八年级数学第十二章知识点总结
2023八年级数学上册第十二章分式和分式方程12
10
= -1的解为x=4.
+1 +1
(1)⑤
6
12
⑥+1=+1-1的解为x=5.
2
(2)第n个方程:+1=+1-1的解为x=n-1.
验证:方程两边同乘x+1,得n=2n-(x+1),
解得x=n-1.
经检验,x=n-1是原分式方程的解.
一题练透
分式方程的解与字母参数
−3
1
已知关于x的分式方程 −2 +1=2−.
答案
4.a≥1且a≠2
方程两边同乘x-1,得a-2=x-1,解得x=a-1,由方程的解为非负数,得a-1≥0,
解得a≥1,因为x≠1,所以a-1≠1,所以a≠2,所以a的取值范围是a≥1且a≠2.
2−
−2+
5. [2021达州中考]若分式方程 −1 -4= +1 的解为整数,则整数a=
−2 16
依题意,令+2- 2 −4=1,
方程两边同乘(x+2)(x-2),
得(x-2)2-16=(x+2)(x-2),
解得x=-2.
检验:当x=-2时,(x+2)(x-2)=0.
所以x=-2不是原分式方程的解,
所以原分式方程无解,
−2 16
所以不存在数x,使得式子+2- 2 −4的值等于1.
答案
7.解:(1)方程两边同乘(x+2)(x+1),
得x(x+1)-(x+2)=(x+2)(x+1),
化简,得x2-2=x2+3x+2,
4
解得x=-3.
人教版初中数学八年级上册第十二章角的平分线的性质(第2课时)
结
OP平分∠AOB
PD=PE
已知 条件
PD⊥OA于D
PE⊥OB于E
PD⊥OA于D PE⊥OB于E
结论 PD=PE
OP平分∠AOB
巩固练习
12.3 角的平分线的性质/
到三角形三边距离相等的点是( C ) A.三边垂直平分线的交点 B.三条高所在直线的交点 C.三条角平分线的交点 D.三条中线的交点 如图,河南岸有一个工厂在公路西侧,工厂到公路的距 离与到河岸的距离相等,并且与B的距离为300 m,则工 厂的位置在哪里?
∠BOC=180°-70°=110°.
探究新知 方法点拨
12.3 角的平分线的性质/
由已知,O 到三角形三边的距离相等,得 O是三角形三条内角平分线的交点,再利用三
角形内角和定理即可求出∠BOC的度数.
探究新知
12.3 角的平分线的性质/ 角的平分线的性质 角的平分线的判定
归
图形
纳
C P
C P
总
课堂检测
12.3 角的平分线的性质/
能力提升题
如图,已知∠CBD和∠BCE的平分线相交于点F,求证:点F在
∠DAE的平分线上.
E
证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M. G
∵点F在∠BCE的平分线上,FG⊥AE, FM⊥BC.
C
∴FG=FM.
又∵点F在∠CBD的平分线上,
M
F
知识点 2 三角形的内角平分线
分别画出下列三角形三个内角的平分线,你发现了什么?
发现:三角形的三条角平分线相交于一点.
探究新知
12.3 角的平分线的性质/
分别过交点作三角形三边的垂线,用刻度尺量一量,每组
人教版八年级数学上册 第十二章 全等三角形 知识点归纳
人教版八年级数学上册第十二章全等三角形知识点归纳12.1全等三角形经过平移、翻折、旋转,能够完全重合的两个图形叫做全等形。
经过平移、翻折、旋转,能够完全重合的两个三角形叫作全等三角形。
全等用符号“≌”表示,读作“全等于”。
例1、△ABC≌△DEF读作:三角形ABC全等于三角形DEF。
把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
用“≌”表示两个图形全等的时候,必须把对应的顶点写在对应的位置上。
例2、已知△ABC≌△DEF,那么就说明:①点A对应点D,点B对应点E,点C对应点F②∠A=∠D,∠B=∠E,∠C=∠F③AB=DE,AC=DF,BC=EF用“全等于”这个词表示两个图形全等的时候,顶点不一定有一一对应关系。
例3、已知△ABC全等于△DEF,那么点A不一定对应D,点A也可能对应点E或者点F 。
全等三角形的性质:①对应边相等②对应角相等③角平分线、中线、高分别对应相等④周长相等⑤面积相等12.2三角形全等的判定全等三角形的判定依据:①三边对应相等的两个三角形全等,简称“边边边”或“SSS ”。
②两边一夹角对应相等的两个三角形全等,简称“边角边”或“SAS ”。
③两角一夹边对应相等的两个三角形全等,简称“角边角”或“ASA ”。
④两角一对边对应相等的两个三角形全等,简称“角角边”或“AAS ”。
⑤一条斜边和一条直角边对应相等的两个直角三角形全等,简称“斜边直角边”或“HL ”。
温馨提示:“SSA ”和“AAA ”不能证明两个三角形全等。
全等三角形的证明格式:SSS 、SAS 、ASA 、AAS 的证明格式: HL 的证明格式:在△ABC 与△DEF 中 在Rt △ABC 与Rt △DEF 中∵{ 条件1条件2条件3∵{条件1条件2 ∴△ABC ≌△DEF (条件) ∴△ABC ≌△DEF (HL )12.3角的平分线的性质如果从一个角的顶点引出一条射线把这个角分成两个相等的角,那么这条射线叫做这个角的角平分线。
八年级数学第十二章知识点总结
八年级数学第十二章知识点总结八年级数学第十二章是一个较难的章节,本文将对这一章的知识点进行总结,以便广大学生更好地掌握这些知识,提高数学成绩。
一、整式的加减整式的加减是本章的重点内容,需要掌握以下几个知识点:1. 同类项的概念:同类项是指具有相同代数式(包括字母和次数)的代数式,例如2x、3x等是同类项。
2. 整式的加减法原则:将同类项合并,系数相加减,并注意化简的步骤。
3. 带括号的整式的加减:先将括号中的整式按照同类项的原则进行合并,再按照整式的加减法原则进行运算,最后再化简。
二、一元二次方程一元二次方程也是本章的难点,需要掌握以下几个知识点:1. 一元二次方程的概念:形如ax²+bx+c=0(其中a≠0)的代数式称为一元二次方程。
2. 解一元二次方程的方法:可以用因式分解法、配方法、公式法等方法解一元二次方程。
3. 一元二次方程实际应用:在实际生活中,一元二次方程可以用来解决一些实际问题,例如小明买了5元一袋的糖果,但他只有16元,他最多能买几袋糖果等等。
三、立体几何图形立体几何图形也是需要掌握的知识点,需要掌握以下几个知识点:1. 立体图形的分类:立体图形主要有以下几类:点、线、面、体,分别对应零维、一维、二维、三维。
2. 立体几何图形的基本概念:包括各种图形的面积、体积、表面积等重要概念。
3. 立体几何图形的应用:在实际生活中,立体几何图形也有很多应用,例如建筑、工程等。
四、概率概率是本章的最后一个重点内容,需要掌握以下几个知识点:1. 随机事件的概念:任何有多种可能结果的事件都称为随机事件。
