食品化学第四章碳水化合物优秀课件

合集下载

食品化学-第四章-碳水化合物

食品化学-第四章-碳水化合物
乳糖在水解成单糖D-葡萄糖和D-半乳糖之后才能作 为能量利用。
乳糖 乳糖酶 D-葡萄糖 + D-半乳糖
乳糖到达小肠后才被消化,小肠内存在乳糖酶。 乳糖促进肠道钙的吸收和保留。
27
乳糖不耐症
乳糖保留在小肠肠腔内,由于渗透压的作用,乳糖 有将液体引向肠腔的趋势,产生腹胀和痉挛。
乳糖不耐症随着年龄增大而加重。 有两种方法可以克服乳糖酶缺乏的影响,
➢ 葡萄糖溶液粘度随T↑而↑ ; ➢ 蔗糖溶液粘度随T ↑而↓ ;
8、抗氧化性——保持水果的风味、颜色和Vc
糖溶液中溶氧量小 糖本身具有抗氧化性
50
单糖和低聚糖物理性质 小 结
甜度 溶解度 吸湿性和保湿性 结晶性和抗结晶性 渗透压 冰点降低 粘度 抗氧化性
综合分析
51
4.2 单糖及低聚糖
食用香精和调味剂用CD包接,用于烤焙食品,速溶食品,速 食食品,肉食及罐头食品,可使之留香持久,风味稳定。
➢ 保持天然食用色素的稳定
如:虾青素经CD的包接,提高对光和氧的稳定性。
➢ 食品保鲜
将CD和其它生物多糖制成保鲜剂涂于面包、糕点表面可起 保水保形作用
➢ 除去食品的异味
鱼品的腥味,大豆的豆腥味和羊肉的膻味,用CD包接可除去
17
链式结构-醛糖
C2 差向异构
C4 差向异构
18
链式结构-酮糖
C5 差向异构
19
环状结构
-与-构型
异侧
C1为手性碳原子,它有 右侧两种喃型和吡喃型
21
环式与开环式相互转换
β-D-吡喃葡萄糖溶于水时,形成具有:开环、五元环、 六元环及七元环等不同异构体的混合物。
室温下,以六元环为主。
22

碳水化合物ppt课件

碳水化合物ppt课件
第二节 碳水化合物
[要求] 掌握碳水化合物的生理功能,及功能低聚糖、膳食纤维和功能性多糖的功能特性、食物来源及适宜摄入量。
碳水化合物知识小测试:
为什么木糖醇可以用来做口香糖?
1
你知道大部分东方人喝牛奶会出现腹胀、腹泻等症状吗,为什么?
2
益生因子是什么?
3
膳食纤维多多益善?
4
如何为糖尿病患者选择无糖食品?
第四节 碳水化合物
碳水化合物的功能 参与肝脏的解毒功能 肝糖原充足可增强肝脏对某些有害物质如细菌毒素的解毒作用,糖原不足时机体对酒精、砷等有害物质的解毒作用减弱,葡萄糖醛酸直接参与肝脏解毒。 增强肠道功能(膳食纤维和功能性低聚糖) 增强免疫功能(功能性多糖) 其他功能 改善食物的色、香、味及型。如,炒肉是拌生粉;用糖做拉丝菜肴等。
第四节 碳水化合物
碳水化合物的功能
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。
构成机体的重要物质
糖和脂肪形成的糖脂是细胞膜和神经组织的重要成分 糖与蛋白形成的糖蛋白是抗体、酶、激素、核酸的组成成分等等。
血糖指数(Glycemic index):一般定义为在一定的时间内,人体食用含50g有价值的碳水化合物的食物与相当量的葡萄糖后,2h后体内血糖曲线下的面积比值,即 GI值高(>75),说明食物进入胃肠后,消化快,吸收完全,葡萄糖进入血液后峰值高; GI值低(<55),说明食物在胃肠内停留的时间长,释放缓慢,葡萄糖进入血液后峰值低。
第四节 碳水化合物
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望改变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。

