于点B,交一次函数的图象于点C,连接OC.(1)求这两个函数解析式;(2)求△OBC的面积;(3)在坐标轴上是否存在点M,使△AOM是以OA为腰的等腰三角形?若有,直接写出M点的坐标;若没有,请说明理由.22.我国很多城市水资源缺乏,为了加强居民的节水意识,某市制定了每月用水8吨以内(包括8吨)和用水8吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图所示.(1)求出自来水公司在这两个用水范围内的收费标准;(2)若芳芳家6月份共交水费28.1元,请写出用水量超过8吨时应交水费y(元)与用水量x(吨)之间的函数关系,并求出芳芳家6月份的用水量.23.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在y轴上运动.(1)求直线AB的函数解析式;(2)动点M在y轴上运动,使MA+MB的值最小,求点M的坐标;(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.24.如图,一次函数y=kx+b的图象经过点A(0,4)和点B(3,0),以线段AB为边在第一象限内作等腰直角△ABC,使∠BAC=90°.(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PB+PC最小时,求点P的坐标.试卷第11页,总12页25.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿OCBA运动,点P的运动时间为t秒.(1)当t=2时,求直线PD的解析式.(2)当P在BC上,OP+PD有最小值时,求点P的坐标.(3)当t为何值时,△ODP是腰长为5的等腰三角形?(直接写出t的值).26.如图,已知一次函数y =x+3的图象与坐标轴交于点A、B,点C在线段AO上,将△BOC沿BC翻折,点O恰好落在AB上点D处.(1)求OC的长;(2)过点A作AE⊥BC,交BC的延长线于点E,连接OE,试判断△AOE的形状,并说明理由.试卷第12页,总12页参考答案与试题解析一.选择题(共7小题)1.小亮租用共享单车从家出发,匀速骑行到相距2400米的邮局办事,在邮局停留了5分钟后仍沿原路匀速骑行返回.小亮离家的距离y(单位:米)与他出发的时间t(单位:分)之间的函数关系如图所示,下列叙述正确的是()A.小亮共骑行了30分钟B.小亮返回途中的骑行速度是80米/分C.小亮返回时的骑行速度比出发时的骑行速度快D.出发20分钟时小亮离家1600米【分析】骑行时间=总时间﹣办事所用时间,故可对A做出判断;依据速度=路程÷时间可对B、C做出判断;求得返回所走的路程,然后依据返回总路程为2400米可对D 做出判断.【解答】解:30﹣5=25分钟,故小亮共骑行了25分钟,故A错误;2400÷(30﹣15)=160米/秒,故B错误;2400÷10=240米/秒,240>160,故小亮返回时的骑行速度比出发时的骑行速度慢,故C错误;2400﹣160×(20﹣15)=1600,故出发20分钟时小亮离家1600米,故D正确.故选:D.【点评】此题考查一次函数问题,解题的关键是根据速度、时间、路程之间关系分析解答.2.如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()1A.3个B.2个C.1个D.0个【分析】根据图象进行解答即可.【解答】解:①当x=10时,两个探测气球位于同一高度,正确;②当x>10时,乙气球位置高,正确;③当0≤x<10时,甲气球位置高,正确;故选:A.【点评】本题考查了一次函数的应用、解题的关键是根据图象进行解答.3.甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y(米)与时间x(秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有()A.4个B.3个C.2个D.1个【分析】由图象可知起跑时甲在起点,乙在甲的前面,甲乙之间的距离为100米,100秒后,甲乙之间的距离为0米,这个说明,甲的速度快,100秒甲追上乙.每秒甲比乙多跑1米,则可以判断②③④,由图象可得甲400秒到达终点,可求甲的速度.【解答】解:由图象可知起跑时甲在起点,乙在甲的前面,甲乙之间的距离为100米,100秒后,甲乙之间的距离为0米,这个说明,甲的速度快,100秒甲追上乙.故②正确.经过400秒,甲先到达终点,所以甲的速度为2000÷400=5米/秒,故①正确.100秒甲追上相距100米的乙,说明每秒甲比乙多跑1米,所以经过50秒,甲比乙多跑50米,则甲乙相距的距离为50米,故③正确,相遇后,到甲到达终点,经过了300秒,则甲比乙多跑了300米,即甲到终点时,乙距离终点300米,故④正确故选:A.2【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论4.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:(1)出租车的速度为100千米/时;(2)客车的速度为60千米/时;(3)两车相遇时,客车行驶了3.75小时;(4)相遇时,出租车离甲地的路程为225千米.其中正确的个数有()A.1个B.2个C.3个D.4个【分析】根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.【解答】解:由图象可得,出租车的速度为:600÷6=100千米/时,故(1)正确,客车的速度为:600÷10=60千米/时,故(2)正确,两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确,相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确,故选:D.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.5.某培植基地出售幼苗的销售价格是y(元)与销售数量x(棵)的函数图象如图所示,则该培植基地的销售单价正确的是()A.每棵销售单价为7.2元B.每棵销售单价为8元C.销售不超过20棵,每棵8元;超过20棵的部分,每棵6.4元D.销售不超过20棵,每棵8元;超过20棵的部分,每棵7.2元【分析】通过图象发现,销售单价以20为临界点,可以分别求出售价3【解答】解:根据图象,当0≤x≤20时,每棵树的价格为160÷20=8元,超出20棵后,每棵价格为(288﹣160)÷(40﹣20)=6.4元故选:C.【点评】本题为一次函数实际应用问题,考查了一次函数比例系数k的实际意义.6.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米【分析】根据图中信息以及路程、速度、时间之间的关系一一判断即可;【解答】解:甲的速度==70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x﹣70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选:D.【点评】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.7.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x (min)之间的关系如图所示,则每分钟的进水量与出水量分别是()A.5L,3.75L B.2.5L,5L C.5L,2.5L D.3.75L,5L 【分析】根据题意和函数图象可以求得每分钟的进水量和出水量,从而可以解答本题.【解答】解:由题意可得,4每分钟的进水量为:20÷4=5(L),每分钟的出水量为:[5×8﹣(30﹣20)]÷8=3.75(L),故选:A.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.二.解答题(共19小题)8.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y =x的图象相交于点(2,a),求(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形的面积.【分析】(1)由题知,点(2,a)在正比例函数图象上,代入即可求得a的值.(2)把点(﹣1,﹣5)及点(2,a)代入一次函数解析式,再根据(1)即可求得k,b的值.(3)由于正比例函数过原点,又有两个函数交点,求面积只需知道一次函数与x轴的交点即可.【解答】解:(1)由题知,把(2,a)代入y =x,解得a=1;(2)由题意知,把点(﹣1,﹣5)及点(2,a)代入一次函数解析式得:﹣k+b=﹣5,2k+b=a,又由(1)知a=1,解方程组得:k=2,b=﹣3;(3)由(2)知一次函数解析式为:y=2x﹣3,直线y=2x﹣3与x 轴交点坐标为(,0)∴所求三角形面积=×1×=.【点评】本题考查了一次函数图象上点的坐标的性质以及正比例函数图象上点的坐标的性质,注意直线上任意一点的坐标都满足函数关系式y=kx+b.9.已知一次函数y=ax﹣2(a≠0)的图象过点A(3,1).(1)求实数a的值;(2)设一次函数y=ax﹣2(a≠0)的图象与y轴交于点B.若点C在y轴上且S△ABC =2S△AOB,求点C的坐标.【分析】(1)将A(3,1)代入可得.(2)根据题意可求B(0,﹣2),由S△ABC=2S△AOB,可得BC=2OB,且B(0,﹣2),可求点C的坐标.5【解答】解:(1)根据题意得:1=3a﹣2∴a=1∴解析式y=x﹣2(2)∵一次函数y=x﹣2的图象与y轴交于点B∴当x=0,y=﹣2,∴B(0,﹣2)即OB=2∵S△ABC=2S△AOB,∴BC=2OB=4∴C(0,2)或(0,﹣6)【点评】本题考查了一次函数图象上点的特征,面积法求点的坐标,关键是利用高相等的两个三角形的面积比就是底边比.10.