2. 概率的概念:概率是指某一随机事件在总事件中出现的可能性大小。
3. 概率的计算方法:概率的计算方法主要有古典概型、几何概型、统计概型等方法。
以上是八年级数学第十二章的主要知识点,需要同学们认真学习并反复练习,才能真正掌握这些知识,提高数学成绩。
八年级数学上册第十二章知识点
八年级数学上册第十二章知识点一、三角形的定义和分类1.三角形的定义:由三条线段组成的封闭图形称为三角形,简称三角。
2.三角形的分类:(1)按照边长的关系分为等边三角形、等腰三角形和普通三角形。
(2)按照角度的大小关系分为锐角三角形、直角三角形和钝角三角形。
(3)按照角度的性质分为等角三角形和不等角三角形。
3.三角形的性质:(1)三角形的三条边和三个角度都有对应关系,即一条边对应一个角度,一个角度对应一条边。
(2)三角形内部的任意一点到三角形三个定点的距离之和等于三边长。
(3)三角形内部的任意一条中线将三角形分成两个面积相等的三角形。
(4)三角形内部的任意一条高线将三角形分成两个面积相等的三角形。
二、勾股定理和三角函数1.勾股定理:直角三角形中,斜边的平方等于两直角边平方和。
即:c2=a2+b2,其中c为斜边,a、b为直角边。
2.三角函数:(1)正弦函数:在直角三角形中,对于一个锐角$\\theta$,它的正弦值等于对边与斜边的比值。
即:$\\sin\\theta=\\dfrac{\\text{对边}}{\\text{斜边}}$。
(2)余弦函数:在直角三角形中,对于一个锐角$\\theta$,它的余弦值等于邻边与斜边的比值。
即:$\\cos\\theta=\\dfrac{\\text{邻边}}{\\text{斜边}}$。
(3)正切函数:在直角三角形中,对于一个锐角$\\theta$,它的正切值等于对边与邻边的比值。
即:$\\tan\\theta=\\dfrac{\\text{对边}}{\\text{邻边}}$。
三、三角函数的计算和使用1.计算正弦、余弦和正切:(1)已知一个角$\\theta$和一条边,可以利用三角函数计算另一个角和两条边。
(2)已知两条边,可以利用三角函数计算另一个角和另一条边。
(3)已知三个角,可以利用三角函数计算三条边。
2.应用三角函数:(1)求角度:利用正弦、余弦和正切可以求出角度。
人教版初中八年级数学上册第十二章《全等三角形》知识点总结(含答案解析)(1)
一、选择题1.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒D解析:D【分析】 根据三角形全等的性质与路程、速度、时间的关系式求解.【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CP BD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩, 解之得:14t v =⎧⎨=⎩, ∴点Q 的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.2.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A 、添加BD =CE ,可以利用“边角边”证明△ABD 和△ACE 全等,再根据全等三角形对应角相等得到∠DAB =∠EAC ,故本选项不符合题意;B 、添加AD =AE ,根据等边对等角可得∠ADE =∠AED ,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB =∠EAC ,故本选项不符合题意;C 、添加BE =CD 可以利用“边角边”证明△ABE 和△ACD 全等,再根据全等三角形对应角相等得到∠BAE=∠CAD ,可得∠DAB =∠EAC ,故本选项不符合题意;D 、添加DA =DE 无法求出∠DAB =∠EAC ,故本选项符合题意.故选:D .【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .7C解析:C【分析】 先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.4.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA C解析:C【分析】 根据题中的已知条件确定有三组边对应相等,由此证明△OMC ≌△ONC(SSS),即可得到结论.【详解】在△OMC 和△ONC 中,OM ON CM CN OC OC =⎧⎪=⎨⎪=⎩, ∴△OMC ≌△ONC(SSS),∴∠MOC=∠NOC ,∴射线OC 即是∠AOB 的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.5.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°B解析:B【分析】根据正方形的性质得到AB=AD ,∠BAD=90︒,由旋转的性质推出ADE ≌ABF ,求出∠FAE=∠BAD=90︒,即可得到答案.【详解】∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90︒,由旋转得ADE ≌ABF ,∴∠FAB=∠EAD ,∴∠FAB+∠∠BAE=∠EAD+∠BAE ,∴∠FAE=∠BAD=90︒,∴旋转角的度数是90︒,故选:B .【点睛】 此题考查旋转的性质,全等三角形的性质,熟记全等三角形的性质是解题的关键. 6.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ B 解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,∴点P 到OB 的距离为5,∵点Q 是OB 边上的任意一点,∴PQ≥5.故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF C解析:C【分析】 由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.8.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A 、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键. 9.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A .OA =OBB .AC =BC C .∠A =∠BD .∠1=∠2B解析:B【分析】根据题意可以得到∠AOC=∠BOC,OC=OC,然后即可判断各个选项中条件是否能判定△AOC≌△BOC,从而可以解答本题.