高考数学试卷解析1262
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学试卷解析
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
1.已知集合
{124}
A =,,,
{246}
B =,,,则
A B =
▲.
【答案】{}1,2,4,6。 【主要错误】{2,4},{1,6}。
2.某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取▲名学生. 【答案】15。
【主要错误】24,25,20等。
3.设a b ∈R ,,117i
i 12i
a b -+=-(i 为虚数单位),则
a b +的值为▲.
【答案】8。
【主要错误】4,2,4,5+3i ,40/3,6,等。
【分析】由117i
i 12i
a b -+=
-得
()()()()117i 12i 117i 1115i 14
i ===53i 12i 12i 12i 14
a b -+-+++=
+--++,所以=5=3a b ,,=8a b +。
4.下图是一个算法流程图,则输出的k 的值是▲.
【答案】5。
【主要错误】4,10,1,3,等。
【分析】根据流程图所示的顺序,程序的运行过程中变量值变化如下表:
是否继续循环 k 2k 5k 4-+
循环前
0 0 第一圈 是 1 0 第二圈 是 2 -2 第三圈 是 3 -2 第四圈 是 4 0 第五圈 是 5 4
第六圈
否
输出5
∴最终输出结果k=5。
5.函数
x x f 6log 21)(-=的定义域为▲.
【答案】
(0。
【主要错误】(0,6),(]{}6
,
0,
{}
6/≤x x ,
{}
6,0/≠>x x x 等。
【解析】根据二次根式和对数函数有意义的条件,得
1266000112log 0log 620
⇒⇒⎨⎨⎨
⎩⎪⎪⎩⎩
6.现有10个数,它们能构成一个以1为首项,3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是▲.
【答案】
3
5。
【主要错误】
52,43,54,21,107
。
【解析】∵以1为首项,3为公比的等比数列的10个数为1,-3,9,27,···其中有5个负数,1个正数1计6个数小于8,
∴从这10个数中随机抽取一个数,它小于8的概率是
63
=105
。
7.如图,在长方体
1111
ABCD A B C D -中,
3cm
AB AD ==,
12cm
AA =,则四棱锥
11A BB D D -的体积为▲cm3.
【答案】6。
【主要错误】
26,3,72,30。
【解析】∵长方体底面ABCD 是正方形,∴△ABD 中=32BD cm ,BD 边上的高是
3
22
cm (它也是11A BB D D -中11BB D D 上的高)。 ∴四棱锥11A BB D D -的体积为13
3222=632
⨯⨯⨯。
8.在平面直角坐标系xOy 中,若双曲线
22
214
x y m m -=+的离心率为5,
则m 的值为▲.
【答案】2。
【主要错误】2,5,3,1。
【解析】由22
214x y m m -=+得22==4=4a m b m c m m +++,,。
∴24
==
=5c m m e a m
++,即244=0m m -+,解得=2m 。
9.如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中
点,点F 在边CD 上,若
2AB AF =,则AE BF 的值是▲.
【答案】
2。
【主要错误】
22-,22,3,2,32
,2,1,
2等20余种。
【解析】由2AB AF =,得cos 2AB AF FAB ∠=,由矩形的性质,得
cos =AF FAB DF ∠
。
∵AB
=2DF =,∴1
DF =。∴1CF =。 记AE BF 和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+。 又∵2BC =,点E 为BC 的中点,∴1BE =。∴()()=cos =cos =cos cos sin sin AE BF AE
BF AE
BF AE BF
θαβαβαβ
+-
(
)
=cos cos sin sin =122
1AE BF AE BF BE BC AB CF αβαβ--=⨯-
本题也可建立以, AB AD 为坐标轴的直角坐标系,求出各点坐标后求解。 10.设
()
f x 是定义在
R
上且周期为2的函数,在区间
[11]-,上,
0111()2
01
x x ax f x bx x <+-⎧⎪
=+⎨⎪+⎩≤≤≤,
,,,其中
a b ∈R
,.
若
1322f f ⎛⎫⎛⎫
= ⎪ ⎪⎝⎭⎝⎭
,则3a b +的值为▲. 【答案】10。
【主要错误】2,3,4,10,5等十余种。
【解析】∵()f x 是定义在R 上且周期为2的函数,∴()()11f f -=,
即2
1=
2
b a +-+① 又∵311=1222f f a ⎛⎫⎛⎫
=--+ ⎪ ⎪⎝⎭⎝⎭
,
1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭
, ∴1
4
1=
23
b a +-+② 联立①②,解得,=2. =4a b -。∴3=10a b +-。
11.设
α
为锐角,若
4cos 65απ⎛
⎫+=
⎪⎝
⎭,则