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P (x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OP A的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OP A的面积为24时,求点P的坐标.【分析】(1)根据题意可以得到S关于x的函数关系式,并写出自变量x的取值范围;(2)根据(1)中的函数解析式可以求得点P的坐标.【解答】解(1)∵A(8,0)∴OA=8,∴S =OA•|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10);(2)当S=24时,则﹣4x+40=24,解得x=4,当x=4时,y=﹣4+10=6,∴当△OP A的面积为24时,点P的坐标为(4,6).【点评】本题考查一次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.11.如图,已知一次函数y =x+m的图象与x轴交于点A(﹣6,0),交y轴于点B.(1)求m的值与点B的坐标;(2)若点C在y轴上,且使得△ABC的面积为12,请求出点C的坐标.(3)若点P在x轴上,且△ABP为等腰三角形,请直接写出点P的坐标.67【分析】(1)把点A (﹣6,0)代入y =x +m ,求出m ,即可.(2)存在,设点C 坐标为(0,b ),由题意可得×6×|8﹣b |=12,解方程即可.(3)分三种情形讨论即可①当AB =AP 时,②当BA =BP 时,③当P A =PB 时.【解答】解:(1)把点A (﹣6,0)代入,得m =8,∴点B 坐标为(0,8).(2)存在,设点C 坐标为(0,b ),∴BC =|8﹣b |,∴×6×|8﹣b |=12,解得b =4或12,∴点C 坐标(0,12)或(0,4).(3)如图1中,①当AB =AP 时,AP =AB ==10,可得P 1(﹣16,0),P 2(4,0).②当BA =BP 时,OA =OP ,可得P 3(6,0).③当P A =PB 时,∵线段AB 的垂直平分线为y =﹣x +,可得P 4(,0),综上所述,满足条件的点P 坐标为(﹣16,0)或(4,0)或(6,0)或(,0).【点评】本题考查一次函数综合题、待定系数法、等腰三角形的判定和性质、三角形面积等知识,解题的关键是灵活运用所学知识,学会用转化的思想思考问题,属于中考常考题型.12.如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.【分析】(1)先令y=0求出x的值,再令x=0求出y的值即可得出A、B两点的坐标;(2)根据OP=2OA求出P点坐标,再根据三角形的面积公式求解即可.【解答】解:(1)∵令y=0,则x =;令x=0,则y=3,∴A (,0),B(0,3);(2)∵OP=2OA,∴P(3,0)或(﹣3,0),∴AP =或,∴S△ABP=AP×OB =××3=,或S△ABP =AP×OB =××3=.故答案为:或.【点评】本题考查了一次函数的相关知识,特别是求一次函数与两坐标轴的交点坐标的问题,更是一个经久不衰的老考点.另外本题还渗透了分类讨论思想.13.某公司出售A、B两种型号的电脑,A型电脑的进价为4000元,利润率为15%,B 型电脑的进价比A型电脑的进价少500元,利润率高5个百分点.虽然B型电售出的台数比A型电脑少100台,但销售所得利润比A型电脑多了10000元.设销售A型电脑x台(1)请用含x的式子表示出销售A型电脑所得利润;(2)求A、B型电脑各售出了多少台.【分析】(1)销售A型电脑所得利润=一台A型电脑的利润×A型电脑的销售量;(2)设销售A型电脑x台,则销售B型电脑(x﹣100)台,根据销售B型电脑所得利润比A型电脑多10000元列出方程,解方程即可.【解答】解:(1)由题意,可得销售A型电脑所得利润为:4000×15%•x=600x(元);(2)设销售A型电脑x台,则销售B型电脑(x﹣100)台,根据题意,得8600x+10000=(4000﹣500)×20%(x﹣100),解得x=800,则800﹣100=700(台).答:销售A型电脑800台,销售B型电脑700台.【点评】此题考查了一次函数的应用,一元一次方程的应用,根据题意表示出销售A型、B型电脑所得利润是解题的关键.14.如图(含备用图),在直角坐标系中,已知直线y=kx+3与x轴相交于点A(2,0),与y轴交于点B.(1)求k的值及△AOB的面积;(2)点C在x轴上,若△ABC是以AB为腰的等腰三角形,直接写出点C的坐标;(3)点M(3,0)在x轴上,若点P是直线AB上的一个动点,当△PBM的面积与△AOB的面积相等时,求点P的坐标.【分析】(1)将点A的坐标代入函数解析式求得k的值,根据直线方程求得点B的坐标,然后求得相关线段的长度,由三角形的面积公式解答;(2)根据等腰三角形的性质和两点间的距离公式解答;(3)分类讨论:点P在x轴的上方和下方,两种情况,利用三角形的面积公式和已知条件,列出方程,利用方程求得点P的坐标即可.【解答】解:(1)将点A(2,0)代入直线y=kx+3,得0=2k+3,解得k=﹣,∴y=﹣x+3.当x=0时,y=3.∴B(0,3),OB=3.当y=0时,﹣x+3=0,∴x=2,∴A(2,0),OA=2,∴S△AOB=OA•OB=×2×3=3.(2)如图2,①当AB=BC时,点C与点A(2,0)关于y轴对称,故C(﹣2,0)符合题意;②当AB=AC时,由A(2,0),B(0,3)得到AB==,由AC=AC′=得到C′(+2,0)、C″(2﹣,0).综上所述,符合条件的点C的坐标是(﹣2,0)或(+2,0)或(2﹣,0);(3)∵M(3,0),∴OM=3,∴AM=3﹣2=1.由(1)知,S△AOB=3,∴S△PBM=S△AOB=3;①当点P在x轴下方时,S△PBM=S△P AM+S△ABM=+•AM•|y P|=+×1×|y P|=3,∴|y P|=3,∵点P在x轴下方,∴y P=﹣3.当y=﹣3时,代入y=﹣x+3得,﹣3=﹣x+3,解得x=4.∴P(4,﹣3);②当点P在x轴上方时,S△PBM=S△APM﹣S△ABM=•AM•|y P|﹣=×1×|y P|﹣=3,∴|y P|=9,∵点P在x轴上方,∴y P=3.当y=9时,代入y=﹣x+3得,9=﹣x+3,解得x=﹣4.∴P(﹣4,9).【点评】本题综合考查了一次函数与几何知识的应用,题中运用点的坐标与图形的知识求出相关线段的长度是解题的关键.另外,注意分类讨论和“数形结合”数学思想的应用.15.如图,一摞相同规格的碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答问题:(1)请将下表补充完整:y=4x+11;(3)你认为多个这种规格的碗摞放起来总高度能到36cm吗?为什么?【分析】(1)由每增加一个碗总高度增高4cm,结合1个碗及3个碗时的总高度,即可求出结论;(2)根据表格中的数据,利用待定系数法即可求出y与x之间的函数关系式;(3)利用一次函数图象上点的坐标特征,求出当y=36时x的值,由该值不是整数,即可得出总高度不可能为36cm.【解答】解:(1)15+4=19(cm),23+4=27(cm).故答案为:19;27.(2)设y与x之间的函数关系式为y=kx+b(k≠0),将(1,15),(3,23)代入y=kx+b,得:,解得:,∴y与x之间的函数关系式为y=4x+11.故答案为:y=4x+11.(3)当y=36时,有4x+11=36,解得:x=,∵此时x不是整数,∴总高度不可能为36cm.【点评】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)根据表格中的数据,利用待定系数法求出一次函数关系式;(3)代入y=36求出x的值.16.如图,直线l:y=﹣x+2与x轴,y轴分別交于点A,B,在y轴上有一点C(0,4),动点M从点A出发以毎秒1个単位长度的速度沿x轴向左运动,设运动的时间为t 秒.(1)求点A的坐标;(2)请从A,B两题中任选一题作答.A.求△COM的面积S与时间t之间的函数表达式;B.当△ABM为等腰三角形时,求t的值.【分析】(1)由直线L的函数解析式,令y=0求A点坐标,x=0求B点坐标;(2)A、由面积公式S=OM•OC求出S与t之间的函数关系式;B、△ABM是等腰三角形,有三种情形,分别求解即可;【解答】解:(1)对于直线AB:y=﹣x+2,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)A、∵C(0,4),A(4,0)∴OC=OA=4,当0≤t≤4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;B、△ABM是等腰三角形,有三种情形:①当BM=AM时,设BM=AM=x,则OM=4﹣x,在Rt△OBM中,∵OB2+OM2=BM2,∴22+(4﹣x)2=x2,∴x=,∴AM=,∴t=时,△ABM是等腰三角形.②当AM′=AB==2时,即t=2时,△ABM是等腰三角形.③当BM″=BA时,∵OB⊥AM″,∴OM″=OA=4,∴AM″=8,∴t=8时,△ABM是等腰三角形.综上所述,满足条件的t的值为s或2s或8s.【点评】本题考查了一次函数综合题、三角形的面积公式、等腰三角形的性质和判定等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.17.如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存。