【详解】解:由已知可得,∠AOC=∠BOC,OC=OC,∴若添加条件OA=OB,则△AOC≌△BOC(SAS),故选项A不符合题意;若添加条件AC=BC,则无法判断△AOC≌△BOC,故选项B符合题意;若添加条件∠A=∠B,则△AOC≌△BOC(AAS),故选项C不符合题意;若添加条件∠1=∠2,则∠ACO=∠BCO,则△AOC≌△BOC(ASA),故选项D不符合题意;故选:B.【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.10.如图,△ACB≌△A'CB',∠BCB'=25°,则∠ACA'的度数为()A.35°B.30°C.25°D.20°C解析:C【分析】利用全等三角形的性质可得∠A′CB′=∠ACB,再利用等式的性质可得答案.【详解】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB,∴∠A′CB′-∠A′CB=∠ACB-∠A′CB,∴∠ACA′=∠BCB′=25°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应角相等.二、填空题11.如图,AC=BC,请你添加一个条件,使AE=BD.你添加的条件是:________.∠A=∠B或CD=CEAD=BE∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可【详解】解:因为AC=BC∠C=∠C所以添加∠A=∠B或CD=CEAD=BE∠AEC=∠BDC可得△ADC与△解析:∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可.【详解】解:因为AC=BC,∠C=∠C,所以添加∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC,可得△ADC与△BEC全等,利用全等三角形的性质得出AD=BE,故答案为:∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.0,3,另12.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C的坐标为()8,8,则点A的坐标为____________一个顶点B的坐标为()(5-5)【分析】根据余角的性质可得∠BCP=∠CAQ根据全等三角形的判定与性质可得AQCQ根据线段的和差可得OQ可得答案【详解】解:作BP⊥y轴AQ⊥y轴如图∴∠BPC=∠AQC=90°∵BC=A解析:(5,-5)【分析】根据余角的性质,可得∠BCP=∠CAQ,根据全等三角形的判定与性质,可得AQ,CQ,根据线段的和差,可得OQ,可得答案.【详解】解:作BP⊥y轴,AQ⊥y轴,如图,∴∠BPC=∠AQC=90°∵BC=AC,∠BCA=90°,∴∠BCP+∠ACQ=90°.又∠CAQ+∠ACQ=90°∴∠BCP=∠CAQ .在△BPC 和△CQA 中,BPC CQA BCP CAQ BC AC ∠∠⎧⎪∠∠⎨⎪⎩=== Rt △BPC ≌Rt △ACQ (AAS ),AQ=PC=8-3=5;CQ=BP=8.∵QO=QC-CO=8-3=5,∴A (5,-5),故答案为:(5,-5).【点睛】本题考查了坐标与图形,全等三角形的判定与性质,利用全等三角形的判定与性质得出AQ ,CQ 是解题关键.13.如图,在ABC 中,=6AB ,=4AC ,点D ,E 分别在边AB ,AC 上,2BD AE CE ===,//CE AB 交DE 的延长线于点F ,则CF 的长为_____________.4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD 再求出AD 的长即可【详解】解:∵AB=6BD=2∴AD=AB-BD=6-2=4∵∴∠BAC=∠FCE 在△ADE 和△CFE 中∴△ADE ≌△CFE ∴解析:4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD ,再求出AD 的长即可.【详解】解:∵AB=6,BD=2∴AD=AB-BD=6-2=4∵//CE AB∴∠BAC=∠FCE ,在△ADE 和△CFE 中BAC FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CFE∴CF=AD=4.故答案为:4.【点睛】此题主要考查了全等三角形的判定与性质,证明△ADE ≌△CFE 是解答此题的关键.14.如图,在Rt ABC △中,90B ∠=︒,12AB =,5BC =,射线AP AB ⊥于点A ,点E 、D 分别在线段AB 和射线AP 上运动,并始终保持DE AC =,要使ABC 和DAE △全等,则AE 的长为______.5或12【分析】本题要分情况讨论:①Rt △ABC ≌Rt △DAE此时AE=BC=5可据此求出E 点的位置②Rt △CBA ≌Rt △DAE 此时AE=AB=12EB 重合【详解】解:①当AE=CB 时∵∠B=∠EA解析:5或12【分析】本题要分情况讨论:①Rt △ABC ≌Rt △DAE ,此时AE=BC=5,可据此求出E 点的位置.②Rt △CBA ≌Rt △DAE ,此时AE=AB=12,E 、B 重合.【详解】解:①当AE=CB 时,∵∠B=∠EAP=90°,在Rt △ABC 与Rt △DAE 中,AE CB DE AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △DAE (HL ),即AE=BC=5;②当E 运动到与B 点重合时,AE=AB ,在Rt △CBA 与Rt △DAE 中,AE AB DE AC =⎧⎨=⎩, ∴Rt △CBA ≌Rt △DAE (HL ),即AE=AB=12,∴当点E 与点B 重合时,△CBA 才能和△DAE 全等.综上所述,AE=5或12.故答案为:5或12.【点睛】本题考查了三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.15.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.AB//CD 【分析】先利用SSS 证明△ABF ≌△CDE 然后根据全等三角形的性质得到∠DCE=∠BAF 最后根据内错角相等两直线平行即可解答【详解】解:∵AE=CF ∴AE+EF=CF+EF 即AF=EC 在解析:AB//CD【分析】先利用SSS 证明△ABF ≌△CDE ,然后根据全等三角形的性质得到∠DCE=∠BAF ,最后根据内错角相等、两直线平行即可解答.