食品化学碳水化合物ppt课件

食品化学碳水化合物ppt课件
类黄酮苷使食品具有苦味和其他的风味和颜色。 毛地黄苷是一种强心剂 皂角苷(淄类糖苷)是起泡剂和稳定剂 甜菊苷是一种强甜味剂。
糖苷一般在碱性条件下稳定,在温或热的酸性水溶液中通过水解产生还 原糖。
➢苷元的溶解度降低、苦涩味减轻、对食品的色泽及口感都产生重要 影响。 ➢糖苷的某些功能消失,有害性的产生或消除。 糖苷酶水解
樱桃
6.49
7.38
0.22
草莓
2.09
2.40
1.03
蔬菜
甜菜
0.18
0.16
6.11
硬花甘蓝
0.73
0.67
0.42
胡萝卜
0.85
0.85
4.24
黄瓜
0.86
0.86
0.06
常见部分谷物食品原料中碳水化合物含量(按每100g可食部分计)
谷物名称 碳水化合物(g) 纤维素(g)
全粒小麦
69.3
2.1
9
返回
从上图表中可以看出: 天然食物中游离糖的含量很少;加工的食品中则较多。
如何将植物源食物中的贮存多糖和结构多糖转 化为可溶性多糖?
目前可采取的方法有: 适时采收; 采后处理; 加工中添加水解酶等
水果——成熟前采摘, 后熟过程中酶促反应使 淀粉转变为糖,水果变 软,变熟,变甜
玉米--在蔗糖转化为 淀粉前采摘,加热破 坏转化酶系,玉米很 甜。成熟后采摘或未 及时破坏酶系,玉米 失去甜味,而且变硬
其中主要是二糖和三糖。 如果组成低聚糖的糖基是相同种的为均低聚糖,不同为杂低聚糖。
2、环状糊精
环状糊精是由6~8个D-吡喃葡萄糖通过α-1,4糖苷键连接 而成的D-吡喃葡萄糖基低聚物。由6个糖单位组成的称为α-环 状糊精,由7个糖单位组成的称为β-环状糊精,由8个糖单位组 成的称为γ-环状糊精。

食品化学课件:第四章 碳水化合物

食品化学课件:第四章 碳水化合物

在美国糖类化合物供给46%的热量、脂肪供给42%的热 量,而蛋白质供给12%的热量。在我国,传统的膳食习惯 是以富含糖类化合物的食物为主,近年来随着动物蛋白质 食物产量逐年增加和食品工业的发展,这一膳食结构也在 发生变化。
传统观点认为糖类的作用是只作为支持组织和能量来源。 70年代,发现了具有了抗病作用的氨基糖类,使人们认识 了糖类的许多新的功能。
一、单糖和低聚糖的结构及功能 Structure & Function of Carbohydrates 2、低聚糖(Oligosaccharides)
➢ 食品中重要的低聚糖
➢ 具有特殊功能的低聚糖
➢ 环状低聚糖
2.2 Monosaccharide & Oligosaccharides
一、单糖和低聚糖的结构及功能 Structure & Function of Carbohydrates 2、低聚糖(Oligosaccharides)
O H H H
OH
OH
O H H~OH
OH
(2)棉子糖( α-D-Gla-1,6-α-D-G-1,2-β- D-F )
棉籽糖由D—葡萄糖,D—半乳糖和D—果糖 缩合而成, 是非还原性糖。
棉子糖
(三)、四糖
水苏糖(α-D-Gla-1,6-α-D-Gla-1,6-α-D-G-1,2-β-D-F)
2.2 Monosaccharide & Oligosaccharides
一、单糖和低聚糖的结构及功能 Structure & Function of Carbohydrates 1、单糖(Monosaccharides)
2、低聚糖(Oligosaccharides)
3、糖苷(Glycosides)