2024学年九年级中考数学专题复习:分配方案问题(一次函数实际综合应用)(含答案)

2024学年九年级中考数学专题复习:分配方案问题(一次函数实际综合应用)(含答案)

2024 学年九年级中考数学专题复习:分配方案问题(一次函数实际综合应用)1.春天来了,学校计划用两种花卉对校园进行美化.已知用600元购买A 种花卉与用900元购买B 种花卉的数量相等,且B 种花卉每盆的价格比A 种花卉每盆的价格多0.5元.(1)求A ,B 两种花卉每盆的价格各是多少元;(2)学校计划购买A ,B 两种花卉共6000盆,其中A 种花卉的数量不超过B 种花卉数量的13,请你给出购买这批花卉费用最低的方案,并求出最低费用. 2.某市的A 县和B 县春季育苗,急需化肥分别为90t 和60t ,该市的C 县和D 县分别储存化肥100t 和50t ,全部调配给A 县和B 县.已知从C 县运化肥到A 县的运费为35元/t ,从C 县运化肥到B 县的运费为30元/t ,从D 县运化肥到A 县的运费为40元/t ,从D 县运化肥到B 县的运费为45元/t .(1)设C 县运到A 县的化肥为x t ,求总运费W (单位:元)关于x (单位:t )的函数解析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.3.为加强学生的劳动教育,某校准备开展以“种下希望,共建美好家园”为主题的义务植树活动. 经了解,购买2棵枣树和3棵石榴树共需44元;购买5棵枣树和6棵石榴树共需98元,该校决定购买(0)m m 棵枣树和50棵石榴树.(1)求枣树和石榴树的单价;(2)实际购买时,商家给出了如下优惠方案:方案一:均按原价的九折销售;方案二:如果购买的枣树不超过50棵,按原价销售. 如果购买的枣树超过50棵,则超出的部分按原价的八折销售,石榴树始终按原价销售.分别求出两种方案的费用1W ,2W 关于m 的函数解析式.4.“一骑红尘妃子笑,无人知是荔枝来”,夏季是盛产荔枝的季节,某县城为尽快打开市场,对本地的荔枝品种妃子笑进行线上和线下销售相结合的模式,具体费用标准如下:线上销售模式:不超过6千克时,按原价出售,超过6千克时,超出部分每千克再让利3.5元;线下销售模式:一律九折出售.购买妃子笑x 千克,所需费用为y 元,y 与x 之间的函数关系如图所示.根据以上信息回答下列问题:(1)请问妃子笑的标价为多少?(2)请求出线上销售模式所需费用y关于x的函数解析式;(3)若想购买妃子笑40千克,请问选择哪种模式购买最省钱?5.某公司为改善办公条件,计划采购一批A,B两种型号的电脑,已知1台A型电脑比1台B型电脑的便宜1200元;采购4台A型电脑与采购3台B型电脑的费用一样多.(1)求A型电脑和B型电脑每台各需多少元;(2)若公司计划采购A、B两种型号电脑共50台,且A型电脑的台数不超过B型电脑的4倍,两种型号电脑的采购总费用不超过200000元,该公司共有几种采购方案?哪种采购方案可使总费用最低,最低费用是多少元?6.希望艺术团准备采购甲,乙两种道具,某经销商知道了活动的方案后,主动联系希望艺术团,对甲种道具的出售价格根据购买量给予优惠,对乙种道具按25元/件的价格出售.设希望艺术团购买甲种道具x件,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若希望艺术团计划一次性购买甲,乙两种道具共100件,且甲种道具不少于40件,但又不超过60件.如何分配甲,乙两种道具的购买量,才能使希望艺术团付款总金额w(元)最少?(3)若甲、乙两种道具的进货价格分别为22元/件和18元/件.经销商按(2)中甲,乙两种道具购买量的分配比例卖出两种道具共a件,且销售完a件道具获得的利润不少于1050元,求a的最小值.7.我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买A,B两种奖品.已知2件A种奖品和3件B种奖品共需41元,5件A种奖品和2件B种奖品共需53元.(1)这两种奖品的单价各是多少元?(2)学校准备购进这两种奖品共90件,且B种奖品的数量不少于A种奖品数量的13,请设计出最省钱的购买方案,并求出最少费用.8.我市是福建省茶叶的主要产区,清明过后就是春茶的采摘季节.已知熟练采茶工人每天采茶的数量是新手采茶工人的3倍,每个熟练采茶工人采摘600斤鲜叶比新手采茶工人采摘450斤鲜叶少用25天.(1)求熟练采茶工人和新手采茶工人一天分别能采摘鲜叶的斤数;(2)某茶厂计划一天采摘鲜叶600斤,该茶厂有20名熟练采茶工人和15名新手采茶工人,按点工制度付给熟练采茶工人每人每天的工资为300元,付给新手采茶工人每人每天的工资为80元,应如何安排熟练采茶工人和新手采茶工人能使费用最少?9.为了方便老师工作,某中学决定购进一批教学用具,在购买教学用具时,该校从甲、乙、丙三家商场了解到同一种型号教学用具的优惠条件如下:甲:定价为90元,超过5个,超过的部分每个优惠20%;乙:定价为90元,每个优惠10% ;丙:购会员卡100元,每个教学用具70元.(1)设该校购买x个教学用具,选择甲商场时,所需费用为y1元;选择乙商场时,所需费用为y2元;选择丙商场时,所需费用为y3元;请分别求出y1,y2,y3与x之间的函数关系式;(2)当购买教学用具数量大于多少件时,y2>y3?10.某年级430名师生秋游,计划租用8辆客车,现有甲、乙两种型号客车,它们的载客量和租金如下表:(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?11.