生物质活性炭的制备及应用进展

合集下载

生物质炭的制备与应用

生物质炭的制备与应用
以冬瓜为例
(1)炭化前,(2)炭化后
生物质水热转变
其他单糖类物质
以冬瓜为例
生物质热解技术
生物质热解技术是指在高温高压没有空气和氧气的条件下,通过降解生 物质中的有机质形成生物质碳、生物质油和可燃气体。在热解产物形成过程 中,通过交联、解聚和分裂作用下生物质(纤维素、半纤维素、木质纤维素 和果胶)的结构发生不可逆的化学物理转变,导致热解产物的形成。
典型的碳气凝胶制备流程图
以废纸为原材料制备碳气凝胶为例
1.纤维素的提取
分别用氢氧化钠 和酸性条件下的 亚氯酸钠处理, 为了去除生物质 材料中的其他组 分。
2.纤维素气凝胶 的制备
将制得纤维素分 散在溶液中,利 用冷冻干燥机干 燥后得到纤维素 气凝胶。
3.碳气凝胶的制 备
在氮气氛围保护 下,利用管式炉 对其高温裂解, 得到最后碳气凝 胶。
水热反应装置
热解炭化反应装置
管式炉的使用说明
焙烧温度限于800-1300℃(低温区温度不准)。
步骤1:C1为起始温度,默认室温。
步骤2:T1为升温时间(1000℃下升温速率小于10℃/min,其他小于8℃/min)
步骤3:C2为升温达到的温度。
步骤4:T2为保温时间。
步骤5:C3为保温温度。
步骤6:T3为降温时间,
生物质炭的应用前景如何?
生物质炭材料的前景
近来,随着人们生活质量的提高,人们也越来越开始注重环境 问题。生物质炭材料由农业废弃及生活废弃有机物、油性植物等通 过热解碳化得到,并且碳含量较高。因此,生物质资源不但可以直 接作为可再生能源材料,而且经过一系列的处理技术可以得到以广 泛用于催化剂、吸附剂、储能等领域的生物质基炭材料。
生物质炭的制备与应用

《2024年生物质炭的制备、功能改性及去除废水中有机污染物研究进展》范文

《2024年生物质炭的制备、功能改性及去除废水中有机污染物研究进展》范文

《生物质炭的制备、功能改性及去除废水中有机污染物研究进展》篇一摘要:生物质炭是一种新型环保材料,因其良好的吸附性、化学稳定性以及促进土壤有机物改善的特性而受到广泛关注。

本文综述了生物质炭的制备方法、功能改性技术及其在去除废水中有机污染物方面的研究进展,旨在为相关研究提供参考和指导。

一、引言随着工业化的快速发展,废水中的有机污染物已成为环境治理的难题。

生物质炭因其良好的吸附性能和环保特性,在废水处理中具有广阔的应用前景。

本文将重点介绍生物质炭的制备方法、功能改性技术及其在去除废水中有机污染物方面的研究进展。

二、生物质炭的制备生物质炭的制备主要采用热解法,即将生物质原料在无氧或限氧条件下进行热解,使生物质炭化。

制备过程中,原料的选择、热解温度、热解时间等因素都会影响生物质炭的性能。

常见的生物质原料包括农业废弃物、林业废弃物、城市固体废弃物等。

三、生物质炭的功能改性为了提高生物质炭的吸附性能和化学稳定性,研究者们开展了大量的功能改性研究。

改性方法主要包括物理改性、化学改性和生物改性。

1. 物理改性:通过物理手段,如球磨、研磨等,改变生物质炭的孔隙结构和比表面积,从而提高其吸附性能。

2. 化学改性:利用化学试剂对生物质炭进行表面改性,引入极性基团、亲水基团等,增强其与有机污染物的相互作用力。

3. 生物改性:通过微生物的作用,对生物质炭进行表面修饰,增加其与有机污染物的亲和力。

四、去除废水中有机污染物的研究进展生物质炭因其良好的吸附性能和环保特性,在去除废水中有机污染物方面具有显著效果。

研究表明,生物质炭能够有效地吸附废水中的有机物、重金属等污染物,降低废水的污染程度。

此外,通过功能改性后的生物质炭,其吸附性能得到进一步提高,能够更有效地去除废水中的有机污染物。

五、结论与展望生物质炭作为一种新型环保材料,在废水处理中具有广阔的应用前景。

通过热解法可以制备出性能优良的生物质炭,而功能改性技术则能进一步提高其吸附性能和化学稳定性。

生物质炭技术及应用

生物质炭技术及应用

生物质炭技术及应用生物质炭技术及应用是一种将生物质材料通过热解、氧化或还原等过程转化成炭质产物的技术。

生物质炭作为一种新型的高效炭材料,具有多孔性、大比表面积和优异的化学稳定性等特点,广泛应用于环境治理、能源开发和产业制造等领域。

生物质炭技术主要分为两步:预处理和炭化。

预处理阶段包括生物质材料的粉碎、烘干和除杂等处理,以获得适合炭化的原料。

炭化阶段则是通过高温加热生物质材料,使其经历热解、热解和热化等反应而转化成炭质产物。

生物质炭的应用领域非常广泛。

首先,在环境治理方面,生物质炭可以作为土壤调节剂用于提高土壤肥力和改善土壤物理性质。

其多孔结构可以增加土壤的孔隙度,提高土壤的通气性和保水性,并吸附土壤中的重金属和有机物等污染物,起到修复土壤的作用。

此外,生物质炭还可以用于河道和湖泊的修复,通过吸附和分解水体中的有害物质,改善水质。

其次,在能源开发方面,生物质炭可以用作生物质燃料,取代传统的化石燃料。

生物质炭具有高热值、低灰分和低含氮含硫等特点,燃烧时产生的烟尘和有害气体排放较少,具有较好的环保性能。

此外,生物质炭还可以用于制备炭基材料,如炭纤维、炭黑和活性炭等,这些材料在航空航天、电子技术和环境保护等领域有着广泛的应用。

最后,在产业制造方面,生物质炭可以用于制备高性能的炭基材料和化工产品。

生物质炭具有多孔性和大比表面积等特点,可以用于制备电极材料、催化剂和吸附剂等。

例如,生物质炭可以用于制备锂离子电池的负极材料,提高电池的循环稳定性和倍率性能。

此外,生物质炭还可以用于制备高性能催化剂,用于有机合成和环境催化等领域。

综上所述,生物质炭技术及应用在环境治理、能源开发和产业制造等领域具有广泛的应用前景。

通过生物质炭技术的研究和开发,可以实现资源的高效利用和环境的可持续发展。

生物质炭的制备、功能改性及去除废水中有机污染物研究进展

生物质炭的制备、功能改性及去除废水中有机污染物研究进展

生物质炭的制备、功能改性及去除废水中有机污染物研究进展首先,我们将介绍生物质炭的制备方法。

生物质炭可以通过两种主要方法制备:热解和活化。

在热解制备过程中,生物质经过高温加热,通过化学反应转化为炭。

而在活化制备过程中,炭材料经过化学活化处理,提高其孔隙结构和吸附性能。

这两种方法可以根据不同的实际需求选择,制备出具有不同性质和吸附能力的生物质炭材料。

其次,我们将介绍生物质炭的功能改性技术。

为了提高生物质炭的吸附性能和应用范围,研究人员对其进行了多方面的改性研究。

其中,物理改性主要包括结构调控、微波改性等方法,通过调节炭材料的孔隙结构和表面性质来改善其吸附性能。

化学改性主要涉及表面改性、功能化改性等方法,通过在炭材料表面引入不同的官能团,增加其与有机污染物的吸附亲和力。

这些改性方法不仅提高了生物质炭的吸附性能,还赋予了其更广泛的应用领域。

最后,我们将介绍生物质炭在废水中有机污染物去除方面的研究进展。

生物质炭具有良好的吸附性能和大孔道结构,可以有效去除废水中的有机污染物。

研究人员通过调控生物质炭的制备方法和改性技术,提高了生物质炭对废水中有机污染物的吸附能力和选择性。

同时,一些基于生物质炭的复合材料和新型吸附剂也被开发出来,有效提高了有机污染物的去除效率和处理能力。

此外,一些新颖的技术,如电化学氧化、光催化降解等,也与生物质炭结合应用在废水处理中,取得了显著的效果。

综上所述,生物质炭作为一种新型的吸附材料,在废水处理领域具有广阔的应用前景。

通过调控制备方法和改性技术,可以有效提高生物质炭的吸附性能和选择性,使其更好地应用在废水中有机污染物的去除中。

随着相关研究的不断深入和发展,相信生物质炭在环境保护和污染治理中将发挥越来越重要的作用综上所述,通过调节生物质炭的制备方法和改性技术,可以有效提高其吸附性能和选择性,从而使其在废水处理中更加广泛应用。

生物质炭具有良好的吸附性能和大孔道结构,能够有效去除废水中的有机污染物。

生物炭的制备及其应用研究进展

生物炭的制备及其应用研究进展

生物炭的制备及其应用研究进展生物炭的制备及其应用研究进展一、引言近年来,生物炭作为一种新型的碳材料,受到了广泛关注。

它由天然有机材料经过高温热解或气化而得到,具有极高的炭含量和特殊的微观孔结构。

生物炭具有许多优异的性质和广泛的应用前景,特别是在环境修复、土壤改良和能源储存等方面表现出了巨大的潜力。

本文将重点介绍生物炭的制备方法以及其在不同领域的应用研究进展。

二、生物炭的制备方法目前,生物炭的制备方法主要包括物理法、化学法和生物法三种。

物理法的制备过程是将天然有机材料进行高温热解或气化,在缺氧或有限氧条件下进行。

常用的物理法包括煅烧、炭化和热解等方法。

化学法的制备过程是将天然有机材料进行化学反应或处理,如酸处理、氢化还原或热裂解等。

生物法的制备过程是利用微生物将有机废弃物分解为生物炭,常用的方法包括厌氧发酵和好氧堆肥等。

三、生物炭的应用领域1. 环境修复生物炭可作为一种有效的环境修复材料,能够吸附和固定重金属离子、有机污染物和有害气体等。

其特殊的微观孔结构和大表面积使得其具有良好的吸附能力和固定能力。

生物炭在土壤中的应用可以有效减少土壤中的污染物含量,并提高土壤质量,从而增加农作物的产量和质量。

2. 土壤改良生物炭作为土壤改良剂,可以改善土壤结构、调节土壤酸碱度和提高土壤保水能力。

其微观孔结构可以增加土壤孔隙度,促进土壤通气和排水,提高农作物的根系生长。

同时,生物炭还能吸附土壤中的营养元素,缓释给植物吸收,提高土壤肥力和农作物的产量。

3. 能源储存生物炭作为一种新型的能源材料,具有较高的碳含量和良好的燃烧性能。

其应用于能源储存领域可以用作燃料电池的电极材料、电容器的电极材料和锂离子电池的负极材料等。

生物炭的使用可以提高能源转换效率、减少能源的消耗,并对环境产生较小的影响。

四、生物炭的未来发展方向尽管目前生物炭已经在环境修复、土壤改良和能源储存等领域取得了一定的应用效果,但仍然存在一些问题和挑战。

其中包括生物炭的制备成本较高、应用技术仍不成熟、产品质量参差不齐等。

生物炭制备方法及其应用的研究进展

生物炭制备方法及其应用的研究进展

生物炭制备方法及其应用的研究进展生物炭制备方法及其应用的研究进展引言:生物炭是一种通过高温无氧热解生物质制得的碳质副产品,其具有高孔隙度、大比表面积和孔径可调等特点。