食品化学第四章碳水化合物

食品化学第四章碳水化合物

HO C H
强碱
C HOH
CHOH
COOH
COOH CH2OH
C
OH +
C H2
CHOH
C HOH C H2 C HOH C HOH
CH2OH
CH2OH
CH2OH
CH 2OH
糖精酸
D-葡萄糖
异糖精酸
间糖精酸
3.分解反应: 浓碱,单糖 → 较小分子的糖、酸、醇、醛
己糖 → 连续烯醇化 → 烯二醇:
①氧化剂 → 分解产物
(三)糖醇
不含醛基,无还原性
(四)脱氧糖
单糖分子中一个或多个羟基被氢取代 脱氧核糖
五、食品中重要的低聚糖及其性质 (一)二糖: 1. 蔗糖:
非还原糖
水解:
C12H22O11 + H2O 蔗糖
右旋,+66.5°
HCl 或酶
C6H12O6 葡萄糖
+
右旋,+52.2°
C6H12O6 果糖 左旋,-92.4°
(二)果葡糖浆: 高果糖浆、异构糖浆
酶法水解淀粉所得的葡萄糖液经 葡萄糖异构酶的异构化作用,一部分 葡萄糖异构成果糖,形成的葡萄糖和 果糖的混合糖浆。
3种:果糖含量 42% 55% 90%
(三)功能性低聚糖: 1.棉子糖
α-1,6-
非还原糖
α,β-1,2
吸湿性最小的低聚糖
2.低聚果糖:(寡果糖、蔗果三糖族低聚糖)
与糖的摩尔浓度成正比 同一浓度下,单糖 为双糖的2倍 食品脱水, 抑制微生物生长
7.发酵性 酵母菌 发酵 →酒精、CO2 (酿酒、面包疏松)
葡萄糖 > 果糖 > 蔗糖 > 麦芽糖 乳酸菌 还发酵 乳糖 → 乳酸 (酸奶) 大多低聚糖水解产生单糖才发酵

《碳水化合物》PPT课件

《碳水化合物》PPT课件
4抗生酮作用(antiketogenesis) 5保护肝脏的作用
公共营养师与全国医护人员营养技能联合培训课程
食物碳水化合物的功能 1主要的能量营养素 2改变食物的色、香、味、型 3提供膳食纤维
增强肠道功能、有利粪便排出 控制体重和减肥 可降低血糖和血胆固醇 预防结肠癌的作用
公共营养师与全国医护人员营养技能联合培训课程
公共营养师与全国医护人员营养技能联合培训课程
双糖:两个分子单糖缩合而成的糖。 蔗糖(sucrose) 乳糖(1actose) 麦芽糖(maltose) 海藻糖(trehalose)
寡糖:是指由3~10个单糖构成的一类小分子多糖。 棉子糖(raffinose) 水苏糖(stachyose)
多糖:由10个以上单糖组成的大分子糖。 糖原(glycogen) 淀粉(starch):直链淀粉(amylose) 支链淀粉(amylopectin) 纤维(fiber)
• 多糖(polysaccharide)。
公共营养师与全国医护人员营养技能联合培训课程
其它单糖 核糖(ribose) 脱氧核糖(deoxyribose) 阿拉伯糖(arabinose) 木糖(xylose)
糖醇 山梨醇(sorbitol) 甘露醇(mannitol) 木糖醇(xylitol) 麦芽糖醇(maltitol)
公共营养师与全国医护人员营养技能联合培训课程
Hale Waihona Puke 碳水化合物的供给 总能量包括碳水化物的摄入不能过多。 防止碳水化合物占总能量摄入的比例较低、脂肪占
总能量比例较高。 中国营养学会推荐我国居民的碳水化物的膳食供给
量占总能量的55%~65%较为适宜,其中精制糖占总 能量10%以下。
美国FDA提倡每人每天摄入纤维25g,或每天按 11.5g/Kcal摄入较为合适。