目前,全国各地都在积极开展新冠肺炎疫苗接种工作,某生物公司接到批量生产疫苗任务,要求5天内加工完成22万支疫苗,该公司安排甲,乙两车间共同完成加工任务,乙车间加工过程中停工一段时间维修设备,然后提高效率继续加工,直到与甲车间同时完成加工任务为止,设甲,乙两车间各自生产疫苗y (万支)与甲车间加工时间x (天)之间的关系如图1所示;两车间未生产疫苗w (万支)与甲车间加工时间x (天)之间的关系如图2所示,请结合图象回答下列问题:(1)甲车间每天生产疫苗 万支,第一天甲、乙两车间共生产疫苗 万支,=a ;(2)当3x =时,求甲、乙车间生产的疫苗数(万支)之差12y y -;(3)若5.5万支疫苗恰好装满一辆货车,那么加工多长时间装满第一辆货车?再加工多长时间恰好装满第三辆货车?12.某校准备在健康大药房购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在健康大药房累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w 元,求w 关于m 的函数关系式.若该校九年级有1000名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元? 13.某商场销售一种夹克和衬衣,夹克每件定价100元,衬衣每件定价50元,商场在开展促销活动期间,向顾客提供两种优惠方案.方案一:买一件夹克送一件衬衣方案二:夹克和衬衣均按定价的80%付款现有顾客要到该商场购买夹克30件,衬衣x件(x>30)(1)用含x的代数式表示方案一购买共需付款y1元和方案二购买共需付款y2元;(2)通过计算说明,购买衬衣多少件时,两种方案付款一样多?(3)当x=40时,哪种方案更省钱?请说明理由.14.灵宝寺河山被誉为“亚洲第一高山果园”,海拔800﹣1200米,土质肥沃,雨量充沛,日照充足,昼夜温差大,气候条件得天独厚,是苹果的最佳适生地.寺河山苹果,是三门峡市灵宝苹果的龙头品牌,素有“天下苹果属灵宝,灵宝苹果属寺河”之说.在苹果收获季节,为了保证苹果的新鲜度,需要将苹果运送至冷库进行保存,现有A,B两个果园,若A果园有苹果120吨,B果园有苹果60吨.现将A,B两个果园的苹果全部运往C,D两个冷库进行冷藏保存,已知C仓库可储存100吨,D仓库可储存80吨,A,B 两个果园到C,D两个冷藏仓库的运费如下表:设从A果园运往C仓库的苹果重量为x吨.(1)用含x(吨)的代数式表示总运费W(元),并写出自变量x的取值范围;(2)如何进行运送才能使总运费最少?求出最低总运费.15.学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程.在建设美丽中国的活动中,某学校计划组织全校1450名师生到相关部门规划的林区植树,经过研究,决定在当地租车公司租用62辆A、B两种型号的客车作为交通工具.下表是租车公司提供给学校有关A、B两种型号客车的载客量和租金信息:注:载客量指的是每辆客车最多可载该校师生的人数;(1)设租用A型号客车x辆,租车总费用为y元,求y与x之间的函数表达式,并通过计算求出x的取值范围;(2)若要使租车总费用不超过13460元,则共有几种租车方案?哪种租车方案最省钱?参考答案:1.(1)A 种花卉每盆1元,B 种花卉每盆1.5元(2)当购买A 种花卉1500盆,B 种花卉4500盆时购买这批花卉总费用最低,最低费用为8250元.2.(1)W =10x +4800(40≤x ≤90)(2)最低总运费为5200元,此时的运送方案是:C 县的100t 化肥40t 运往A 县,60t 运往B 县,D 县的50t 化肥全部运往A 县3.(1)枣树的单价为10元,石榴树的单价为8元(2)19360W m =+,210400(050),8500(50).m m W m m +<≤⎧=⎨+>⎩4.(1)25元/千克(2)()()250621.5216x x y x x ⎧≤<⎪=⎨+>⎪⎩(3)线上购买5.(1)购买1台A 型电脑需要3600元,购买1台B 型电脑需要4800元.(2)该公司共有7种采购方案. 购买A 型电脑40台,B 型电脑10台方案可使总费用最低,最低费用是192000元6.(1)30(050)24300(50)x x y x x ≤≤⎧=⎨+>⎩ (2)购进甲道具40件,乙道具60件时,才能使希望艺术团付款总金额w (元)最少;(3)a 的最小值为2107.(1)A :7元,B :9元(2)购进A 种奖品67件,购进B 种奖品23件;676元8.(1)每名熟练的采茶工人一天能采摘鲜叶30斤,每名新手采茶工人一天能采摘鲜叶10斤(2)茶厂应安排15名熟练的采茶工人采摘鲜叶,15名新手采茶工人采摘鲜叶能使得费用最少9.(1)190(05)7290(5)x x y x x <≤⎧=⎨+>⎩;290(110%)81y x x =⨯-=;370100y x =+ (2)1010.(1)y =100x +3600(2)当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是4100元11.(1)2,3.5,1.5(2)1(3)2天,2天12.(1)每盒口罩和每盒水银体温计的价格各是200元,50元(2)5m(3)当m ≤4时,则w=450m ;当m >4时,w =360m +360,需要购买口罩20盒,水银体温计100盒,所需总费用为7560元13.(1)12501500402400y x y x =+⎧⎨=+⎩;(2)当90x =时12y y =;(3)当x =40时,方案一更省钱. 14.(1)43400W x =+,40100x ≤≤;(2)运送方案为A 果园将40吨苹果运往C 仓库,80吨运往D 仓库,B 果园的60吨苹果全部运往C 仓库,此时总运费最低,最低是3560元 15.(1)y =100x +11160(21≤x ≤62且x 为整数);(2)3种,租用A 型号客车21辆。