因此,生物炭在农业、环境保护和能源等领域具有广泛的应用前景。

本文将综述生物炭制备方法及其在农业、环境保护和能源利用方面的研究进展。

一、生物炭的制备方法目前,生物炭的制备方法主要包括热解和气化两种。

1. 热解法热解法是将生物质放置在封闭的容器中进行高温无氧热解,从而生成生物炭。

热解法主要分为固体热解和液体热解两种方法。

固体热解法的步骤包括颗粒处理、真空干燥、缩小颗粒尺寸、热解和冷却等。

常用的固体热解设备有木屑炭化炉、橡胶炭化炉和稻壳炭化炉等。

液体热解法主要是在有机溶剂中对生物质进行热解。

具体步骤包括溶解生物质、热解和产出生物炭。

常用的液体热解方法有溶剂溶解法、水蒸气热解法和微波热解法等。

2. 气化法气化法是将生物质在高温下与气体反应,产生可燃气体和生物炭。

气化法主要分为固体气化和液体气化两种方法。

固体气化是将固体生物质与气体(如氢气、氧气等)或蒸汽进行反应。

常用的固体气化设备有气流气化炉、床式气化炉和流化床气化炉等。

液体气化是将生物质与液体(如超临界水、液氨等)反应,产生气体和生物炭。

液体气化法主要有湿法气化和超临界流化床气化等方法。

二、生物炭在农业中的应用1. 土壤改良剂生物炭具有多孔性和高比表面积,能够增加土壤的保水性和通气性,改善土壤结构。

此外,生物炭中的微量元素和有机质有助于植物生长和养分吸收。

因此,生物炭被广泛应用于土壤修复、农作物生产和园艺种植等领域。

2. 肥料添加剂生物炭可以与肥料混合使用,提高肥料的利用率和吸附性能。

生物炭能够吸附肥料中的养分,延缓养分释放速度,并减少养分流失。

此外,生物炭还能调节土壤pH值,提高土壤酸碱性,改善肥料的利用效果。

三、生物炭在环境保护中的应用1. 污水处理剂生物炭具有吸附性能,能够有效去除废水中的有机物、重金属和氮磷等污染物。

生物炭及改性生物炭的制备与应用研究进展

生物炭及改性生物炭的制备与应用研究进展

生物炭及改性生物炭的制备与应用研究进展一、概述生物炭,一种由生物质在缺氧或完全缺氧的条件下经高温热解产生的富含碳素的固态物质,近年来在环境、农业、能源等多个领域引起了广泛关注。

其独特的物化特性,如高孔隙度、大比表面积和优异的吸附性能,使得生物炭在土壤改良、污水处理、大气净化、能源储存等方面展现出巨大的应用潜力。

随着对生物炭研究的深入,改性生物炭的概念也应运而生。

改性生物炭是在原始生物炭的基础上,通过物理、化学或生物等手段,进一步优化其性能,拓宽其应用领域。

本文旨在综述生物炭及其改性产物的制备方法,以及它们在农业、环境保护、能源储存和材料科学等领域的应用研究进展,以期为生物炭的进一步开发利用提供科学依据。

1. 生物炭与改性生物炭的定义与特性生物炭(Biochar)是一种由生物质在缺氧或低氧条件下经过热解或气化等热转化过程生成的炭化材料。

它具有丰富的孔隙结构和优良的吸附性能,是一种重要的环境材料和能源载体。

生物炭的主要成分是碳,除此之外还含有氢和氧等元素,这些元素的含量取决于热裂解方法和炭化最终温度,而与原料类型关系不大。

随着炭化温度的升高,生物炭中碳元素的含量增加,而氢和氧的含量则相应降低。

改性生物炭则是在生物炭的基础上,通过物理、化学或生物方法进行改性处理,以进一步改善其吸附性能、提高其对特定污染物的去除能力或赋予其新的功能特性。

改性生物炭的制备方法多种多样,包括酸处理、氧化处理、还原处理、热处理、负载金属或纳米颗粒等。

生物炭及改性生物炭具有多种优良特性,如高比表面积、丰富的孔隙结构、良好的吸附性能、稳定性强、环境友好等。

这些特性使得生物炭及改性生物炭在农业、环保、能源等领域具有广泛的应用前景。

例如,在农业领域,生物炭可以用于土壤改良,提高土壤保水保肥能力,促进作物生长在环保领域,生物炭及改性生物炭可以用于污水处理、废气处理、固废处理等,有效去除污染物,提高环境质量在能源领域,生物炭可以作为可再生能源的载体,用于生产生物燃气、生物油等。

生物炭制备及其吸附应用研究进展

生物炭制备及其吸附应用研究进展

基金项目大学生创新创业项目(202010142174)。

*通信作者收稿日期2021-09-13摘要生物炭是生物质在绝氧或限氧条件下热解的固态产物,通常因具有特殊的孔隙、官能团结构及稳定的物理化学性质等特点而广泛应用于气态或液态污染物的吸附,并成为目前生物质能资源化利用研究热点。

本文介绍了生物质热解制取生物炭的工艺、生物炭生成机理及目前主要应用领域,重点评述了影响生物炭制备、结构特性及吸附特性的主要因素,并提出了生物质热解制备生物炭及其在吸附领域应用的未来研究方向。

关键词生物质;热解;生物炭;吸附;影响因素中图分类号S216文献标识码A 文章编号1007-5739(2022)09-0133-08DOI :10.3969/j.issn.1007-5739.2022.09.039开放科学(资源服务)标识码(OSID ):Advances on Biochar Preparation and Its Adsorption ApplicationsSHENG Zhu 1DENG Bingjie 2SUN Yang 1*FAN Sichen 1LI Xinyang 1YANG Tianhua 1(1Key Laboratory of Clean Energy of Liaoning Province,College of Energy and Environment,Shenyang Aerospace University,Shenyang Liaoning 110136;2Offshore Environmental Technology &Services (Beijing)Limited Company,Beijing 100125)Abstract Biochar is a solid product of biomass pyrolysis under anaerobic or oxygen-limited conditions.It is widely used in the adsorption of gaseous or liquid pollutants due to its special pore and functional group structure,and stable physicochemical properties.It has become a research hotspot of resource utilization of biomass energy.This paper introduced the preparation process of biochar by biomass pyrolysis,generation mechanism of biochar and current application fields.It focused on the main influence factors of preparation,structural characteristics and adsorbed characteristics of biochar,and it proposed the future research directions of biomass pyrolysis producing biochar and its application in the adsorption field.Keywords biomass;pyrolysis;biochar;adsorption;influence factor生物炭制备及其吸附应用研究进展盛竹1邓兵杰2孙洋1*范思辰1李欣陽1杨天华1(1沈阳航空航天大学能源与环境学院辽宁省清洁能源重点实验室,辽宁沈阳110136;2海油环境科技(北京)有限公司,北京100125)能源与环境问题是人类共同关心的重要课题,关系到经济的发展和人民幸福指数的提高。

第12章 生物质基活性炭的制备与应用

第12章 生物质基活性炭的制备与应用

活性炭分类
按应用场合分类
粉状活性炭 主要用于味精、柠檬酸、氨基酸、啤酒、汽水、清凉饮料葡萄和搞菌素 等的脱色提纯。 项目指标 : 粒度 100 目;亚甲兰脱色力ml≥11 ;碘吸附值≥950mg/g ;总 铁量≤0.10% ;干燥减量≤10% ;氯化物≤0.20% ;灼烧残渣≤3% ; PH 值 6-8
活性炭分类
按外观形状分类
③ 其它形状的活性炭
除了粉状活性炭和颗粒活性炭两大类外,还有其他形状的,如活性炭 纤维、活性炭纤维毯、活性炭布、蜂窝状活性炭、活性炭板等。
活性炭分类
按孔容分类
活性炭孔径一般分为三类
大孔:1000-1000000A 过渡孔:20-1000A 微孔:20A
大孔型活性炭:所含大孔、中孔、微孔中,大孔体积较大的活性炭。
活性炭分类
粒状炭分类
c) 球形活性炭
• 球形活性炭的制取方法与柱状炭类似,但有成球过程。也可以用液态 含碳原料经喷雾造粒、氧化、炭化、活化制成,还可以用粉状活性炭 加粘结剂成球加工而成。球形活性炭也有实心和空心球形活性炭之分 • 球形活性炭:以球形颗粒的直径表示,用乘上10的数字标出。例如球 形直径为20,表示球体直径为2mm。形状最好,需造粒。 • 球形活性碳具有压降小,磨耗率低且容易操作的优点,正常情况下磨 耗量约0.3g/m2· hr,大都利用于流化床系统。
粉状炭再生比较困难,通常使用粉状炭需要相当大的混合池和沉淀 池以及混合、沉淀、过滤、分离等多道工序,操作困难,失效的活性 炭不能再生使用,故消耗量较大(近年也有研究将它再生)。
活性炭分类
按外观形状分类
② 颗粒活性炭: 粒度大于0.175mm的活性炭 早期粉状炭的产量与用量均超过粒状炭,糖和药品的脱色精制以及 早期的水处理都以粉状炭为主 后来随着应用范围的扩大、使用工艺的改进,特别是再生方法与再 生设备的解决,使粒状炭的用量不断上升,逐渐超过了粉状活性炭