【详解】解:∵AE=CF ,∴AE+EF=CF+EF,即AF=EC在△ABF 和△CDE 中,,,,AB CD AF EC BF DE =⎧⎪=⎨⎪=⎩∴△ABF ≌△CDE (SSS ),∴∠DCE=∠BAF .∴AB//CD .故答案为:AB//CD .【点睛】本题主要考查了全等三角形的判定与性质以及平行线的判定,运用全等三角形的知识得到∠DCE=∠BAF 成为解答本题的关键.16.如图所示,己知ABC ∆的周长是22,,OB OC 分别平分ABC ∠和ACB OD BC D ∠⊥,于,且3OD =,则ABC ∆的面积是__________.【分析】连接OA 过O 作OE ⊥AB 于EOF ⊥AC 于F 根据角平分线上的点到角的两边的距离相等可得点O 到ABACBC 的距离都相等(即OE =OD =OF )从而可得到△ABC 的面积等于周长的一半乘以3代入求出即 解析:33【分析】连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,根据角平分线上的点到角的两边的距离相等可得点O 到AB 、AC 、BC 的距离都相等(即OE =OD =OF ),从而可得到△ABC 的面积等于周长的一半乘以3,代入求出即可.【详解】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D∴OE=OF=OD=3,∵△ABC的周长是22,∴S△ABC=12×AB×OE+12×BC×OD+12×AC×OF=12×(AB+BC+AC)×3=12×22×3=33.故答案为:33.【点睛】本题考查了角平分线的性质和三角形的面积求法,熟知角平分线的性质,并根据题意合理添加辅助线是解题关键.17.如图,△ABC的面积为1cm2,AP垂直∠ABC的平分线BP于P,则△PBC的面积为___.cm2【分析】如图延长AP交BC于T利用全等三角形的性质证明AP=PT即可解决问题【详解】解:如图延长AP交BC于T∵BP⊥AT∴∠BPA=∠BPT=90°∵BP=BP∠PBA=∠PBT∴△BPA≌解析:12cm2【分析】如图,延长AP交BC于T.利用全等三角形的性质证明AP=PT即可解决问题.【详解】解:如图,延长AP交BC于T.∵BP ⊥AT ,∴∠BPA=∠BPT=90°,∵BP=BP ,∠PBA=∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA=PT ,∴BPA BPT CAP CPT S S S S ==, 1122PBC ABC S S ∴==, 故答案为12cm 2. 【点睛】 本题考查全等三角形的判定和性质,三角形的面积,等高模型等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题.18.如图,△ACB 和△DCE 中,AC =BC ,∠ACB =∠DCE =90°,∠ADC =∠BEC ,若AB =17,BD =5,则S △BDE =_______.30【分析】根据∠ACB =∠DCE =90°可得∠ACD =∠BCE 利用三角形全等判定可得△ACD ≌△BCE 则BE =AD ∠DAC =∠EBC 再证明∠DBE =90°根据三角形面积计算公式便可求得结果【详解】解析:30【分析】根据∠ACB =∠DCE =90°,可得∠ACD =∠BCE ,利用三角形全等判定可得△ACD ≌△BCE ,则BE =AD ,∠DAC =∠EBC ,再证明∠DBE =90°,根据三角形面积计算公式便可求得结果.【详解】解:∵∠ACB =∠DCE =90°,∴∠ACB -∠DCB =∠DCE -∠DCB .即∠ACD =∠BCE .∵AC =BC ,∠ADC =∠BEC ,∴△ACD ≌△BCE .∴BE =AD ,∠DAC =∠EBC .∵∠DAC +∠ABC =90°,∴∠EBC +∠ABC =90°.∴△BDE 为直角三角形.∵AB =17,BD =5,∴AD =AB -BD =12.∴S △BDE =12BD ⋅BE =30. 故答案为:30.【点睛】本题考查了全等三角形的判定与性质,通过分析题意找出三角形全等的条件并能结合全等性质解决相应的计算问题是解题的关键.19.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______.【分析】如图延长AD 至点E 使得DE=AD 可证△ABD ≌△CDE 可得AB=CEAD=DE 在△ACE 中根据三角形三边关系即可求得AE 的取值范围即可解题【详解】解:延长AD 至点E 使得DE=AD ∵点D 是BC解析:15a <<【分析】如图延长AD 至点E ,使得DE=AD ,可证△ABD ≌△CDE ,可得AB=CE ,AD=DE ,在△ACE 中,根据三角形三边关系即可求得AE 的取值范围,即可解题.【详解】解:延长AD 至点E ,使得DE=AD ,∵点D 是BC 的中点,∴BD=CD在△ABD 和△CDE 中,AD DE ADB CDE BD CD ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CDE (SAS ),∴AB=CE ,∵△ACE 中,AC-CE <AE <AC+CE ,即:AC-AB <AE <AC+AB ,∴2<AE <10,∴1<AD <5.故答案为:1<AD <5.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD ≌△CDE 是解题的关键.20.如图,ABC ∆的两条高AD 、CE 交于点H ,已知6EH EB ==,8AE =,则ACH ∆的面积为______.8【分析】由题意可得进而证明结合已知条件证明故根据分别求出与的面积即可【详解】在和中故答案为:【点睛】本题主要考查全等三角形的判定与性质熟记全等三角形的判定定理是解题关键解析:8【分析】由题意可得90ADC CEA ∠=∠=︒,进而证明EAH HCD ∠=∠,结合已知条件证明BEC HEA ∆≅∆,故8EC EA == ,根据AHC AEC AEH S S S ∆∆∆=-分别求出AEH S ∆与AEC S ∆的面积即可.【详解】AD BC ⊥,CE AB ⊥,90ADC CEA ∴∠=∠=︒,AHE CHD ∠=∠,EAH CEH HCD ADC ∴∠+∠=∠+∠,EAH HCD ∴∠=∠,在BEC △和HEA △中,90BEC HEA HCD EAHEB EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()BEC HEA AAS ∴≅,EC EA ∴=,8EA =,8EC ∴=,6EH =,11862422AEH S AE EH ∆∴=⨯⋅=⨯⨯=, 11883222AEC S AE EC ∆=⋅=⨯⨯=,32248AHC AEC AEH S S S ∆∆∆∴=-=-=.