一次函数的应用复习

一次函数的应用复习

⑵ 由图象得每月租碟数 10
量为20张费用一样,每月 5 租碟数量少于20张时,选 O 5 10 15 20 x
择零星租碟,每月租碟数
量多于20张时,选择会员
卡租碟
三.目标检测 A组
1.某厂现在的年产值是15万元,计划今后每年增加2万 元,年产值y与年数x之间的函数关系为y=2x+15 ,五年 后产值是 _2_5万__.
解: y=700x+1200(50-x) (0≤x≤50)
y=-500x+6000 当x =0时, y最大,最大利润是6000元
答,生产A产品0件, B产品50件利润最大,是6000元
2.某商场的营业员小李销售某种商品,他的月收入与他该月的 销售量成一次函数关系,其图象如图所示,根据图象提供的信 息,解答下列问题: (1)求出小李的个人收入y(元)与他的月销售量x(件)之间 的函数关系式; (2)已知小李4月份的销售量为250件y,(元)求小李4月份的收入是 多少元?
③当x >1 时,y>0, 当x <1 时,y<0 ④写出直线的解析式 y=2x-2
3.如图:①图中两直线的交点坐标可以
看作
y-x=1 y-2.5x=-2
方程组的解
②求出两条直线与纵轴所围成的三角形
面积___3___
③当x _=_2__ 时,y1 =y2 , 当x _<_2__ 时,y1 >y2 , 当x _>_2 时,y1 <y2.
1.能够根据图象获得信息,确定一次函数 关系式.
2.实际问题转化为数学问题,建立数 学模型,用数形结合方法解决实际问题
作业
y2=2.5x-2 y1=x+1
4.学校准备周末组织老师去南京参加

考点09 一次函数的应用-备战2023届中考数学一轮复习考点梳理(原卷版)

考点09 一次函数的应用-备战2023届中考数学一轮复习考点梳理(原卷版)