生物质热解制备生物活性炭及其应用研究

生物质热解制备生物活性炭及其应用研究

生物质热解制备生物活性炭及其应用研究生物质是一种可再生资源,因此在可持续发展的要求下,生物质被广泛应用于能源、化学品等领域。

其中,生物质热解制备生物活性炭,成为一个备受关注的研究领域。

本文将从热解原理、炭素微观结构、制备工艺、生物活性及应用等方面,综述生物质热解制备生物活性炭及其应用研究现状和发展趋势。

一、热解原理生物质热解是将生物质在高温、缺氧或微氧气氛下,通过热解分解的方法产生热解物和热解气。

热解物中主要包括生物炭、液态产品和气相产物。

由于热解过程中气相产物与液态产品往往难以利用,因此炭素材料成为研究的重点。

热解过程中,生物质分子在热分解温度下发生热解反应,形成机械强度高、孔径分布广和化学性质稳定的生物炭。

同时,生物质热解还可产生大量的有机气体和液体燃料,其在生物质能源利用和液体燃料化工等领域具有广泛的应用。

二、炭素微观结构生物质热解制备生物活性炭,是通过对生物质中的碳元素进行裂解和重组来实现的。

大多数生物炭的基础结构是由碳微晶和非晶碳组成,并包含氧、氢和少量其他元素(如N、S、P)。

在热解的过程中,碳微晶会发生聚合、重组和结构调控等反应,从而形成生物炭的独特微观结构。

生物炭的微观结构具有复杂性、多样性和可调控性。

其中,孔径结构、比表面积和石墨度等是制备、性能评价及应用的重要参数。

孔径大小、分布和形态等决定了生物炭的吸附性能、离子交换能力等。

比表面积是表征生物炭吸附、催化和电化学等特性的重要参数。

石墨度可反映生物炭结构的纤维化和烷基化程度。

三、制备工艺生物质热解制备生物活性炭的制备工艺较为复杂,其中包含了多种制备方法。

例如:慢热解法、快速热解法、催化热解法等。

其中,慢热解法是最常用的生物炭制备方法之一。

该方法利用生物质在缺氧或微氧气氛下,在较低温度下热分解,生成主要由非晶碳、小晶体石墨和极微晶体石墨组成的生物炭。

优点是制备工艺简单,一般不需要添加活性剂、催化剂。

缺点是制备周期长,产量较低。

快速热解法是利用生物质在短时间内受到高温高压作用,使部分挥发性物质蒸汽化,其热解程度较之慢热解法更高,可以通过改变处理温度、气氛、时间等控制生物炭的结构和性能。

活性炭的制备和应用

活性炭的制备和应用

活性炭的制备和应用活性炭是一种广泛应用于空气净化、水处理、食品加工和制药等领域的重要材料。

活性炭的制备和应用一直备受研究者关注,目前已经形成了一套成熟的技术和体系。

本文将介绍活性炭的制备和应用,以及未来的发展趋势。

一、活性炭的制备活性炭的制备方法主要包括物理法、化学法和生物法。

物理法是利用高温或化学活化剂将有机材料加热或炭化产生的炭黑、木炭、煤焦炭等原料制得活性炭。

物理法制备出的活性炭孔径分布范围广,表面积大,具有良好的吸附性能,但制备成本较高。

化学法是在有机材料中加入化学活化剂进行化学反应,产生气体孔道和微孔道的形成,从而制备出活性炭。

化学方法制备出的活性炭结构复杂,具有高的表面积和较高的表面化学反应活性。

生物法利用生物质作为原料,通过炭化和活化处理得到生物质活性炭。

生物法制备简单,成本低廉,是一种环保型的活性炭制备方法。

二、活性炭的应用活性炭广泛应用于空气净化、水处理、食品加工和制药等领域。

1. 空气净化活性炭吸附性能突出,可有效去除有害气体和异味,被广泛应用于空气净化领域。

例如,有些家庭空气净化器使用了活性炭滤网,能够有效去除甲醛、苯等有害气体。

2. 水处理活性炭可以吸附水中的有机物、异味和金属离子等,常常作为水处理中的一种重要材料。

例如,面向市场的水处理产品中含有熟化的活性炭,能有效地去除水中的异味和色素。

3. 食品加工领域在食品加工中,活性炭也扮演着重要的角色。

活性炭的应用可以有效去除食品加工过程中产生的色素、异味和杂质,保证食品的质量和卫生安全。

例如,糖果、巧克力、啤酒等生产过程中都可以使用活性炭进行处理。

4. 制药领域活性炭吸附性能强,可以将污染物质除去,从而净化药物原材料。

此外,活性炭还可以去除药品中的不纯物质,保障药品的质量和安全。

例如,常常使用活性炭作为口服药片和医用药剂的纯化材料。

三、未来的发展趋势随着生活品质的提高、治理环境的需求和工业控制的发展,活性炭的应用前景将逐渐扩大。

《生物质基碳材料的制备及在环境与能源中的应用》范文

《生物质基碳材料的制备及在环境与能源中的应用》范文

《生物质基碳材料的制备及在环境与能源中的应用》篇一一、引言随着人类对可再生能源和环保材料的需求日益增长,生物质基碳材料因其可持续性、低成本和高性能等特点,逐渐成为研究热点。

本文旨在探讨生物质基碳材料的制备方法,并分析其在环境与能源领域的应用。

二、生物质基碳材料的制备1. 材料来源生物质基碳材料主要来源于农业废弃物、林业残余物、城市固体废弃物等可再生资源。

这些生物质材料富含碳元素,经过特定的处理工艺可转化为碳材料。

2. 制备方法(1)物理法:包括炭化、活化等过程,通过控制温度、气氛和时间等参数,将生物质转化为碳材料。

(2)化学法:利用化学试剂与生物质反应,通过碳化、交联等过程制备碳材料。

(3)生物法:通过微生物的作用,将生物质转化为碳材料。

此方法环保且成本低,具有较大的应用潜力。

三、生物质基碳材料在环境领域的应用1. 污水处理生物质基碳材料具有优异的吸附性能,可用于污水处理中的重金属离子、有机污染物等的去除。

其大比表面积和丰富的孔隙结构,使得吸附效果显著。

2. 空气净化生物质基碳材料可吸附空气中的有害气体和颗粒物,提高空气质量。

同时,其表面可负载催化剂,用于催化氧化或还原反应,进一步净化空气。

3. 土壤修复生物质基碳材料可改善土壤结构,提高土壤肥力。

同时,其吸附性能有助于吸附土壤中的重金属离子和有机污染物,修复受污染的土壤。

四、生物质基碳材料在能源领域的应用1. 锂离子电池生物质基碳材料具有高的比表面积和良好的导电性,是锂离子电池的理想电极材料。

其优异的电化学性能使得锂离子电池具有较高的能量密度和循环稳定性。

2. 燃料电池生物质基碳材料可作为燃料电池的催化剂载体或电极材料,提高燃料电池的性能。

其良好的导电性和化学稳定性,使得燃料电池具有较高的功率密度和稳定性。

3. 太阳能电池生物质基碳材料可应用于太阳能电池的透明导电层或电极材料,提高太阳能的利用率。

其优良的透光性和导电性,有助于提高太阳能电池的光电转换效率。

生物质炭的制备及其在能源与环境领域中的应用

生物质炭的制备及其在能源与环境领域中的应用
ma a e n e e s mma z d n g me tw r u i r e .T e ̄t r e e o me t fb o h r sp o p c e . h u e d v lp n i c a swa r s e t d o Ke r s b o h r ; y oy i ; c o v a b n z t n; y r t e ma a b nz t n y wo d : ic a s p r lss mi rwa e c o i i h d oh r l c o iai r ao r o
ee to e o oi a b n f e el c r o u l d rv d fo bo s n b op i n a e tf r wa twae r ame t a d s i lc rd fs l c o u l c l, a b n f e e e r m ima s a d a s r t g n s d r i o o e tr te t n n ol
废弃资源 的高附加值再利用 , 还满足了对活性炭的巨大需求。生物质炭具有发达的孔隙结构 , 高的比表 面积 和丰 富 的表 面官 能 团 … , 这使 生物 质炭 在 能源 与环 境领 域 中有 广泛 的应 用 前景 。
Ab ta t T e r s a c r g e s o ie as d rv d fo w o e i u ,fo a tsa d a i lw se i y o y i ,mir wa e s r c : h e e r h p o r s n b o h r e e rm o d r sd e o d w se n n ma a ts va p r l ss i co v
c r o i t n,h d oh r l c r o iai n a d e i i g p o lms we e r ve e . T e l ea u e b u ic as a p i ai n i ab nz i ao y r t ema a b n z t n x s n r b e r e iw d o t h i r t r s a o t b o h r p l t n t c o

生物质制备碳材料的研究及其应用

生物质制备碳材料的研究及其应用

生物质制备碳材料的研究及其应用碳材料已经成为了现代化工、电子、航空航天等领域中的必要材料,其优异的物理化学性质和广泛的应用前景,使得人们越来越关注碳材料的研究及制备方法。

而在这个领域中,生物质作为废物资源的再利用,成为了一种值得人们关注的研究方向。

一、生物质制备碳材料的优势生物质是一种丰富的可再生性废物资源,其天然的结构和组成,决定了其作为制备碳材料的优越性。

首先,生物质中的纤维素、木质素等成分是制备碳材料的主要前体材料,这些材料具有丰富的多孔结构和复杂的化学反应过程,可以通过一系列的制备方法,实现碳材料的高度定制化生产。