碳水化合物全解ppt课件.ppt

碳水化合物全解ppt课件.ppt
pH=6
一元糖酸
缓和的氧化剂
生成
HNO3 , H 2 O 100℃
COOH
强氧化剂
糖二酸
生成
酮糖不被溴水氧化,可用溴水来区别酮糖和醛糖。
15
3、形成缩醛(成苷作用)
在单糖的环状结构中含有半缩醛羟基(苷羟基), 苷羟基比醇羟基活泼,易与另外一分子醇或酚的羟基作 用,脱去一分子水生成糖苷。
CH2OH
HH
3
单糖的结构
一. 葡萄糖的结构 1 .葡萄糖的开链式
天然葡萄糖:(+)-葡萄糖
分子式: C6H12O6
根据性质: 己醛糖其构造式是:* Nhomakorabea*
*
*
H
CH2 CH CH CH CH C
O
OH OH OH OH OH
4
1 CHO
2
H C OH
3
HO C H
4
H C OH
H 5 C OH
6 CH2OH
CHO
O
OH H
OH
OH
+ HO CH3 HCl(干 )
H
H2O
H OH
(糖苷基) (糖苷配基)
CH2OH
HH
O
OH H
OH
氧苷键
O CH3
H
H OH
甲基-D-葡萄糖苷
16
5.生脎 反应
单糖与苯肼作用生成苯腙; 如果苯肼过量,单糖苯腙能继续再与苯肼反应, 生成一种不溶于水的黄色晶体,称为脎,例如:
不同的糖脎结晶形状不同,成脎所需时间不同, 各有一定的熔点,所以:成脎反应可用来作糖的 定性鉴定。
8
CHO
H OH
H H OH H

第四章碳水化合物 74页PPT文档

第四章碳水化合物 74页PPT文档
部消化成各种单糖,然后在小肠中几乎被完 全吸收 • 不同的糖,吸收速度不同
不同的糖,吸收方式不同
葡萄糖、半乳糖:主动转运 果糖:易化扩散 戊糖、多元醇:单纯扩散 蔗糖:在肠粘膜刷状缘表层水解为果糖和葡 萄糖,分别吸收 血
门静脉
贮存
肝脏 全身循环
2.4 糖类在体内的动态变化
被机体吸收后有三个基本去向: • 进入血液被直接利用 • 暂时以糖原的方式储存(肝脏及肌肉等组织) • 转变成脂肪储存
糖醇
山梨糖醇 木糖醇 麦芽糖醇
低聚糖
多糖 ☺淀粉、糊精 ☺膳食纤维
♫纤维素 ♫果胶物质 ♫半纤维素 ♫木质素 ♫树胶和海藻胶
1、葡萄糖
• 所有器官都能利用葡萄糖:燃料、原料 • 有些器官完全依靠葡萄糖:大脑、肾髓质、红细胞
肺组织 • 其它器官既能用葡萄糖也能用脂肪酸 (转变成糖的氨基酸、酮体)
常见
• 肠粘膜中先天性乳糖酶缺乏,极为罕见 的疾病
• 乳糖酶过少或原发性乳糖酶缺乏 • 继发性乳糖酶缺乏
食品加工中: 生产少含或不含乳糖的乳制品 发酵乳制品 利用酶
2.3 碳水化合物的吸收
健康小贴士:最合理的早餐框架
第一类,碳水化合物含量丰富的粮谷类食品,如 面包、馒头、花卷、豆包、米粥、面条、麦片、包 子、馄饨、饼干等;碳水化合物是血液中葡萄糖的 主要来源,是大脑所需能源最直接的、最快捷也是 最清洁的供应者,是营养早餐不可缺少的。
•异构乳糖:不能被消化,双岐因子
异构乳糖的功能:
(1)能促进肠道有益菌如双歧乳杆菌的增殖, 抑制腐败菌的生长。
(2)促进肠中双歧杆菌自行合成维生素B1、 B2、B6、B12、烟酸、泛酸等。
(3)不被消化、吸收,故有整肠,通便作用。

课件03食品化学碳水化合物.ppt

课件03食品化学碳水化合物.ppt

第二节 单糖
一、结构
CHO
H
OH
HO
H
H
OH
H
OH
CH2OH
D-葡萄糖
CHO
HO
H
HO
H
H
OH
H
OH
CH2OH
甘露糖
CHO
H
OH
HO
H
HO
H
H
OH
CH2OH
D-半乳糖
CH2OH
CHO
O
HO
H
HO
H
H
OH
H
OH
H
OH
H
OH
CH2OH
CH2OH
D- 果糖 D- 阿拉伯糖
CHO
H OH
HO H
H
OH
CH2OH
(二)分布情况
普通淀粉中一般含70~80%的支链淀粉,蜡质 玉米中支链淀粉含量高达99%。
100 直链淀粉
90
支链淀粉
80
70
75
60
含 量 ( % )5 0
40
30
20
10
0
高直链玉米 普通玉米
小麦
马铃薯