考点09 一次函数的应用一次函数的实际应用在中考中更多的是以简答题的形式出题,选择题、填空题多考察一次函数图象的理解和信息提取,并且多考行程类实际应用题。

简答题在出题时也多和方程、不等式结合,考察对象的方案设计和决策等。

在考生复习此考点时,需要多注意一次函数图象具体意义的,熟练掌握根据已知条件确定一次函数的表达式的方法,并能根据一次函数的性质解决简单的实际问题。

一、一次函数图象信息类问题二、利用一次函数进行方案设计与决策三、一次函数与几何的结合问题考向一:一次函数图象信息类问题一.一次函数图象与性质的应用解题要点:1.明确题目中图象的横、纵坐标表示的意义;2.理解并能准确应用图象中的拐点的意义;3.理解函数图象的变化趋势、倾斜程度各表示什么意义;二.分段函数图象问题解题要点:1.读懂每段图象的意义,从图象中获取信息,2.注意图象中的一些特殊点的实际意义;1.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )A.两车同时到达乙地B.轿车行驶1.3小时时进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等2.已知张老师家、超市、书店在同一条直线上.下面的图象反应的过程是:张老师晚饭后从家里散步到超市,在超市停留了一会儿后又去书店看书,看会儿书觉得有点晚了,就快步走回家.图中x表示张老师离开家的时间,y表示张老师离开家的距离.根据图象提供的信息,下列说法错误的是( )A.张老师家离超市1.5kmB.张老师在书店停留了30minC.张老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.张老师从书店到家的平均速度是10km/h3.公路旁依次有A,B,C三个村庄,小明和小红骑自行车分别从A村、B村同时出发匀速前往C村(到了C村不继续往前骑行,也不返回),如图所示,l1,l2分别表示小明和小红与B村的距离s(km)和骑行时间t(h)之间的函数关系,下列结论:①A,B两村相距12km;②小明每小时比小红多骑行8km;③出发1.5h后两人相遇;④图中a=1.65.其中正确的是( )A.②④B.①③④C.①②③D.①②③④4.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:(1)根据图象,求出y1,y2关于x的函数关系式.(2)若设两车间的距离为S(km),请写出S关于x的函数关系式.(3)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.考向二:利用一次函数进行方案设计与决策一次函数与方程(组)、不等式的实际应用解题要点:1.利用图象交点的意义及图象关系将实际问题转化为一次函数问题2.在解题中要分清图象所对应的实际问题中的参量,同时要注意自变量的取值范围3.利用一次函数的性质进行方案设计与决策,一般先求出函数表达式,结合不等式求出自变量的取值范围,然后再利用函数的增减性或函数图象进行决策。

2023中考数学复习:一次函数的实际应用

2023中考数学复习:一次函数的实际应用
11
12
13
基础全练
挑战高分
中考创新练
12.(2022·四川广安)某企业下属A,B两厂向甲、乙两地运送水泥共520
吨,A厂比B厂少运送20吨,从A厂运往甲、乙两地的运费分别为40元/吨和
35元/吨,从B厂运往甲、乙两地的运费分别为28元/吨和25元/吨.
(1)求A,BLeabharlann 厂各运送多少吨水泥.(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地
一次函数的实际应用
挑战高分
基础全练
中考创新练
综 合 模 拟 练
基础全练
1.(2022·黑龙江哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路
程x(km)的对应关系如图所示,如果这辆汽车
每千米的耗油量相同,当油箱中剩余的油量为
35 L时,那么该汽车已行驶的路程为( A )
A.150 km
B.165 km
= −,
解得ቊ
所以线段MN的函数解析式是y=-20x+1 200(15≤x≤20);
= ,
(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)

经过8分钟和 分钟时两人相距80米.

1
2
3
4
5
6
7
8
9
10
挑战高分
基础全练
中考创新练
5.(2022·吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相
t(h)之间的关系如图所示.
(1)直接写出当0≤t≤0.2和t>0.2时,
s与t之间的函数表达式;
(2)何时乙骑行在甲的前面?
1
2
3
4

一次函数的应用中考分类复习最新

一次函数的应用中考分类复习最新

A
(2013•牡丹江)甲乙两车从A市去往B市,甲比乙 早出发了2个小时,甲到达B市后停留一段时间返回, 乙到达B市后立即返回.甲车往返的速度都为40千 米/时,乙车往返的速度都为20千米/时,下图是两 车距A市的路程S(千米)与行驶时间t(小时)之 间的函数图象.请结合图象回答下列问题: (2)求甲车返回时的路程S(千米)与时间t(小 时)之间的函数关系式,并写出自变量t的取值范 围; E
1.3
2.3
某景区的旅游线路如图1所示,其中A为入口,B,C,D 为风景点,E为三岔路的交汇点,图1中所给数据为相应 两点间的路程(单位:km).甲游客以一定的速度沿线 路“A→D→C→E→A”步行游览,在每个景点逗留的时间 相同,当他回到A处时,共用去3h.甲步行的路程s(km) 与游览时间t(h)之间的部分函数图象如图2所示. (2)求C,E两点间的路程;
一次函数的应用
课标解读
考试要求:
1.理解正比例函数,一次函数的意义,会根据已知条件 利用待定系数法确定一次函数表达式。 2.能画出一次函数的图像,根据一次函数的图像和解析 表达式y=kx+b(k≠0)理解其性质(k>0或k<0时,图 像的变化情况) 。 3.理解一次函数与二元一次方程的关系,会根据一次函 数的表达式求其图像与两坐标轴 交点坐标。
1.3
2.3
…甲游客以一定的速度沿线路“A→D→C→E→A”步行 游览,在每个景点逗留的时间相同,当他回到A处时,共 用去3h.甲步行的路程s(km)与游览时间t(h)之间 的部分函数图象如图2所示.
(3)乙游客与甲同时从A处出发,打算游完三个景点后 回到A处,两人相约先到者在A处等候,等候时间不超过 10分钟.如果乙的步行速度为3km/h,在每个景点逗留的 时间与甲相同,他们的约定能否实现?请说明理由.

中考数学总复习《最大利润问题(一次函数的实际应用)》专题训练(附答案)

中考数学总复习《最大利润问题(一次函数的实际应用)》专题训练(附答案)