其次,生物质本身来源广泛,无需经过高成本的化学合成过程,相对于传统的矿物碳材料制备方法,生物质制备碳材料的生产成本更为低廉,具有更为显著的环境和经济效益。

二、生物质制备碳材料的方法和技术根据生物质的不同来源,可以采用不同的制备方法来制备碳材料。

早期的研究多采用热解法、炭化法等传统制备方法,通过高温下使生物质发生热解、碳化反应,制备出不同孔径和形态的碳材料。

但是这些方法制备碳材料的过程中,存在高能耗、低制备效率等问题,同时其制备出的碳材料也常常存在热解难度大、孔径分布不均匀等缺陷。

近年来,随着生物质转化技术的不断进步,制备碳材料的更为精细和定制化方法逐渐被提出。

其中,利用生物质的水热特性,利用其在高温和高压下的反应活性,制备中空和多孔结构的碳材料可以制备极具优势的生物质制备碳材料方法之一。

此外,还可以通过合成生物质基碳材料前体物的高级碳材料领域中,制备各种特殊形状或结构的碳材料。

这些方法不仅可以提高碳材料的质量和性能,而且能更好地满足不同领域的应用需求。

三、生物质制备碳材料的应用前景生物质制备碳材料具有丰富的孔径分布和多层多孔的结构特点,这些特点使得其在某些领域中有着不可替代的优势。

例如,在增强材料领域中,生物质制备碳材料通常用作纤维增强材料、复合材料和层板材料中矩阵材料,可以有效增强材料的强度和韧性。

生物质热解制备活性炭性能实验报告

生物质热解制备活性炭性能实验报告

生物质热解制备活性炭性能实验报告一、实验背景活性炭作为一种具有优良吸附性能的多孔材料,在环境保护、化工、医药等领域有着广泛的应用。

传统的活性炭制备方法通常依赖于化石资源,不仅成本较高,而且对环境造成一定压力。

生物质作为一种可再生资源,通过热解技术制备活性炭具有潜在的优势和应用前景。

二、实验目的本实验旨在研究生物质热解制备活性炭的性能,包括比表面积、孔隙结构、吸附性能等,为优化制备工艺和提高活性炭质量提供依据。

三、实验材料与设备(一)实验材料选取了玉米秸秆、稻壳、木屑等常见的生物质作为原料。

(二)实验设备1、热解炉:用于生物质的热解反应。

2、气体分析仪:用于分析热解过程中产生的气体成分。

3、比表面积及孔径分析仪:用于测定活性炭的比表面积和孔隙结构。

4、吸附实验装置:包括吸附柱、恒温振荡器等,用于评估活性炭的吸附性能。

四、实验方法(一)生物质预处理将收集到的生物质原料进行粉碎、筛选,得到粒度均匀的样品,然后在 105℃下干燥至恒重。

(二)热解过程将预处理后的生物质样品放入热解炉中,在氮气氛围下以一定的升温速率加热至设定温度,并保持一定时间进行热解反应。

热解产物经过冷却、收集,得到生物质炭。

(三)活化处理将生物质炭与活化剂(如氯化锌、磷酸等)按照一定比例混合,在一定温度下进行活化处理,以增加活性炭的孔隙结构和比表面积。

(四)性能测试1、比表面积和孔隙结构分析:采用氮气吸附法,使用比表面积及孔径分析仪测定活性炭的比表面积、孔径分布等参数。

2、吸附性能测试:选择亚甲基蓝作为吸附质,通过吸附实验装置测定活性炭对亚甲基蓝的吸附量和吸附速率。

五、实验结果与分析(一)比表面积和孔隙结构不同生物质原料制备的活性炭比表面积和孔隙结构存在差异。

其中,以玉米秸秆为原料制备的活性炭比表面积较大,孔隙结构较为发达。

活化剂的种类和用量对活性炭的孔隙结构也有显著影响。

适量增加活化剂的用量可以提高活性炭的比表面积和孔隙体积,但过量使用可能导致孔隙过度扩张,降低活性炭的机械强度。

生物质炭在生物能源生产中的应用研究

生物质炭在生物能源生产中的应用研究

生物质炭在生物能源生产中的应用研究生物质炭是一种由生物质材料经过干燥和热解过程制成的固体炭质产品,具有很高的热值和稳定性,可以应用于生物能源生产中。

随着全球对可再生能源的需求不断增加,生物质炭在生物能源生产中的应用也备受关注。

本文将深入探讨,以期为推动生物质能源产业的发展提供有效的参考和支持。

一、生物质炭的制备方法及特性生物质炭的制备方法多种多样,主要包括干燥热解法、气化法和焙烧法等。

其中,干燥热解法是最常见的一种方法,即将生物质材料在缺氧或无氧环境中进行热解,生成生物质炭。

生物质炭具有高孔隙率、大比表面积和优良的吸附性能,能够有效地吸附和储存气体和液体,在生物能源生产中发挥着重要的作用。

二、生物质炭在生物质能源生产中的应用研究1. 生物质炭在生物质燃烧中的应用生物质炭在生物质燃烧中可以作为燃料添加剂,提高燃烧效率和稳定性,减少燃烧排放产生的有害气体和颗粒物。

研究表明,适量添加生物质炭可以降低燃烧温度,延长燃烧时间,并减少燃料消耗,降低环境污染。

因此,在生物质能源生产中广泛应用生物质炭可以有效提高生物质燃烧的效率和环保性。

2. 生物质炭在生物质气化中的应用生物质气化是将生物质材料转化为合成气或液体燃料的一种重要技术。

生物质炭在生物质气化中可以作为催化剂和吸附剂,促进气化反应的进行,降低气化温度和提高气化效率。

研究表明,添加适量生物质炭可以显著提高气化产气量和气化气体的质量,优化气化过程,降低气化产物的含碳量和灰分,提高合成气的能量利用率。

因此,在生物质气化中加入生物质炭是一种有效的方法,可以提高气化效率和产气质量。

3. 生物质炭在生物质液化中的应用生物质液化是将生物质材料转化为液体燃料或化学品的一种技术。

生物质炭在生物质液化中可以作为催化剂和吸附剂,促进液化反应的进行,提高液化产物的产率和品质。

研究表明,添加生物质炭可以降低液化反应的活化能,加快反应速率,促进碳链裂解和液化产物的形成,提高液化产物的收率和质量。

生物质炭研究报告

生物质炭研究报告

生物质炭研究报告生物质炭是一种由生物质材料制成的炭材料,具有广泛的应用前景,对环境保护也具有积极的意义。

本研究报告将对生物质炭的制备方法、性质及其应用进行详细的介绍与探讨。

一、生物质炭的制备方法目前,生物质炭的制备方法主要有物理方法和化学方法。

其中,物理方法包括炭化、热解和气化等;化学方法包括酸碱法、溶剂法和微波辐射法等。

这些方法各有特点,可以根据不同的需求选择适合的制备方法。

二、生物质炭的性质生物质炭具有独特的物理化学性质,主要表现为高孔隙度、大比表面积和强固度。

其中,高孔隙度和大比表面积是其最显著的特点,这使得生物质炭在吸附、催化和传质方面有很大的优势。

此外,生物质炭还具有良好的导电性和抗氧化性能,使其在能源储存和电化学领域有广泛的应用。

三、生物质炭的应用1. 环境污染治理:生物质炭具有吸附和催化降解污染物的能力,可用于水处理、空气净化和土壤修复等环境污染治理工程;2. 农业领域:生物质炭可以作为土壤改良剂,提高土壤结构和肥力,并增强植物养分吸收能力。

此外,生物质炭还可以用于动物饲料添加剂,改善饲料的品质和营养价值;3. 能源利用:生物质炭可以被用作生物质能源的储存和利用。

将其应用于发电和生物柴油制备等领域,可以减少对传统能源的依赖,并减轻能源供应压力;4. 材料制备:生物质炭还可以作为电池和超级电容器的电极材料,以及金属催化剂的载体材料等。

四、生物质炭的优势和挑战生物质炭具有许多优势,如资源广泛、环境友好和应用多样性等。

然而,其制备过程中仍存在工艺复杂、生产成本高和制品品质不稳定等挑战。

此外,生物质炭的应用还面临着市场认可度不高和产业链不完善的问题。

综上所述,生物质炭是一种具有广泛应用前景和环境保护意义的炭材料。

通过研究其制备方法、性质及应用,可以更好地推动其产业化应用,促进生物质能源的开发利用,实现可持续发展。

希望通过本研究报告的介绍和探讨,能够增加人们对生物质炭的了解,并推动其在实际应用中的推广和利用。

生物质炭材料的制备及用作电极材料的应用研究

生物质炭材料的制备及用作电极材料的应用研究

生物质炭材料的制备及用作电极材料的应用研究摘要:生物质炭材料作为重要的电极材料在电化学方面有较为广泛的应用。

生物质材料是价廉易得的可再生资源,为炭材料的制备提供了丰富的碳源。

综述了生物质炭材料所具有的性质特点、制备方法以及生物质炭材料用作电极材料在电化学应用领域的研究进展。

当生物质炭用作锂离子电池负极材料时,所表现出比容量大、循环性能好和首次充放电效率高的特点;当生物质炭材料用作超级电容器时,电化学性能中比电容的数值稳定几乎不变,并且具有良好的循环稳定性、良好的电容性能和高比电容的电化学性能。

以生物质为碳源的材料可以在锂离子电池和超级电容器中有广泛的应用。

关键词:生物质;电极材料;炭材料;活化1 引言随着混合电动汽车,医疗设备,便携式电气设备等能源储存装置进一步发展的快速发展,迫切需要找到一种可持续和可再生能源。

近些年,人们逐渐把目光从化石能源转移到新能源上[1]。

对于新能源的开发和利用,关键之处在于找到合适的能量储存装置。

生物质炭材料用作电极材料是适合经济发展的清洁能源,炭材料是人们生活中的必需品,也是非常重要的工业原料[2]。

生活中的草、木材、玉米秆、其他农作物或农作物废弃物等植物原料在惰性气氛中加热处理炭化而制成的炭材料称为生物质炭,目前,选用生物质炭材料作为高性能电极材料,是电极活性材料最有希望的生物质前体之一。

2 生物质炭材料的制备方法2.1 高温炭化炭化就是指把含炭生物质在隔绝空气以及在惰性气体(一般用N2或者Ar)保护的条件下进行高温热解,在实验器材管式炉中进行实验。

根据相关的文章数据显示,一般炭化温度通常在1000℃ 以下进行。

根据含炭物质进行热解时发生的化学反应,生物质炭化过程一般可以分为以下3个阶段,即:① 低于400℃;② 400-700℃;③ 700-1000 ℃。

生物质材料经炭化之后称为炭化料,由于缺乏多层丰富的孔隙结构,比表面积比较小,因此它的吸附性能较差,所以还需进行物理或者化学活化处理,用来调节炭材料的微观孔结构及它的应用性能[6]。