故答案为:8.【点睛】本题主要考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题关键.三、解答题21.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.解析:见解析【分析】根据ASA 定理证明三角形全等,从而利用全等三角形的性质求解.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;∵AF BD ⊥,CE BD ⊥∴∠AFD=∠CEB=90°∵//AD CB∴∠B=∠D在Rt △ADF 和Rt △BCE 中B D DF BE AFD CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △ADF ≌Rt △BCE∴AF CE =【点睛】本题考查了三角形全等的判定及性质;由DE=BF 通过等式的性质得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.22.如图,AD CB =,AB CD =.求证:ABC CDA ∠=∠.解析:见解析【分析】根据SSS 可证明△ABD ≌△CDB ,即可得∠ABD =∠CDB ,∠ADB =∠CBD ,进而可证明结论.【详解】在ABD ∆和CDB ∆中AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩()ABD CDB SSS ∴∆≅∆ABD CDB ∴∠=∠ADB CBD ∠=∠ABC ABD CBD ∠=∠-∠CDA CDB ADB ∠=∠-∠ABC CDA ∴∠=∠【点睛】本题主要考查全等三角形的性质与判定,利用SSS 证明△ABD ≌△CDB 是解题的关键. 23.已知:如图,BAD CAE ∠=∠,AB AD =,AC AE =.(1)求证:ABC ADE △≌△.(2)若42,86B C ∠=︒∠=︒,求DAE ∠的度数.解析:(1)详见解析;(2)52︒【分析】(1)先证明∠BAC=∠DAE ,即可根据SAS 证得结论;(2)根据三角形内角和定理求出∠BAC 的度数,再根据全等三角形的性质得到答案.【详解】(1)∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC .即∠BAC=∠DAE .在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴ABC ADE △≌△;(2)∵42,86B C ∠=︒∠=︒,∴18052BAC B C ∠=︒-∠-∠=︒.∵ABC ADE △≌△,∴52DAE BAC ∠=∠=︒.【点睛】此题考查全等三角形的判定及性质,三角形内角和定理,熟记三角形全等的判定定理是解题的关键.24.阅读下面材料:学习了三角形全等的判定方法(即“SAS ”“ASA ”“AAS ”“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为在ABC 和DEF 中,AC DF =,BC EF =,B E ∠=∠.小聪的探究方法是对B 分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当B 是直角时,如图1,在ABC 和DEF 中,AC DF =,BC EF =,90B E ∠=∠=︒,根据“HL ”定理,可以知道Rt Rt ABC DEF ≌△△. 第二种情况:当B 是锐角时,如图2,90B E ∠=∠<︒,BC EF =.(1)在射线EM 上是否存在点D ,使DF AC =?若存在,请在图中作出这个点,并连接DF ;若不存在,请说明理由;(2)这种情形下,ABC 和DEF 的关系是 (选填“全等”“不全等”或“不一定全等”);第三种情况:当B 是钝角时,如图3,在ABC 和DEF 中,AC DF =,BC EF =,90B E ∠=∠>︒.(3)请判断这种情形下,ABC 和DEF 是否全等,并说明理由.解析:(1)存在,见解析;(2)不一定全等;(3)全等,见解析【分析】(1)根据尺规作图的方法画出图形即可.(2)根据题(1)所得两种情况及全等三角形的判定即可求解;(3)第三种情况:如图所示,过点C 作AB 边的垂线交AB 的延长线于点M ,过点F 作DE 边的垂线交DE 的延长线于N,先证明△CMA ≌△FND ,推出AM =DN ,推出AB =DE ,再证明△ABC ≌△DEF 即可.【详解】解:(1)存在,如图所示.射线EM 上有两个点满足要求.(2)不一定全等.如题(1)所示:由于满足条件的D 有两个,故△ABC 和△DEF 不一定全等,故答案为:不一定全等;(3)△ABC 和△DEF 全等.理由如下:如图所示,过点C 作AB 边的垂线交AB 的延长线于点M ,过点F 作DE 边的垂线交DE 的延长线于N .∵ABC DEF ∠=∠,∴CBM FEN ∠=∠.∵CM AB ⊥,FN DE ⊥,∴90CMB FNE ∠=∠=︒.在△CBM 和△FEN 中,∵,,,CMB FNE CBM FEN BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CBM ≌△FEN (AAS ).∴BM EN =,∴CM FN =.在Rt △ACM 和Rt △DFN 中,∵,,AC DF CM FN =⎧⎨=⎩∴Rt △ACM ≌Rt △DFN (HL ).∴AM DN =,∴AM BM DN EN -=-,即AB DE =.又∵BC EF =,∴△ABC 和△DEF (SSS ).【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,学会作辅助线,难度适中.25.OAB 和ODE 均为等腰三角形,且AOB DOE β∠=∠=,OA OB =,OD OE =,连接AD 、BE ,它们所在的直线交于点F .(1)观察发现:如图1,当60β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______;(2)探究证明:如图2,当90β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______,根据图2证明你的猜想;(3)拓展推广:当β为任意角时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______.