中考数学总复习《最大利润问题(一次函数的实际应用)》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.某学校准备购买A、B两种型号的垃圾箱,通过市场调研发现:买2个A型垃圾箱和1个B型垃圾箱共需100元;买1个A型垃圾箱和2个B型垃圾箱共需110元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)若该校需购买A,B两种型号的垃圾箱共30个,其中A型垃圾箱不超过16个,求购买垃圾箱的总费用w (元)与A型垃圾箱的数量a(个)之间的函数关系式,并说明总费用至少要多少元?2.春节临近,为了满足顾客的消费需求,某大型商场计划用200000元购进一批家电,这批家电的进价和售价如表:类别彩电冰箱洗衣机进价(元/台)200026001000售价(元/台)230028001100若在现有资金允许的范围内,计划购买三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商场购买冰箱x台.(1)用含x的代数式表示洗衣机的台数;(2)商场最多可以购买冰箱多少台?(3)购买冰箱多少台时,能使商场销售完这批家电后获得的利润最大?最大利润为多少元?3.某商场准备购进甲、乙两种服装进行销售,甲种服装每件进价160元,售价220元;乙种服装每件进价120元,售价160元.现计划购进两种服装共100件,其中甲种服装不少于60件.设购进甲种服装x件,两种服装全部售完,商场获利y元.(1)求y与x之间的函数关系式.(2)若购进100件服装的总费用不超过15000元,则最大利润为多少元?4.某商店11月份购进甲、乙两种配件共花费1350元,其中甲种配件6元/个,乙种配件15元/个.12月份,这两种配件的进价上调为:甲种配件8元/个,乙种配件18元/个.(1)若该店12月份购进这两种配件的数量与11月份都相同,将多支付货款350元,求该店11月份购进甲、乙两种配件分别是多少个?(2)若12月份将这两种配件进货总量减少到120个,设购进甲种配件a个,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若乙种配件不少于30个,则12月份该店需要支付这两种配件的货款最少应是多少元?5.某商店准备购进甲乙两种服装共100件进行销售,其中甲种服装每件利润40元,乙种服装每件利润50 x≥)件,两种服装全部售完,商场获利y元.元.设购进甲种服装x(30(1)求y与x之间的函数关系式;(2)该店购进甲,乙服装各多少件时,才能使销售总利润最大?最大利润为多少元?(3)实际进货时,厂家对甲服装的出厂价下调a(020<<)元,且限定该店最多只能购进甲服装60件.若a该店保持售价不变,请你根据以上信息,设计出使这100件服装总利润最大的进货方案.6.为迎接“国家级文明卫生城市”检查,我市环卫局准备购买A,B两种型号的垃圾箱.通过市场调研发现:购买1个A型垃圾箱和2个B型垃圾箱共需170元;购买3个A型垃圾箱和1个B型垃圾箱共需210元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中购买A型垃圾箱不超过16个.①求购买垃圾箱的总花费W(元)与A型垃圾箱x(个)之间的函数关系式;①当购买A型垃圾箱个数多少时总费用最少,最少费用是多少?7.某商店销售3台A 型和5台B 型电脑的利润为3000元,销售5台A 型和3台B 型电脑的利润为3400元.(1)求每台A 型电脑和B 型电脑的销售利润各多少元?(2)该商店计划一次购进两种型号的电脑共50台,设购进A 型电脑n 台,这50台电脑的销售总利润为w 元.请写出w 关于n 的函数关系式,并判断总利润能否达到26000元,请说明理由.8.第19届亚运会已于2023年9月23日至10月8日在中国浙江杭州成功举行.这是党的二十大胜利召开之后我国举办的规模最大、水平最高的国际综合性体育赛事,举国关注,举世瞩目.杭州亚运会三个吉祥物分别取名“琮琮”“宸宸”“莲莲”.某专卖店购进A ,B 两种杭州亚运会吉祥物礼盒进行销售.A 种礼盒每个进价160元,售价220元;B 种礼盒每个进价120元,售价160元.现计划购进两种礼盒共100个,其中A 种礼盒不少于60个.设购进A 种礼盒x 个,两种礼盒全部售完,该专卖店获利y 元.(1)求y 与x 之间的函数关系式;(2)若购进100个礼盒的总费用不超过15000元,求最大利润为多少元?(3)在(2)的条件下,该专卖店对A 种礼盒以每个优惠(020)m m <<元的价格进行优惠促销活动,B 种礼盒每个进价减少n 元,售价不变,且4m n -=,若最大利润为4900元,请直接..写出m 的值.9.某教育科技公司销售A,B两种多媒体,这两种多媒体的进价与售价如表所示:A B进价(万元/套)3 2.4售价(万元/套) 3.3 2.8(1)若该教育科技公司计划购进两种多媒体共50套,共需资金132万元,该教育科技公司计划购进A,B两种多媒体各多少套?(2)若该教育科技公司计划购进两种多媒体共50套,其中购进A种多媒体m套(1020<<),当把购进的m两种多媒体全部售出,求购进A种多媒体多少套时,能获得最大利润,最大利润是多少万元?10.某商店购进一批牛奶进行销售,据了解,每箱甲种牛奶的进价比每箱乙种牛奶的进价少5元,且购进2箱甲种牛奶和3箱乙种牛奶共需215元.(1)问甲、乙两种牛奶每箱的进价分别为多少元?(2)若每箱甲种牛奶的售价为50元,每箱乙种牛奶的售价为60元,考虑到市场需求,商店决定共购进这两种牛奶共300箱,且购进甲种牛奶的数量不少于100箱.设购进甲种牛奶m箱,总利润为W元,请求出总利润W(元)与m(箱)的函数关系式,并根据函数关系式求出获得最大利润的进货方案.(1)学校用4920元以进价购进这批篮球和足球,求购进篮球和足球各多少个;(2)设该电商所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数表达式(不要求写出x的取值范围);(3)因资金紧张,电商的进货成本只能在4745元的限额内,请为学校设计一种进货方案使得尽可能多地购买篮球和足球,同时要使电商利润最小;并求出利润的最小值.13.陕西洛川盛产苹果,政府要将其发展成“帮助群众脱贫致富、推动乡村振兴”的特色产业.王师傅在政府的扶持下种植了A、B两个品种的苹果共50亩,两种苹果的成本和售价如下表所示:品种成本(万元/亩)售价(万元/亩)A 1.1 2.2B 1.3 2.7设种植A品种苹果x亩,若50亩地全部种植两种苹果共获得利润y万元.(1)求y与x之间的函数关系式;(2)若A品种苹果的种植亩数不少于B品种苹果种植亩数的1.5倍,则种植A品种苹果多少亩时利润最大?并求出最大利润.14.