不同淀粉
99
木薯
蜡质玉米
一些淀粉中直链淀粉与支链淀粉的比例
(三)直链淀粉形成络合物的性质 1、直链淀粉与碘形成蓝色络合物
Amadori分子重排
CH2OH 环式果糖胺
(2) 中期阶段
酮式果糖胺在中期阶段主要的分解过程可能有三个途径, 这里仅介绍脱水转化成羟甲基糠醛的途径。其过程可以表 示为:
H HN R C
H O
CH2OH 酮式果糖胺
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非还原性二糖
1
具有极大的吸湿性和溶解性,能
形成具高渗透性的高浓度溶液。
可用作防腐剂和保湿剂。
2
冷冻保护剂,可防止脱水和由冷
冻引起的结构和质构的破坏。
甘蔗与甜菜
食品中重要的低聚糖
三糖
麦芽三糖、甘露三糖、蔗果三糖
聚合度为4~10的低聚糖
麦芽低聚糖、甘露低聚糖、低聚木糖
具有特殊功能的低聚糖
食品化学第四章碳水化合物
糖类化合物的结构与功能间的关系
难点

第一节 概述



第二节 单糖及低聚糖


第三节 多糖
4.1 概述
一、碳水化合物的一般概念
1.碳水化合物 (Carbohydrates) 表达式Cn(H2O)m 多羟基醛或酮及其衍生物和缩合物。
按组成分 分 类
按功能分
单糖 低聚糖 多糖 结构多糖 储存多糖 抗原多糖
组成:糖、配基(非糖部分 )
配基部分
O-糖苷
S-糖苷
N-糖苷
糖苷的生理功能
类黄酮糖苷:具有苦味和其它风味和颜色 毛地黄苷:强心剂 皂角苷:起泡剂和稳定剂 甜菊苷:甜味剂
❖功能性食品
➢西方国家:低热、低脂、低胆固醇、低盐、低糖及高纤 维食品
➢日本:功能食品因子,低聚糖和短肽
❖功能性低聚糖
❖低聚果糖、乳果聚糖、低聚异麦芽糖、低聚木糖、低聚 氨基葡萄糖等。
❖功能性低聚糖的主要功能
❖增殖双歧杆菌维护肠道健康
具有特殊功能的低聚糖——低聚果糖
1 β-2,1 2
GF2
GF3
生理活性:
1、单糖(Monosaccharides)
链式结构-糖差分向子异中构除了C1外,任何一个手性碳原子
具有不同的构型称为差向异构。
➢醛糖:C4 如差D向-甘异露构糖、是CD2-差葡向萄异糖构的C2差向异构。 ➢酮糖:C5 差向异构 环状结构-端位异构
链式结构-醛糖
C2 差向异构
C4 差向异构
链式结构-酮糖
糖苷配基
D-半乳糖
β-1,4
D-葡萄糖
发酵乳制品如大多数酸奶和干酪中乳糖含量很少, 一些乳糖发酵过程中被转化成乳酸。
乳糖在水解成单糖D-葡萄糖和D-半乳糖之后才能作 为能量利用。
乳糖 乳糖酶 D-葡萄糖 + D-半乳糖
乳糖到达小肠后才被消化,小肠内存在乳糖酶。 乳糖促进肠道钙的吸收和保留。
水果——成熟前采摘, 后熟过程中酶促反应使 淀粉转变为糖,水果变 软,变熟,变甜
玉米--在蔗糖转化为 淀粉前采摘,加热破 坏转化酶系,玉米很 甜。成熟后采摘或未 及时破坏酶系,玉米 失去甜味,而且变硬
变老
三、食品中碳水化合物的作用
碳水化合物与 食品的营养
提供膳食热量 促进肠道蠕动 具有保健功能
碳水化合物与 食品加工质量
色泽与碳水化合物 口感与碳水化合物 质构与碳水化合物
4.2 单糖及低聚糖
一、单糖和低聚糖的结构及功能
1、单糖(Monosaccharides) 2、低聚糖(Oligosaccharides) 3、糖苷(Glycosides)
手性碳原子
碳水化合物含有手性碳原子,手性碳原子连接四个 不同的基团,四个基团在空间的两种不同排列(构 型)呈镜面对称。
➢ 增殖双歧杆菌 ➢ 难水解,热量低 ➢ 抑制腐败菌,维
护肠道健康 ➢ 防止龋齿 ➢ 香蕉、蜂蜜、大
蒜、西红柿、洋 葱
GF4
环状低聚糖
又名沙丁格糊精或环状淀粉,由α-D-葡萄糖通 过1,4-糖苷键首尾相连构成。
聚合度为6,7,8,分别称为,,环状糊精。
N=6
N=7
N=8
环状糊精的结构特点:
高度对称性
单糖——不能再被水解的多羟基醛、酮,是碳水化 合物的基本单位。单糖又分为醛糖和酮糖。
低聚糖——由2-10个单糖分子缩合而成,水解后生 成单糖。
多糖——由10个以上单糖分子缩合而成。根据组成 多糖的单糖种类,又分为均多糖和杂多糖。
二、食品中的碳水化合物
碳水化合物在植物中含量占干重的80%以上
➢ 保持天然食用色素的稳定
如:虾青素经CD的包接,提高对光和氧的稳定性。
➢ 食品保鲜
将CD和其它生物多糖制成保鲜剂涂于面包、糕点表面可起 保水保形作用
➢ 除去食品的异味
鱼品的腥味,大豆的豆腥味和羊肉的膻味,用CD包接可除去
糖苷的基本概念
是由单糖或低聚糖的半缩醛羟基和另一个分子中 的-OH、-NH2、-SH(巯基)等发生缩合反应,失 去水后形成的化合物。
C5 差向异构
环状结构
-与-构型
异侧
C1为手性碳原子,它有 右侧两种端位异构
同侧
己糖构象—— 己糖可以形成呋喃型和吡喃型
环式与开环式相互转换
β-D-吡喃葡萄糖溶于水时,形成具有:开环、五元环、 六元环及七元环等不同异构体的混合物。
室温下,以六元环为主。
命名
❖ 3个碳原子:三糖,1个手性碳原子 ❖ 4个碳原子:四糖,2个手性碳原子 ❖ 5个碳原子;五糖,3个手性碳原子 ❖ 6个碳原子:六糖,己糖,己醛糖
如:玉米,蔬菜,水果等
单糖及低聚糖主要存在于蔬菜和水果中。 多糖主要存在于玉米,种子,根,茎植物。
从上图表中可以看出: 天然食物中游离糖的含量很少;加工的食品中则较多。
如何将植物源食物中的贮存多糖和结构多糖转 化为可溶性多糖?
目前可采取的方法有: 适时采收; 采后处理; 加工中添加水解酶等
圆柱形
-OH在外侧,C-H和O在环 内侧
环的外侧亲水,中间空穴 是疏水区域
作为微胶囊壁材,包埋脂 溶性物质