生物质炭的制备及其在吸附中的应用

生物质炭的制备及其在吸附中的应用

综述 (363 ~ 374)生物质炭的制备及其在吸附中的应用丁娜娜1,梁锦华1,乌 兰1,张海霞2(1. 西北民族大学 化学化工学院,甘肃 兰州 730030;2. 兰州大学 化学化工学院,甘肃 兰州 730000)摘要:农药、重金属、染料、药物、个人护理品等是水体中常见的污染物,其中一些化合物具有毒性高、难分解、残留期长的特点,易随食物链积累,可危害到人类健康. 水中污染物的处理工艺有生物降解、化学氧化、膜过滤法、吸附和光催化降解等,其中吸附法操作简单、效率高、毒副产物少,是去除污染物广泛使用的方法. 生物质炭具有高比表面积、高孔隙率以及多种官能团,对多种污染物具有良好吸附作用,在吸附污染物的研究中发挥着重要作用. 详细介绍了生物质炭的制备方法、性质及其在污染物吸附中的应用.关键词:生物质炭;制备方法;吸附中图分类号:O647.32; O657 文献标志码:A 文章编号:1006-3757(2022)04-0363-12DOI :10.16495/j.1006-3757.2022.04.001Preparation of Biochars and Its Applications in AdsorptionDING Na-na 1, LIANG Jin-hua 1, WU Lan 1, ZHANG Hai-xia2(1. College of Chemistry and Chemical Engineering , Northwest Minzu University , Lanzhou 730030, China ;2. College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000, China )Abstract :Pesticides, heavy metals, dyes, pharmaceuticals and personal care products are common pollutants in water.Some compounds among them are characterized by highly toxic, difficult to decomposite and long residue period, which can easily to accumulate in the food chain and endanger the human health. The treatment technologies of pollutants in water include biodegradation, chemical oxidation, membrane filtration, adsorption and photocatalytic degradation, among which adsorption is the most widely used method to remove pollutants due to its simple operation, high efficiency and less toxic by-products. Biochar has a high specific surface area, high porosity and a variety of functional groups, and has a good adsorption effect on a variety of pollutants, which plays an important role in the study of adsorption of pollutants.The preparation methods, properties and applications of biochar in pollutant adsorption were introduced in detail.Key words :biochar ;preparation method ;adsorption人类生存离不开水,在生产生活依赖水资源的同时,也在不断地影响着水环境. 在过去的几十年里,由于全球人口的快速增长以及工农业蓬勃发展,大量废弃物和垃圾排放到水体,这些污染物的排放量远超过水体的自净能力,带来了严重的水体环境问题. 吸附是一种不产生毒副产品的技术,可以以较低的成本完成污染水的净化. 生物质炭材料制备简单,制备原料储备量大,可再生,具有高比表面积、高孔隙率以及多种官能团等特点,对多种污染物具有良好地吸附作用,在吸附污染物的研究中发挥着收稿日期:2022−11−03; 修订日期:2022−11−21.基金项目:国家自然科学基金项目(U21A202828) [National Natural Science Foundation of China (U21A202828)]作者简介:丁娜娜(1993−),女,在读研究生,主要从事吸附材料研究,E-mail :通信作者:乌兰(1974−),女,教授,主要从事高分子化学研究,第 28 卷第 4 期分析测试技术与仪器Volume 28 Number 42022年12月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Dec. 2022重要作用.1 生物质炭定义、制备方法及表征1. 1 生物质炭定义生物质炭是在有限的供氧和合理的温度条件下,在反应器中热解产生的生物质富碳产品[1]. 国际生物质炭协会倡议将其定义为“从生物质碳化中获得的固体材料”. 生物质来源较广,根据其来源可以分为原生生物质、次生生物质和处理生物质(如表1所列). 由于可以节约生产初级生物质的成本,废弃生物质比初级生物质更适合作为生物质炭原料. 在废弃生物质中,动物粪便、城市固体废物是更有利用价值的原料,因为它们最集中,降低了收集成本和废物处理成本. 原料类型影响生物炭吸附污染物的能力,木质生物炭由于原料木质素含量较高,含有较多的酚类基团,表面积也较大,吸附能力更强.表 1 生物质炭的来源分类Table 1 Source classification of biochar主要类型代表性生物质特性参考文献原生生物质秸秆/林木废弃物(包括果壳、稻壳等)高热值、结构有机质、养分不等[2]次生生物质动物粪便、市政污泥等低热值、养分富集、含水率高[3]处理生物质菌渣、药渣、蔗渣等热值、养分和水分均不等[4]1. 2 生物质炭制备方法制备生物质炭一般需要经历两步:碳化和活化.在一定温度和无氧条件(氮气、氩气等惰性气体氛围)下通过热分解对生物质进行碳化提高材料的碳含量,获得活性炭材料[5]. 在这个阶段,碳化温度、时间、升温速率都影响生物质炭材料的形貌、比表面积、孔隙率及产率等,其中温度影响最为显著. Ioannidou 等[6]研究认为,碳化过程中的温度高,导致初次分解和炭渣的二次分解同时进行,导致气体和液体的释放速率大,木炭产量下降. 但增加固定碳和灰分的数量,减少了挥发性物质的数量. 因此,高温提高了木炭的质量,但降低了产量. 采用低加热速率(10~ 15 ℃/min)可以获得高产量和低挥发性木炭,能提高聚合物组分的稳定性.活化过程可分为物理活化和化学活化. 活化工艺的目的是提高比表面积、扩大孔径、增加活性炭的孔隙率. 物理活化法是原料热解碳化后,在活化气体(如CO2、蒸汽、空气或其混合物)的存在下,于相对较高温度下进行可控气化过程. 物理活化法制备过程简单,对仪器损害较小,产生污染物较少. 化学活化法是指将碳化的材料(称为前驱体)与化学活化剂混合,然后对混合物进行热处理,再采用酸/碱和水清洗,除去浸渍剂及盐类,形成合理的活性炭的孔隙结构[7]. 化学活化剂可以对前驱体进行刻蚀,使前驱体产生丰富孔隙,所以活化剂又称为致孔剂,该方法制备的生物质炭具有较大比表面积和较多介孔结构.常用化学活化剂包括H3PO4、ZnCl2、K2CO3、NaOH、KOH、KCl、H2SO4等,常见活化温度范围为450~600 ℃(H3PO4)、400~900 ℃(ZnCl2)、700~1 000 ℃(K2CO3)、550~850 ℃(NaOH)和450 ~ 850 ℃(KOH)[8-12]. 不同的化学活化剂会产生不同的致孔效果. 在去除污染物质时,比起其它活化剂制备的活性炭,金属氢氧化物活化制备的活性炭具有更高的表面积,金属氢氧化物(KOH、NaOH)活化的吸附剂吸附量更高. 与ZnCl2相比,H3PO4对环境污染更少,使用比KOH更低的活化温度,在使用中具有较大优势. 相比于物理活化,化学活化法具有活性炭收率高、活化温度低、活化时间短、多孔结构发展良好等特点[13]. 但化学活化法去除残留杂质需要消耗大量的水/酸,工艺和设备要求复杂,活化剂具有腐蚀性,会衰减仪器设备的使用寿命.1. 3 生物质炭的结构表征表2列出了生物质炭常见表征方法. 透射电子显微镜(TEM)和扫描电子显微镜(SEM)可以用于表征生物质炭的形貌和孔径,X射线衍射(XRD)测定生物质炭的晶型,傅里叶变换红外光谱(FTIR)和拉曼光谱(RM)测定生物质炭中官能团的种类,X射线光电子能谱(XPS)表征生物质炭中的元素种类,热重分析(TG)表征生物质炭稳定性,氮气吸附(NA)仪用于测定生物质炭的比表面积和孔体积,Zeta电位(ZP)测定生物质炭表面电性. 表3列出了常见生物炭的表面积等信息,表4列举了生物炭表面常见364分析测试技术与仪器第 28 卷的官能团.1. 3. 1 比表面积和孔隙度比表面积(S BET)和孔隙率是影响生物质炭吸附性能的主要物理特性. 比表面积决定了吸附目标化合物的空间大小,而微孔、中孔和大孔的大小和分布则决定了活性炭的吸附性能. 随着热解温度的升高,衍生生物炭的比表面积和孔体积一般增加. Ren 等[43]发现,随着热解温度从400 ℃升高到800 ℃,比表面积从207.53 m2/g增加到271.77 m2/g,孔体积从0.58 cm3/g增加到0.71 cm3/g,而当热解温度进一步升高至1 000 ℃时,比表面积下降至132.62 m2/g,孔体积下降至0.66 cm3/g,这可能是孔坍塌的缘故. Jin等[44]指出600 ℃下生产的污泥生物质炭的表面积比550 ℃的表面积小. 550 ℃制备的生物质炭表面孔隙率更高,当温度升高到600 ℃时,污泥生物质炭表面微孔增多,但表面粗糙度下降. 除热解温度外,生物质炭原料的组成对其性质产生重要影响,例如,Li等[45]制备不同生物质来源的生物质炭,在300 ℃时,不完全碳化使大部分无定型碳留在B300上,原料中脂肪族和挥发性成分可能会阻塞孔隙结构,从而降低S BET和孔隙率. 600 ℃可以将无定形碳转化为更致密的芳香族碳,并去除脂肪族及挥发性成分,形成更多的孔隙. 同样在600 ℃下,鸡粪生物质炭的表面积比植物生物质炭(松木屑和玉米秸秆)小得多,植物生物质炭比固体废弃物(污泥和粪便)生物质炭有更大表面积和孔隙率.1. 3. 2 生物质炭的官能团由表4可知,生物质炭含有丰富的官能团,例如,C=C、-OH、-COOH等,这些官能团在吸附中起着重要作用. 热解温度和生物质炭原料是控制生物质炭表面官能团数量和种类的两个关键因素. 生物质炭中含氧官能团的丰度随温度的升高而降低,主要是由于碳化程度的提高,随着温度的升高,H/C、O/C和N/C的原子比降低,表明羟基、羧基和氨基的丰度降低[46]. 不同温度下生成的生物质炭官能团的FTIR光谱不同. 当热解温度从100 ℃升高到700 ℃时,木材和草类生物质炭的FTIR光谱发生了变化,木质纤维素材料的大部分含氧官能团损失[47]. Yuan等[48]发现对于来自油菜、玉米、大豆和花生秸秆的生物质炭,随着温度从300 ℃升高到700 ℃,-COOH和-OH基团对应的峰强度下降. Fan 等[49]提出了通过HNO3-H2SO4和NaOH-H2O2体系的化学氧化模拟了老化的麦草生物炭,通过增加含氧官能团改善了生物炭表面,提高了镉的吸附能力,表 2 用于表征生物炭的仪器技术Table 2 Instrumental techniques for characterizing biochar技术材料评述参考文献TEM废木材生物质炭具有不同表面形貌但具有相似Fe成分的Fe-C复合材料[14] SEM CoOx/丝瓜海绵生物炭丝瓜海绵经煅烧后具有不规则短纤维,纤维表面覆盖着起伏的褶皱,形成天然的微纳米结构,钴修饰后无明显变化,钴颗粒分布在催化剂表面[15]XRD螺旋藻基生物炭(SC)和Mn、N掺杂多孔碳(SA-Mn-NSC)SC和SA-Mn-NSC在24.5 °处出现相似的峰,即石墨的002面[16]IR棉纺织废弃物生物炭生物炭吸附前后的IR光谱,证实了由于羧酸基团的存在,阴离子型活性染料能较好附着在生物炭上[17]RM棉纺织废弃物生物炭利用D峰和G峰强度的比值来评价生物炭吸附染料前后缺陷(D峰)和石墨化排列(G峰)的程度. 吸附前的D/G谱带强度(I p/I c)为0.75,证实了结构紊乱,有利于吸附过程. 