(用含β的式子表示)解析:(1)AD BE =,60°;(2)AD BE =,90°,理由见解析;(3)AD BE =,β【分析】(1)设AF 交BD 于G ,证明AOD BOE ≌△△,推出AD BE =,OAD OBE ∠=∠,得到60AFB AOB ∠=∠=︒;(2)证明AOD BOE ≌△△,推出AD BE =,OAD OBE ∠=∠,根据OFA DFB ∠=∠及三角形内角和定理即可证得90AFB AOB ∠=∠=︒;(3)根据(1)与(2)直接得到结论.【详解】(1)证明:设AF 交BO 于G ,∵60AOB DOE ∠=∠=︒,∴AOB BOD DOE BOD ∠-∠=∠-∠,即AOD BOE ∠=∠,∵OA OB =,OD OE =,∴AOD BOE ≌△△,∴AD BE =,OAD OBE ∠=∠,∵OGA FGB ∠=∠,∴180180OGA OAD FGB OBE ∠-∠=∠--∠︒-︒,∴60AFB AOB ∠=∠=︒, 故答案为:AD BE =,60°;(2)AD BE =,90°证明:设AF 交BO 于G ,∵90AOB DOE ︒∠=∠=,∴AOB BOD DOE BOD ∠+∠=∠+∠,即AOD BOE ∠=∠,∵OA OB =,OD OE =,∴AOD BOE ≌△△,∴AD BE =,OAD OBE ∠=∠,∵OGA DGB ∠=∠,∴90AFB AOB ∠=∠=︒;故答案为:AD BE =,90°;(3)证明:由(1)与(2)可得AD BE =,AFB AOB β∠=∠=故答案为:AD BE =,β.【点睛】此题考查全等三角形的判定及性质,等腰三角形的性质,熟练掌握全等三角形的判定及性质是解题的关键.26.已知在ABC 中,90ACB ∠=︒,AC BC =,直线l 绕点C 旋转,过点A 作AD l ⊥于D ,过点B 作BE l ⊥于E ,若6AD =,3BE =,画图并直接写出DE 的长. 解析:图见解析,9DE =或3DE =【分析】分直线l 不经过线段AB 和直线l 经过线段AB 两种情况画图,证明△ACD ≌△CBE 即可求出DE 的长.【详解】解:如图1∵AD l ⊥于D , BE l ⊥于E ,∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=90°,∵90ACB ∠=︒,∴∠BCE+∠DCA=90°,∴∠DAC=∠ECB在△ACD 和△CBE 中,===ADC CEB DAC ECB AC CB ∠∠⎧⎪∠∠⎨⎪⎩,∴ △ACD ≌△CBE∴AD=CE=6,DC=EB=3,∴DE=DC+CE=9;如图2,∵AD l ⊥于D , BE l ⊥于E ,∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=90°,∵90ACB ∠=︒,∴∠BCE+∠DCA=90°,∴∠DAC=∠ECB在△ACD 和△CBE 中,===ADC CEB DAC ECB AC CB ∠∠⎧⎪∠∠⎨⎪⎩,∴ △ACD ≌△CBE∴AD=CE=6,DC=EB=3,∴DE=CE-CD=3;∴9DE =或3DE =.【点睛】本题考查了全等三角形的判定与性质,根据题意分类画图证明全等三角形是解题关键. 27.如图,BC ⊥AD 于C ,EF ⊥AD 于F ,AB ∥DE ,分别交BC 于B ,交EF 于E ,且BC =EF .求证:AF =CD .解析:证明见解析.【分析】由BC ⊥AD ,EF ⊥AD 得∠EFD =∠BCA =90°,由AB ∥DE ,得∠D =∠A ,又BC =EF ,从而△ABC ≌△DEF ,则AC =FD , AF =CD .【详解】证明:∵BC ⊥AD ,EF ⊥AD ,∴∠EFD =∠BCA =90°∵AB ∥DE ,∴∠D =∠A∵BC =EF ,∴△ABC ≌△DEF ,∴AC =FD ,∴AF =CD .【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键. 28.已知:如图,AC =BD ,BD ⊥AD 于点D ,AC ⊥BC 于点C .求证:∠ABC =∠BAD .解析:详见解析【分析】利用HL 证明Rt △ABD ≌Rt △BAC ,即可得到结论.【详解】∵BD ⊥AD ,AC ⊥BC ,∴∠D=∠C=90︒,在Rt △ABD 和Rt △BAC 中,AB BA BD AC =⎧⎨=⎩, ∴Rt △ABD ≌Rt △BAC (HL ),∴∠ABC =∠BAD .【点睛】此题考查全等三角形的判定及性质,根据题中的已知条件确定两个三角形的对应相等的条件,根据全等的判定定理证得这两个三角形全等是解题的关键.。
八年级数学上册知识点总结(第十二单元)
第十二章全等三角形编者:肖潇全等三角形1. 全等形能够完全重合的两个图形叫做全等形。
2. 全等三角形能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角,如△ABC与△A′B′C′全等,且A和A′,B 和B′分别是对应顶点,记作△ABC≌△A′B′C′,读作△ABC全等于△A′B′C′。
3. 全等三角形的性质全等三角形的对应边相等,对应角相等。
三角形全等的判定三角形全等的条件边边边(SSS)边角边(SAS)角边角(ASA)角角边(AAS)斜边、直角边(HL)1. 三边对应相等的两个三角形全等.2. 两边和它们的夹角对应相等的两个三角形全等.3. 两角和它们的夹边对应相等的两个三角形全等.4. 两角和其中一角的对边对应相等的两个三角形全等.5. 斜边和一条直角边对应相等的两个直角三角形全等.11三角形全等条件的选择,其基本思路如下:已知条件可选择的判定方法一边和一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS书写格式:在证明三角形全等的过程中应该指明在哪对三角形中,将证明三角形全等的条件用大括号括起来,并在最后全等后的括号里写上你所用的判定方法。
例如:在△ABC和△A′B′C′中AB=A′BC=B′AC=A′∴△ABC≌△A′B′C′(SSS)重点题:Page 18 题3;Page 19 题12;Page 20 题4,8;Page 21 题12;Page 22 题4;Page 23 题14,15,16;Page 24 题3,6,10角平分线的性质(1)掌握角平分线的作法(见课本19页)(2)角平分线的性质22角平分线上的点到角的两边的距离相等。
角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。
技巧:凡是遇到关于角平分线的题,首先就应该想到过角平分线上一点作角的两边的垂线段。
作垂线段的格式一般是:过某一点作“什么”垂直于“什么”于点“什么(垂足)”,一定要指明垂足。
最新人教版八年级数学上册 第12章 章目标总结
第十二章全等三角形
本章内容主要包括全等三角形、三角形全等的判定、角的平分线的性质.