➢ 保持食品香味的稳定
食用香精和调味剂用CD包接,用于烤焙食品,速溶食品,速 食食品,肉食及罐头食品,可使之留香持久,风味稳定。
n-糖有n-2个手性碳原子
2、低聚糖(Oligosaccharides)
➢ 食品中重要的低聚糖 ➢ 具有特殊功能的低聚糖 ➢ 环状低聚糖
食品中重要的低聚糖——麦芽糖
淀粉水解后得到的二糖
具有潜在的游离醛基,是一种还原糖
温和的甜味剂
糖苷配基
D-葡萄糖
—1,4
食品中重要的低聚糖——乳糖
牛乳中的还原性二糖 发酵过程中转化为乳酸 在乳糖酶作用下水解 乳糖不耐症
乳糖不耐症
乳糖保留在小肠肠腔内,由于渗透压的作用,乳糖 有将液体引向肠腔的趋势,产生腹胀和痉挛。
乳糖不耐症随着年龄增大而加重。 有两种方法可以克服乳糖酶缺乏的影响,
一种方法是通过发酵如在生产酸奶和乳制品时除去乳糖 另一种方法是加入乳糖酶减少乳中乳糖。
食品中重要的低聚糖——蔗糖
α-葡萄糖和β-果糖头头相连
相关文档
最新文档