然而,染料分子被吸附后,强度比(I p/I c)进一步提高到0.84,表明染料和生物炭之间存在一定的相互作用[17]XPS污泥生物质炭验证了氮在生物炭中的掺杂情况,N含量显著增加,有利于催化能力的提高[18]TG非金属单杂原子(N, O, B)掺杂椰子壳生物炭显示了材料热稳定性[19] NA玉米苞片生物质炭生物质炭均具有相似的比表面积(较高)和孔隙分布结构[20] ZP Ni改性玉米秆生物质炭与无修饰材料相比,修饰Ni的材料表面电荷更负,含丰富羟基[21]第 4 期丁娜娜,等:生物质炭的制备及其在吸附中的应用365表 3 生物炭固体的比表面积和孔体积Table 3 Specific surface area and pore volume of biochar solids生物质炭材料比表面积/(m2/g)微孔体积/(cm3/g)总孔体积/(cm3/g)参考文献混合污泥衍生生物炭110.71[22]700 ℃煅烧可可壳生物质炭掺杂尿素氮,700 ℃煅烧可可壳生物质炭掺杂尿素氮,700 ℃下,K2CO3活化可可壳生物质炭400 ℃煅烧可可壳生物质炭掺杂尿素氮,400 ℃煅烧可可壳生物质炭掺杂尿素氮,400 ℃下,K2CO3活化可可壳生物质炭26.1459.41328.454.006.788.450.0230.1380.0020.0030.0700.0911.8560.0120.0300.016[23]松木屑生物质炭SDC改性松木屑生物质炭SDC-K1(SDC/KOH=1/1活化)改性松木屑生物质炭SDC-K3(SDC/KOH=1/3活化)活性炭ACMnOx浸渍松木屑生物质炭MnO x/SDCMnOx浸渍改性松木屑生物质炭MnO x/SDC-K1MnOx浸渍改性松木屑生物质炭MnO x/SDC-K3MnOx 浸渍活性炭MnO x/AC1.60764.771 551.21 319.099.13676.101 248.041 130.590.2170.6070.5420.0030.1880.4520.5150.0030.2840.6140.5800.0160.2310.4780.562[24]稻壳生物质炭RH猪粪生物质炭PM污泥生物质炭SS玉米秸秆生物质炭CS 34.814.662.831.1[25]玉米芯颗粒生物炭37.8[26]树脂松果生物质炭27.99[27]油茶壳生物质炭BC OFG硫脲和FeCl3改性油茶壳生物质炭BC OFG@nano-FeS 70.38041.0670.317×10−30.364×10−3[28]海藻酸盐改性稻壳废弃物生物炭1200.653[29] 300 ℃下,KMnO4和Fe(II)改性污泥生物质炭Fe/Mn-SBC-300500 ℃下,KMnO4和Fe(II)改性污泥生物质炭Fe/Mn-SBC-500700 ℃下,KMnO4和Fe(II)改性污泥生物质炭Fe/Mn-SBC-700900 ℃下,KMnO4和Fe(II)改性污泥生物质炭Fe/Mn-SBC-90012.1324.9058.50119.35[30]H2O活化柑橘废料生物质炭CO2活化柑橘废料生物质炭263.4~399.4166.1~212.4[31]550 ℃下热解制备的油菜籽残渣生物质炭RS-550 550 ℃下热解制备的白木生物质炭WW-550212274[32]500 ℃下热解制备的废药渣生物质炭WBC500 600 ℃下热解制备的废药渣生物质炭WBC600 700 ℃下热解制备的废药渣生物质炭WBC700 800 ℃下热解制备的废药渣生物质炭WBC80015.92139.28332.62412.95[33]500 ℃下热解制备的麦秸生物质炭W500 700 ℃下热解制备的麦秸生物质炭W700 500 ℃下热解制备的草生物质炭G500 700 ℃下热解制备的草生物质炭G70011.6347.825.5831.86[34]750 ℃下热解制备的微藻生物质炭MBC750W 750 ℃下热解制备的含Fe微藻生物质炭FBC750W 35.66201.15[35]366分析测试技术与仪器第 28 卷最大吸附能力提高了21.2%. 氧化引起的粗糙表面是增加镉吸附的另一个原因. 生物炭对污染物的吸附性能会随着表面官能团的含量变化而发生变化.1. 3. 3 生物质炭的零电荷点(pHpzc)生物质炭的pH pzc变化和电位变化可以通过调节热解温度来实现. Yuan等[48]提出生物质炭的负电荷随着热解温度的升高而降低,因此低温热解产生的生物质炭表面负电荷比高温热解产生的生物质炭多. Chen等[50]在500~900 ℃温度下对城市污泥进行热解. 随着热解温度的升高,生物固体生物质炭的pH pzc从8.58增加到10.17. 通过研究生物质炭、分析物在不同pH条件的电位以及生物质炭与分析物的pH pzc,分析哪种条件下制备的生物质炭在较宽pH范围内与分析物之间存在较大静电吸引力,选择较合适的生物质炭进行吸附,以此来指导吸附试验,进行吸附条件的优化.1. 3. 4 生物质炭的矿物成分研究生物质炭矿物成分对提高一些污染物吸附能力具有一定作用. 生物质炭中的矿物成分包括钾(K)、钙(Ca)、镁(Mg)等,可以与重金属交换.表 4 生物炭的FTIR分析Table 4 FTIR analysis of biochars生物质原料最终产品频率/(cm−1)官能团的分配参考文献竹子竹子生物炭 3 4371 5871 5141 4161 184~1026806~465-OH (醇类和酚类)C=O(共轭酮和醌)C=C拉伸环振动聚合物中的CH2C-O拉伸振动C-H[36]凤眼莲氨基功能化生物炭/海藻酸盐分离珠3 4062 9361 6101 418933、810OH的拉伸和N-H的重叠拉伸烷基C-H拉伸COO−的反对称振动COO−的对称振动Cr(III)-NH2配位键[37]纺织印染污泥、城市污水污泥、糠醛渣和木屑固体废弃物生物质炭 3 4302 9001 000-OHCH3C-C、S=O、C-O、Si-O[38]花生壳花生壳生物质炭 3 4001 5881 434-OHC=CC-O[39]废纸磁性CoFe2O4/多孔碳 3 4301 6281 371、1 438、1 578、1 623717、759557-OHC=C伸缩振动-COO-对称和不对称伸缩振动峰芳香族化合物的C-H弯曲振动峰Fe-O[40]浒苔粉浒苔生物炭 1 000~9007901 700~1 500、690Si-O-Si的反对称伸缩振动Si-O-Si的对称伸缩振动C-N、C=N[41]污泥污泥生物质炭 3 4202 923、2851 6501 5801 459、1 040548、470-OHC-H弯曲振动C=O拉伸C=C振动C-H和C-O拉伸振动Fe-O拉伸键[42]第 4 期丁娜娜,等:生物质炭的制备及其在吸附中的应用367Chen等[50]制备的污泥生物质炭对Cd2+的吸附明显高于活性炭,其主要吸附机制是表面沉淀和离子交换. 释放的Ca2+浓度随着初始Cd2+浓度的增加而增加,表明Cd2+的一种吸附机制可能是阳离子交换,Ca2+从矿物基质中释放以及位点被Cd2+取代. Li等[51]在不同矿物质含量的生物炭上吸附磺胺甲恶唑,研究结果表明,生物炭中的含钙矿物质可能通过静电相互作用提供额外的吸附位点. Zhao等[52]通过XRD、XPS和SEM技术鉴定并定量了生物炭中的无机矿物,大约75%的生物炭矿物属于与碳骨架相连的(Si和Al),这些矿物质对双酚A和磺胺甲恶唑吸附产生影响,去除矿物质会降低双酚A吸附,但会增加磺胺甲恶唑的吸附. 热解温度和原料决定生物质炭中矿物成分的含量,随温度的升高,K、Ca、Mg和P在生物质炭样品中富集.2 生物质炭在吸附领域的应用常见再生水的方法如表5所列. 由表5可见,可以通过多种途径实现再生水,在去除土壤和水中的有机和无机污染物时,吸附具有操作简单、低成本、无毒的特点. 粉末活性炭、多壁(单壁)碳纳米管、颗粒活性炭、(氧化)石墨烯、沸石、活性氧化铝均被用来吸附污染物. 此外,树脂、粘土、壳聚糖珠、(介孔)二氧化硅、环糊精和(树枝状)聚合物可从复杂样品中吸附农药残余物.表 5 常见再生水方法Table 5 Common methods of water regeneration方法优点缺点参考文献电化学降解节能,操作时间地点可控有毒降解中间体[53]光催化降解节能有毒降解中间体[53]生物修复降解温和时间长,培养条件苛刻,有毒降解中间体及生物污染物[53-54]絮凝操作简单絮凝剂成本高,产生大量污泥堆积物[55]膜过滤操作简单膜易污染,寿命短,小流量过滤,昂贵[55]吸附操作简单,不产生有毒副产品,成本低[56]生物质炭能够吸附和截留重金属(Pb2+、Cr3+、Cd2+、Ni2+、Cu2+等)和有机化合物(农药、多环芳烃、染料、抗生素),减小污染物的流动性,从而降低污染物在环境中转移的风险,常被用于环境修复. Zhang等[57]研究了不同加热条件下制备的污泥生物质炭对Pb(II)和Cr(VI)的吸附,结果表明,在400 ℃热解2 h的生物炭获得了最大的表面积,具有丰富的有机官能团,具有高的Pb(II) (pH 5.0)和Cr(VI) (pH 2.0)吸附能力. Zhang等[58]以猪粪为原料制备生物质炭,研究了西维因和阿特拉津在原生物质炭和脱焦生物质炭上的吸附和催化水解,发现除疏水作用外,孔隙填充和特异性相互作用对农药的吸附也有很大作用. 生物炭是一种有机灰分和无机灰分的复合物,灰分可以通过特定的相互作用与农药结合,但由于有机基团的吸附位点被灰分掩盖,其对农药的特异性相互作用被抵消. Wu等[59]使用高有机碳含量湖泊沉积物制备的生物质炭吸附水中的菲、磺胺甲恶唑、双酚A、氧氟沙星和诺氟沙星,发现双酚A、氧氟沙星和诺氟沙星的吸附似乎不受材料表面积的控制,疏水效应决定了菲和磺胺甲恶唑的吸附,而氢键可能对含有羟基(对双酚A)或羧基(对氧氟沙星和诺氟沙星)的化合物的吸附起重要作用. Vithanage等[60]用黄瓜合成生物质炭,并在不同pH条件下将其用于去除土壤中的磺胺甲基嘧啶(SMZ),研究结果表明,在pH值为3时,SMZ 的高保留率可能是由于π-π电子供体-受体相互作用和静电离子交换所致,而在pH值为5和7时,阳离子交换是主要作用机制.吸附条件影响吸附效果,下面具体讨论影响吸附的因素,为吸附条件优化提供参考.2. 1 吸附条件优化2. 1. 1 水体的pH水体的pH极大地影响了生物质炭吸附剂表面电荷和化学物质的形态. Zeta电位可以反映生物质炭表面电荷情况,官能团的质子化和去质子化可以在固体颗粒表面产生净电荷,在固体颗粒附近的溶368分析测试技术与仪器第 28 卷液相中形成电双层,影响物质的传输与吸附. Xu等[61]测定花生和油菜秸秆焦炭的Zeta电位随溶液pH 的变化. pH值在3.0~8.0范围内均为负值,说明生物质炭颗粒表面带负电荷. 随着pH的增加,生物质炭的zeta电位呈负向变化,说明负电荷量随pH的增加而增加. 生物质炭的pH pzc是指其表面净电荷为零的溶液pH值,当溶液pH值高于pH pzc时,生物质炭带负电荷,结合金属阳离子,如Cd2+,Pb2+和Hg2+. 当溶液pH值低于pHpzc时,生物质炭带正电荷,结合阴离子,如HAsO42−和HCrO4−,因此吸附质极性相反的表面电荷决定生物质炭在特定需求中的适用性. Huang等[62]制备了三种生物质炭,其pHpzc分别为2.15、2.34、2.23. 当pH值低于pH pzc时,生物质炭带正电荷,由于静电排斥,不利于Cd2+的吸附,解释了pH为2.0时吸附量低的原因. 随着pH值升高,材料上能与金属阳离子结合的负电荷基团增加,导致吸附容量显著增加,达到最大吸附量.在pH值为1~5的水溶液中,铅主要以Pb2+的形式存在,当pH值高于6.3时,会形成氧化铅 [Pb(OH)2],所以可以将吸附pH范围设置为2.0 ~ 6.0. Lee等[63]通过调节生物质炭的pH pzc改善了生物质炭的吸附性能.2. 1. 2 吸附剂用量Zhang等[64]指出随着生物质炭/氧化铁复合材料用量从0 g/L增加到5 g/L,材料的去除率增加了50%,这是由于活性位点的增加,使亚甲基蓝(MB)更容易迁移到吸附位点. 随着材料用量的增加,单位质量材料的MB吸附量下降,这种下降趋势是由于在吸附过程中吸附位点过饱和. 当投加量为2 g/L 以上时,去除率的提高不显著,这可能是由于材料的团聚,减少了可用表面积,并阻塞了一些吸附位点. 另一方面,MB的吸附性能随着投加量的增加而下降,这可能与单位吸附剂中MB分子数量的相对减少有关,也可能与吸附剂聚集引起的活性吸附位点的减少有关. 很多文献[65]都表明上述试验现象的存在,去除率和单位吸附量均处于相对较高值时的吸附剂用量为最佳用量,保证去除率相对较高的同时,保证吸附剂最大利用率.2. 1. 3 污染物的浓度较高的污染物初始浓度提供了更大的驱动力,克服传质阻力,增加污染物与吸附剂之间的碰撞概率. Alsewaileh等[66]以红枣生物质炭为吸附剂,对水溶液中有溴化钾进行吸附,随着初始浓度的增加,溴化钾吸附量增加. Novais等[67]制备了一种混合生物质炭,对水溶液中含磷污染物进行吸附,当污染物初始浓度较低时,吸附位点不能被完全占据,固液两相的浓度差随着溶液初始浓度的增加而增大,提高了材料与污染物碰撞的概率. 当污染物浓度进一步增加时,由于吸附剂上的吸附位点被占据,吸附达到动态平衡,吸附量不再受浓度影响. Yavuz 等[68]研究了金属离子(Cu2+和Cr3+,初始浓度为1.0×10−4、2.0×10−4、4.0×10−4、6.0×10−4、8.0×10−4mol/L)对吸附效果的影响,在较高的初始金属浓度下,吸附效果表现不佳,因为吸附的金属离子相互排斥,阻碍了进一步吸附.2. 1. 4 吸附时间吸附时间优化是工艺参数优化中必不可少的一部分,通过时间优化可以节约时间成本,达到效益最大化. Lee等[63]制备了棕榈油污泥生物质炭吸附Pb2+,随着吸附时间的增加,单位吸附量也随之增加,但吸附速率均逐渐减慢. 90 min后,生物质炭活性位点开始饱和,延长吸附时间没有显著的影响. Yan等[65]研究了吸附时间对吸附的影响,随着吸附时间的延长,吸附量增加,并在一定时间后达到平衡. 这是因为在吸附初始阶段,材料上存在较多的吸附位点,吸附量上升,但随着吸附量越来越多,暴露的吸附位点越来越少,最终吸附量不再变化.2. 1. 5 离子强度废水中往往含有多种离子,研究离子强度对吸附性能的影响是有必要的. Yan等[69]提出由于PO43−和CO32−的共存,H2AsO3−的吸附明显受到抑制.这一结果可以归因于PO43−和CO32−也属于氧阴离子,它们在吸附过程中会“抢夺”生物质炭的吸附位点. Ahmed等[70]提出随着NaNO3溶液加入量增加,磁性生物质炭对U(VI)的吸附量更高,这可能是由于Na+的电荷密度低,离子尺寸大,导致Na+离子与周围的水分子而不是生物质炭发生强烈的相互作用. 