上一章我们通过推理论证得到了三角形的内角和定理等重要结论.本章中,推理论证将发挥更大的作用.本章通过证明三角形全等来证明线段相等或角相等,并由此推出了角的平分线的性质.在中考中,全等三角形的性质与判断是考查的热点之一.角的平分线的性质一般不单独考查,多结合三角形或多边形的性质进行考查.
【本章重点】
全等三角形的性质与判定、角平分线的性质.
【本章难点】
全等三角形的几种判定方法的选择.
【本章思想方法】
1.体会和掌握分类讨论思想.如:已知两个三角形全等,但不清楚对应边和对应角,这个时候就要用到分类讨论思想,要考虑到所有的情况.
2.体会转化的数学思想.如:在解决与全等三角形有关的实际问题时,一般需要先将实际问题转化为全等三角形问题,进而解决问题.
12.1全等三角形1课时
12.2三角形全等的判定4课时
12.3角的平分线的性质2课时。
八年级数学上册第12章一次函数知识点总结沪科版
八年级数学上册第12章一次函数知识点总结新版沪科版第十二章一次函数一、确定函数自变量的取值范围1、自变量以整式形式出现,自变量的取值范围是全体实数;2、自变量以分式形式出现,自变量的取值范围是使分母不为0的数;3、自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于0(即被开方数≥0)的数;自变量以奇次方根形式出现,自变量的取值范围是全体实数。
4、自变量出现在零次幂或负整数次幂的底数中,自变量的取值范围是使底数不为0的数。
(说明:(1)当一个函数解析式含有几种代数式时,自变量的取值范围是各个代数式中自变量取值范围的公共部分;(2)当函数解析式表示具有实际意义的函数时,自变量取值范围除应使函数解析式有意义外,还必须符合实际意义.)二、一次函数1、一般形式:y=k x+b(k、b为常数,k≠0),当b=0时,y=k x (k≠0),此时y是x的正比例函数。
2、一次函数的图像与性质3、确定一次函数图像与坐标轴的交点(1)与x 轴交点:)0,(kb,求法:令y=0,求x ;(2)与y 轴交点:(0,b ),求法:令x=04、确定一次函数解析式—-—待定系数法确定一次函数解析式,只需x 和y 的两对对应值即可求解。
具体求法为:(1)设函数关系式为:y=k x +b ;(2)代入x 和y 的两对对应值,得关于k 、b 的方程组; (3)解方程组,求出k 和b.5、k 和b 的意义(1)∣k ∣决定直线的“平陡”。
∣k ∣越大,直线越陡(或越靠近y 轴);∣k ∣越小,直线越平(或越远离y 轴);(2)b 表示在y 轴上的截距。
(截距与正负之分)6、由一次函数图像确定k 、b 的符号 (1)直线上升,k>0;直线下降,k 〈0;(2)直线与y 轴正半轴相交,b 〉0;直线与y 轴负半轴相交,b<07、两条直线的位置关系222111b x k y l b x k y l +=+=:和直线:直线{{有无数交点)与重合(与)(没有交点)与平行(与)(有且只有一个交点)与相交(与)(2121212121212121212121321l l l l l l l l l l l l k k k k b b k k b b ⇔⇔⇔≠===≠8、x=a 和y=b 的图象x=a 的图象是经过点(a,0)且垂直于x 轴的一条直线; y=b 的图象是经过点(0 ,b )且垂直于y 轴的一条直线。
(完整word版)最新苏教版八年级下册数学第十二章二次根式知识点
第十二章二次根式一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成2232 。
二、二次根式的性质:★( a )2(a≥0)与a2的区别与联系:三、代数式用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫代数式。
例:3,x,x+y,3x (x≥0),-ab,st(t≠0,x3都是代数式注(1)单独一个数或字母也是代数式;(2)代数式中不能含有关系符号(>,<,=等)(1)将两个代数式用关系符号(>,<,=等)连接起来的式子叫关系式,方程和不等式都是关系式。
如2x+3>3x-5是关系式。
列代数式的常用方法:(1)直接法:根据问题的语言叙述直接写出代数式。
(2)公式法:根据公式列出代数式。
(3)探究规律法:将蕴含在一组数或一组图形中的排列规律用代数式表示出来。
四、二次根式的乘除1、单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2、单项式与单项式相除,把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
五、二次根式的乘法法则a .b =ab (a≥0,b≥0)即:二次根式相乘,把被开方数相乘,根指数不变(1)进行二次根式的乘法运算时,一定不能忽略其被开方数a,b均为非负数这一条件。
2023八年级数学上册第十二章全等三角形12
在Rt△ABC和Rt△BAD中,ቊ
= ,
= ,
∴Rt△ABC≌Rt△BAD(HL),
∴∠CBA=∠DAB.
∵CE⊥AB,DF⊥AB,∴∠CEB=∠DFA=90°.
∠ = ∠,
在△BCE和△ADF中,ቐ∠ = ∠,
= ,
课时4
直角三角形全等的判定(HL)
知识点1 斜边、直角边(HL)
1. [2022韶关期末]如图,已知∠C=∠D=90°,添加一个条件,可使用“HL”判定
Rt△ABC≌Rt△ABD.以下给出的条件适合的是 (
A.∠ABC=∠ABD
B.∠BAC=∠BAD
C.AC=AD
D.AC=BC
)
答案
= ,
B.①②③
D.①②③④
答案
7.D ∵BE⊥AD,CF⊥AD,∴∠AEB=∠CFD=90°.选择①,可利用“AAS”证明
Rt△ABE≌Rt△DCF;选择②,由AB∥CD,可得∠A=∠D,可利用“AAS”证明
Rt△ABE≌Rt△DCF;选择③,可利用“HL”证明Rt△ABE≌Rt△DCF;选择④,由AF=DE,可
1.C 当添加AC=AD时,在Rt△ABC和Rt△ABD中,ቊ
∴Rt△ABC≌Rt△ABD(HL).