某校在开展数学文化节知识竞赛中,对优秀选手予以评奖,并颁发奖品,奖品有甲、乙、丙三种类型.已知1个甲种奖品的价格是1个丙种奖品价格的2倍,1个乙种奖品的价格比1个甲种奖品的价格少20元.若决定:今年新采购100台污水处理设备用以增强公司的污水处理能力.经过市场考查,诚信机械设备公司(以下简称:诚信公司)推荐了A、B两种型号的设备供选择,其中每台的报价与月处理污水量如表:经核算,若按诚信公司的报价:购买一台A型设备将比购买一台B型设备多20万元,购买2台A型设备会比购买3台B型设备少40万元.(1)求m,n的值;(2)诚信公司最初给出的销售条件是:购买B型设备原则上不予优惠;购买A型设备不超过20台时无优惠;购买20台以上时,超过20台的部分每台可按报价的7.5折销售.并且由于受库存和产能等因素限制,在规定的交货期限内,诚信公司最多只能提供80台A型设备,而富春紫光需要这批新购进的100台设备月处理污水总能力不能低于20600吨①富春紫光买下这批设备最少需要支付多少购买资金?①经过反复谈判协商,诚信公司最终同意:在富春紫光按照最初的销售条件全部买下诚信公司库存的50台A型设备的前提下,再给予B 型设备如下的优惠措施:购买B 型设备不超过a 台时无优惠;购买a 台以上时,超过a 台的部分每台可按报价的8折销售.如果富春紫光想要用不超过7850万元的资金买下这批污水处理设备,试求a 的最大值?参考答案: 1.(1)每个A 型垃圾箱30元,每个B 型垃圾箱40元(2)购买垃圾箱的总费用w (元)与A 型垃圾箱的数量a (个)之间的函数关系式为101200w a =-+,总费用至少要1040元2.(1)1003x -(2)27台(3)购买冰箱27台时,能使商场销售完这批家电后获得的利润最大,最大利润为23500元3.(1)204000y x =+(2)当75x =时,y 最大,最大值为5500元4.(1)该店11月份购进甲种配件100个,购进乙种配件50个;(2)102160w a =-+;(3)12月份该店需要支付这两种配件的货款最少应是1260元.5.(1)105000y x =-+(2)当购进甲服装30件,乙服装70件时,总利润最大,为4700元(3)购进60件甲服装,40件乙服装时,总利润最大6.(1)每个A 型垃圾箱50元,每个B 型垃圾箱60元.(2)①()101800016W x x =-+≤≤,其中x 为整数.①购买16个A 型垃圾箱时总费用最少,最少费用是1640元.7.(1)每台A 型电脑和B 型电脑的销售利润各为500,300元(2)20015000w n =+,不能8.(1)()20400060y x x =+≥(2)5500元(3)109.(1)购进A 种多媒体20套,B 种多媒体30套(2)购进A 种多媒体11套时,能获得最大利润,最大利润是189.万元10.(1)每箱甲种牛奶的进价为40元,每箱乙种牛奶的进价为45元.(2)总利润W (元)与m (箱)的函数关系式为54500W m =-+;获得最大利润的进货方案为购进甲种牛奶100箱,乙种牛奶200箱.11.(1)每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资(2)有三种派车方案(3)安排甲车3辆,乙车7辆所用的燃油费最少,最低燃油费是24200元12.(1)购进篮球37个,购进足球13个(2)51750y x =-+(3)购进篮球16个,足球34个利润最小为1670元13.(1)0.370y x =-+(2)当30x =时,最大利润为61万元14.(1)1个甲种奖品的价格为60元,1个乙种奖品的价格为40元,1个丙种奖品的价格为30元(2)11500元15.(1)m的值为100,n的值为80(2)①富春紫光买下这批设备最少需要支付8100万元购买资金;①a的最大值为25.第11页共11页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、回顾:
1、一次函数的解析式是怎样的?
y=kx+b (k≠0) 2、一次函数y=kx+b (k≠0)图象是什么?
一条直线
y=kx+b (k≠0) 图象经过哪几个 象限
k>0,b>0
一、三、二
k>0,b<0 k<0,b>0
一、三、四
二、四、一
K<0,b<0
二、四、三
一、由一次函数的图象收集、处理实际问题的数学信息
(1)某机动车出发前油箱内有
Q(升)
42 A
36
C
ห้องสมุดไป่ตู้
30 24
油42升,行驶若干小时后,途 中在加油站加油若干升(加油时 间忽略不计)。油箱中余油量Q (升)与行驶时间t(时)之间 的函数关系如图所示,根据下图
18
回答问题:
12
B
D
6
O 1 2 3 4 5 6 7 8 9 10 11 t(时)
(1)机动车行驶 5 小时后加油; (2)中途加油 24 升;
(2).某地区的电力资源缺乏,未能得到了较
好的开发。该地区一家供电公司为了使居民
节约用电,采用分段计费的方法来计算电费。
月用电量x(度)与相应电费y(元)之间的
函数图像如图所示。
y(元)
(1)填空,月用电 量为100度时,应交
200
B
电费 60 元;
60
A
O 100 200
X(度)
(2)当x≥100时, 求y与x之间的函 数关系式;
取值范围。
Y
A
O
Bx
Y 距离(千米) A
时间(分)
O
Bx
Y 速度 A
时间
O
Bx
Y A
O
Bx
(二)由实际问题中的数学信息,建立数学模 型,得相关的一次函数的图象。
1、张大伯出去散步,从家走了20分钟,到了一个
离家900米的阅报亭,看了10分钟报纸后,用了15
分钟返回到家。下面哪个图形表示张大伯离家时
(A)请写出汽车距上海的路程s(千米)与行驶时间t (小时)的函数关系式,并求出自变量t的取值范围。 (B)在下面平面直角坐标中,画出汽车距上海的路程s
(千米)与行驶时间t(小时)的函数关系式的图象。
s(千米)
S=300-100t
0≤t≤3
300 O3
t
0
3
t(小时) S 300 0
(3)月用电量为250度时,应交电费多少元?
(3)阅读下列函数图象,并根据你所获得的
信息回答问题:
(1)折线OAB表示某个实际问题的函数图象,请 你编写一道符合该图象意义的应用题;
(2)根据你所给出的应用题分别指出x轴、y轴所表
示的意义,并写出A、B两点的坐标;
(3)求出图象AB的函数解析式,并注明自变量x的
间与距离之间的关系可能是( D )?
距离(米)
距离(米)
距离(米)
距离(米)
900
900
900
900
时间(分)
时间(分)
时间(分)
时间(分)
0 1020304050
0 1020304050
0 1020304050
0 1020304050
A
B
C
D
2、汽车由南京驶往相距300千米的上海,当它
的平均速度是100千米/时,
相关文档
最新文档