在Reguyal等[71]的研究中,离子强度的增加导致磁性生物质炭对磺胺甲恶唑的吸附量更高,也是由于“盐析”效应,高浓度的离子通过改变水的结构和/或通过与溶质的直接离子偶极子相互作用影响溶质的吸附行为.2. 1. 6 吸附温度温度影响吸附速率与吸附平衡常数. 首先,温第 4 期丁娜娜,等:生物质炭的制备及其在吸附中的应用369度的升高降低溶液的粘度,提高吸附质分子在吸附剂外边界层的扩散速率,从而有利于吸附的发生.其次,温度的变化会影响生物吸附剂的平衡吸附能力. 对于放热反应,升高温度会降低吸附量. 对于吸热反应,升高温度会升高吸附量. Egbosiuba等[72]制备了两种生物质炭,研究了温度对生物质炭吸附MB的影响,在25~50 ℃范围内对不同初始质量浓度(50、100、150、200 mg/L)的MB进行了吸附研究. 发现在MB质量浓度为50、100 mg/L时,温度影响较低,但在质量浓度为150、200 mg/L时,温度影响有所增加. 两种材料对MB的吸附性质为吸热,随着温度的升高,MB吸附量的增加可能与以下几点有关:(1)温度升高使MB迁移率增加,溶液粘度降低,从而使其能够渗透到吸附剂的孔隙中. (2)MB 与材料表面官能团的化学相互作用增强. (3)与MB 溶解度相关的化学势变化.生物质炭可用于污染物直接吸附,也在污染物检测方面发挥了重要作用. 为了准确灵敏的完成测试任务,很多样品在分析前要进行富集和与分离.目前样品前处理技术包括固相萃取、固相微萃取(SPME)、液相微萃取等. 其中固相萃取和微萃取均需要一定的吸附剂或涂层,而生物质炭可以单独充当吸附剂或涂层,也可以与其它材料(金属有机框架、共价有机框架、分子印迹、量子点等)复合使用. QuEChERS方法(即快速、简单、廉价、有效、坚固和安全)将液相萃取与固相萃取相结合,成为样品前处理领域最绿色和可持续的方法[73]. Cao等[74]建立了超高效液相色谱-串联质谱(UPLC-MS/MS)用于测定6种杀菌剂残留量,在改进的QuEChERS样品处理方法中,目标化合物采用乙腈提取,生物炭、多壁碳纳米管(MWCNT)和石墨化炭黑(GCB)完成杂质吸附. Adenuga等[75]以椰壳生物质炭为固相微萃取吸附剂,采用改进的QuEChERS法作为样品制备技术,测定了哺乳期妇女母乳和尿液样品中邻苯二甲酸酯的含量. Li等[76]采用磁分散固相萃取和高效液相色谱/紫外相结合的方法,建立了一种快速、灵敏的红糖样品中三嗪类化合物的富集和提取方法. 该研究以低成本甘蔗渣为原料制备了一种磁性多孔生物炭(MPB),并成功从实际样品中提取富集痕量三嗪类化合物. Xie等[77]将低成本的废生物质牛骨炭化,得到氮氧共掺杂分级多孔生物炭(NHPBC). NHPBC具有比表面积高、杂原子充足等突出优势. 该文系统研究了NHPBC对各种有机污染物的富集性能,证明制备的NHPBC适用于对邻二甲苯及其羟基代谢物的高效富集. NHPBC包覆纤维的富集因子在2 384~6 949之间,是商用SPME纤维富集因子的11.1~92.5倍.2. 2 生物质炭回收生物质炭多数是粉末状,在吸附污染物之后需要通过离心、过滤、沉淀等方法进行固液分离来回收. 通过制备磁性生物质炭可以解决固液分离的困难[78-80]. 解决固液分离问题的另一个途径,便是赋予生物质炭能够便于分离的形态,以便将生物质炭轻松从处理过的水相中取出. 例如,Ma等[80]在木材内外表面原位生长ZIF-67,得到复合材料,并通过碳化合成了亲水磁性生物质炭,制备的生物质炭不仅具有磁性,又是块状结构,解决了粉末生物质炭难以回收的问题.3 结论生物质炭的制备原料一般来源于废弃物,废弃物再利用对实现减排具有重要意义. 生物质炭表面性质与原料具有明确相关性,造就了该类材料的多样性,大的比表面积使其成为极具竞争力的吸附剂.该类材料不仅在吸附分离领域占据重要位置,也在催化和电化学等其它领域占有一席之地.参考文献:Gautam R K, Goswami M, Mishra R K, Chaturvedi P,Awashthi M K, Singh R S, Giri B S, Pandey A.Biochar for remediation of agrochemicals and synthet-ic organic dyes from environmental samples: A re-view[J]. Chemosphere,2021,272 :129917.[ 1 ]Ma H F, Yang J J, Gao X, Liu Z B, Liu X X, Xu Z G.Removal of chromium (VI) from water by porous car-bon derived from corn straw: Influencing factors, re-generation and mechanism[J]. Journal of HazardousMaterials,2019,369 :550-560.[ 2 ]Shen X L, Zeng J F, Zhang D L, Wang F, Li Y J, Yi WM. Effect of pyrolysis temperature on characteristics,chemical speciation and environmental risk of Cr, Mn,Cu, and Zn in biochars derived from pig manure[J].Science of the Total Environment,2020,704 :135283.[ 3 ]Ogbonnaya U, Semple K. Impact of biochar on organ-ic contaminants in soil: a tool for mitigating risk?[J].Agronomy,2013,3 (2):349-375.[ 4 ]Sun K, Jiang J C. Preparation and characterization of [ 5 ]370分析测试技术与仪器第 28 卷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
生物质活性炭的原料
生物炭的原料来源十分广泛, 据文献报道, 许
[3 , 4 ] [5 ] 、 核桃壳 、 胡桃
多农林业副产物, 例如枣核 壳 根
[6 ] [13 ] [9 ]
[7 , 8 ] [9 , 10 ] [11 , 12 ] 、 、 、 、 废茶叶 玉米芯 椰子壳 甜菜 [14 ] [15 ] [9 ] 、 花生壳 、 稻谷壳 、 棉花壳 、 香蕉
http: / / www. hxtb. org
化学通报 2016 年 第 79 卷 第 3 期
[31 , 32 ]
·基团
。微
3. 2
表面还原改性
波辐射加热还适用于物理活化法制备生物质活性 [33 ] 炭。Yang 等 以椰壳为原料, 分别以 CO2 、 水蒸 气以及两者的混合气为活化剂, 采用微波辐射的 2079 比表面积分别为 2280 、 方法制备了活性炭,
Characteristics of activated carbon from biomass
* SA: surface area,MB: Methylene blue adsorption
化学活化法是将原材料浸渍在活化剂如 ZnCl2 、FeCl3 、H3 PO4 、KOH、K2 CO3 、CH3 COOK、 H2 SO4 和 NaOH 中, 然后在惰性气体的氛围中加 热炭化, 温度范围在 400 800ħ , 通常是将炭化 和活化一步完成, 在较低的温度下即可进行, 而且 H PO 部分活化剂如锌盐和 3 4 很容易回收再利用, 但是化学活化使用了化学试剂, 可能会带来一定 [27 ] 的环境污染 。 物理活化法是用 CO2 、 空气或者水蒸气为活 化剂, 使用物理活化方法时, 高温热解和活化通常 是两个阶段。 在热解阶段, 原料在惰性气体氛围 中于 400 800ħ 温度范围内炭化, 所得到的炭具 有一定的孔结构; 第二阶段是在高温下有控制地 用活化剂对生物炭进行活化, 增加孔的数量, 得到 最终 需 要 的 活 性 炭。 CO2 由 于 原 料 易 得, 在 800ħ 左右反应速率较慢, 活化过程容易控制且无 污染, 是物理活化中常用的活化剂。 CO2 活化主
2 和 2194 m / g。 此外, 微波辐射还可以应用于活 [34 ] 性炭再生 。 经微波处理的活性炭常常用于水
表面还原改性主要是通过在适当的温度下对 增加活性炭表面碱性 活性炭表面进行还原处理, 基团的数量, 使表面的非极性增强, 从而提高对非 [55 ] 极性物质的吸附性能 。一般可以通过在 H2 或 N2 等气氛中高温处理或者将活性炭浸渍在氨水 溶液中, 增加活性炭的碱性基团。 Zhang 等[56]将活性炭浸渍在氨水溶液中, 或分 别在 N2 和 H2 氛围中微波辐射加热活性炭, 并将改 性后的活性炭用于 CO2 的吸附, 与未经改性的活性 C和N元 改性后的活性炭碱性基团增多, 炭相比, 素的含量增加, 对 CO2 的吸附容量也增大了。 Shaarani 等[57]以油棕果壳为原料制备了活性 炭, 室温下将活性炭浸渍在 10% 氨水溶液中 48h, 过滤烘干后即得到氨化处理的活性炭 。将改性后 4二氯酚, 的活性炭用于吸附去除水溶液中的 2 , 结果表明, 氨化作用在活性炭表面引入了含氮复 合物, 导致活性炭碱性增强, 对有机物的吸附能力 4增强, 改性后的活性炭对 2 , 二氯酚的吸附容量 提高了 22. 86% 。
24 岁, Email: ljjcbacademy@ 163. com 女, 从事多孔材料的制备 。* 联系人,
国家自然科学基金项目( 21477092 ) 资助 150708 收稿, 151116 再修回, 151118 接受
· 206·
化学通报 2016 年 第 79 卷 第 3 期
http: / / www. hxtb. org
皮 皮
[16 ] [17 ] [18 ] 、 竹废料 、 橄榄核 、 樱桃核 、 桔子 [20 ] [21 ] [22 ] 、 咖啡豆荚 、 玉米秸秆 和木薯皮 等,
[19 ]
都被尝试用于制备低成本的生物炭 。制备生物炭 最常用的方法是热裂解法, 即在没有氧气或者有 限供氧环境中热分解有机材料。热解温度是生物 炭理化性质最重要的影响因素, 较高热解温度下 制备的生物炭通常有较高的 pH、 灰分含量、 阳离 子交换容量、 比表面积以及较多的微孔和较强的
, 对有机污染物的去除往往更有效。而 较低温度下制备的生物炭, 所含有的化学反应活 疏水性 性位点和稳定的碳氧复合物的数量更多
[24 ]
[23 ]
因此煤基活性炭孔结构的生成受到限制, 而且煤 是一种不可再生资源。生物质活性炭的原料是农 林业废弃物, 来源丰富, 价格低廉, 可再生, 以生物 质为原料制备活性炭还实现了废弃资源的再利 用。因此, 近年来生物质活性炭的制备和应用受 到了广泛的关注。
materials,low cost,large specific surface area,developed porous structure as well as good thermal and chemical stability,and they are widely used in agriculture,environmental remediation,chemical industry,energy storage and other fields. This paper reviews the preparation strategies of biomassbased activated carbons,factors influencing the properties,surface modification methods and the applications. Their application in adsorption,catalysis,gas storage, electrode and supercapacitor are also summarized. Keywords Biomass,Activated carbon,Synthesis,Adsorbent,Catalyst
2 而且用 样制备的活性炭的比表面积为 2400m / g,
棕榈壳制备的活性炭的介孔比例高达 94% 。 微波加热
[31 ]
是近年来发展很快的一种加热
方法, 即在微波的作用下, 通过被加热体内部偶极 分子高频往复运动, 产生“内摩擦热 ” 而使物料温 度升高。不需要热传导过程, 因此加热均匀, 可以 缩短反应时间、 节省能量。与传统加热方式相比, 微波加热所制备的活性炭孔隙结构和化学性质都 有很大不同, 微波辐射加热有利于介孔的形成和
DOI:10.14159/ki.0441-3776.2016.03.002
Progress in Preparation and Utilization of Biomassbased Activated Carbons
Hu Lijuan, Wu Feng, Peng Shanzhi, Li Jinjun *
( School of Resource and Environmental Sciences,Wuhan University,Wuhan 430079 ) Biomassbased activated carbons have the advantages including renewable and abundant raw
要产生微孔, 而水蒸气活化会产生发达的微孔和 孔径范围分布也比较广 中孔,
[28 ]

将物理活化法和化学活化法结合起来, 可以 调整孔径分布, 得到孔隙更加发达、 比表面积和吸 附容量更大的活性炭
[29 ]
。 Hu 等[30] 以椰子壳和
棕榈壳为原料, 先分别用 ZnCl2 和 KOH 为活化剂 制备活性炭, 然后在 800ħ 用 CO2 进一步活化, 这
表1 Tab. 1 Material Walnut shell Bagasse Data stone Olivewaste Peanut hull Banana pitch Chickpea husk Waste tea Tobacco stem Corn cob Rattan sawdust Coconut shell plum kernels Waste tea Palm shell Bamboo Chemical ZnCl2 ZnCl2 FeCl3 H3 PO4 H3 PO4 H2 SO4 K2 CO3 K2 CO3 K2 CO3 / microwave KOH KOH NaOH NaOH CH3 COOK NaOH / CO2 KOH / CO2 850 550 850 700 780 800 800 900
而很少用于去除重金属 溶液中染料的吸附去除, 。 离子 由于微波处理可以去除活性炭表面含氧基 团, 提高其 pH, 因此可以充分利用这一特性。 例 如, 当以活性炭为载体负载催化剂时 , 如果载体为 碱性有利于催化剂活性的提高, 则可以选择微波 辐射法制备活性炭。针对活性炭应用领域的不同 需要根据不同制备方法的特点, 合理选择 和需求, 制备方法使活性炭的应用更加有效 。
2
生物质活性炭的制备
制备生物质活性炭最常用的方法是物理活化 [26 ] 法和化学活化法 。 表 1 列出了部分生物质活 性炭的制备方法及性能。
生物质制备活性炭的方法及性能 T /ħ 450 700 700 450 500 SA / ( m2 / g) 1800 674 780 1020 1177 1778 1722 2557 1320 1083 2825 1887 854 2247 1896 454 294 916 828 554 18. 8 21 518 37 16. 7 295 313 384 22 MB / ( mg / g) 315 7. 5 47. 1 Yield / % Ref. [ 35] [ 36] [ 37] [ 38] [ 14] [ 9] [ 39] [ 8] [ 40] [ 10] [ 41] [ 12] [ 42] [ 7] [ 43] [ 44]
相关文档
最新文档