= ,
知识点1 斜边、直角边(HL)
2. [2022长春绿园区期末]如图,在△ABC中,∠C=90°,AD=AC,DE⊥AB.若∠B=28°,则
∠AEC= (
)
A.28° B.59° C.60° D.62°
∴△BCE≌△ADF(AAS),∴CE=DF.
Rt△ABC中,
∵∠ABC+∠BCA=90°,∴∠ABC+∠DFE=90°.
人教版数学八年级上册第12章课时4 三角形全等的判定方法-HL(18页)
B
D
C
课堂小结
内容
“斜边、
直角边”
前
提
条
件
使用方法
斜边和一条直角边对应相
等的两个直角三角形全等.
在直角三角形中
只须找除直角外的两个条件即
可(两个条件中至少有一个条
件是一对对应边相等)
BE=CF.求证:AE=DF.
证明:∵BE=CF
∴BE+EF=CF+EF
即BF=CE
∵AE⊥BC,DF⊥BC
∴∠AEC=∠DFB=90°
在Rt△AEC和Rt△DFB中,
∴Rt△AEC ≌ Rt△DFB (HL)
=
=
∴AE=DF
当堂检测
1.判断两个直角三角形全等的方法不正确的有( D )
∴Rt△ABC ≌ Rt△ A′B′C′ (HL)
先斜边,
后直角边
典例分析
例1
如图2,AC⊥BD,DE交AC于点E,AB=DE,AC=DC.
求证:△ABC≌△DEC.
证明:∵AC⊥BD
∴∠ACB=∠DCE=90°
在Rt△ABC和Rt△DEC中,
=
=
∴Rt△ABC ≌ Rt△DEC (HL)
A.两条直角边对应相等
B.斜边和一锐角对应相等
C.斜边和一条直角边对应相等
D.两个锐角对应相等
2.如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点 E ,
AD、CE交于点H,已知EH=EB=3,AE=4,则 CH的长为
( A )
A.1
B.2
C.3
D.4
3.如图,△ABC中,AB=AC,AD是高,
最新人教版八年级上册数学第十二章全等三角形第8课时 《全等三角形》单元复习
数学
15.【例7】如图,AD平分∠BAC,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF. (1)求证:点D为EF的中点; (2)求证:AD⊥BC.
返回
数学
证明:(1)如图,过点D作DH⊥AB于H, ∵AD平分∠BAC,DE⊥AC,DH⊥AB,∴DE=DH, ∵BF∥AC,DE⊥AC, ∴BF⊥DF, ∵BC平分∠ABF,DH⊥AB,DF⊥BF, ∴DH=DF,∴DE=DF,∴点D为EF的中点.
答案图
返回
数学
(2)∵BF∥AC,∴∠C=∠DBF,且∠CDE=∠BDF,DE=DF, ∴△DCE≌△DBF(AAS),∴CD=BD, ∵BC平分∠ABF,∴∠ABD=∠DBF,∴∠C=∠ABD, ∵AD平分∠BAC,∴∠CAD=∠DAB, 又AD=AD,∴△DCA≌△DBA, ∴∠CDA=∠BDA, ∵∠CDA+∠BDA=180°, ∴∠CDA=∠BDA=90°,∴AD⊥BC.
第十二章 全等三角形
第8课时 《全等三角形》单元复习
数学
目录
01 知识要点 02 对点训练 03 精典范例 04 变式练习
数学
知识要点
知识点一:全等三角形的性质 (1)性质1:全等三角形的对应边 相等 . 性质2:全等三角形的对应角 相等 . 说明:①全等三角形的对应边上的高、中线以及对应角的平分 线 相等 . ②全等三角形的周长相等、面积相等. ③平移、翻折、旋转前后的图形 全等 .
返回
数学
证明: (1)∵DE⊥A B,DF ⊥A C,
∴△BDE,△CDF 是直角三角形.
在 Rt△BDE 和 Rt△CDF 中, = , =
∴R t △ B DE≌R t △ CDF(H L ),∴DE =DF .
人教版初中数学八年级上册第十二章 全等三角形
12.1 全等三角形/
12.1 全等三角形
导入新知
12.1 全等三角形/
观察这些图片,你能找出形状、大小完全一样的几何 图形吗?
导入新知
12.1 全等三角形/
你能再举出生活中的一些类似例子吗?
素养目标
12.1 全等三角形/
3. 初步帮助学生建立平移、翻折、旋转三种图形 变化与全等形的关系.
12.1 全等三角形/
观察思考:每组中的两个图形有什么特点?
①
②
③
④
⑤
探究新知
12.1 全等三角形/
归纳总结
全等图形定义: 能够完全重合的两个图形叫做全等图形. 全等形性质: 如果两个图形全等,它们的形状和大小一定都相等.
探究新知 下面哪些图形是全等图形?
12.1 全等三角形/
大小、形状 完全相同
课后作业
作业 内容
12.1 全等三角形/
教材作业 从课后习题中选取 自主安排 配套练习册练习
2. 熟练掌握全等三角形的性质,并能灵活运用 全等三角形的性质解决相应的几何问题.
1. 熟记全等形及全等三角形的概念;能够正确找 出全等三角形的对应边、对应角.
探究新知
12.1 全等三角形/
知识点 1 全等图形的定义及性质
下列各组图形的形状与大小有什么特点?
(1)
(2)
(3)
(4)
(5)
探究新知
正确的结论并证明.
解:结论:EF∥NM
其他结论吗?
证明: ∵ △EFG≌△NMH,
∴ ∠E=∠N. ∴ EF∥NM.
巩固练习
12.1 全等三角形/
如图,△ABC ≌△CDA,AB 与CD,BC 与DA 是对应边,
(完整版)八年级数学上册全等三角形知识点总结
第十二章《全等三角形 》 知识点归纳一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理(一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形.2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等.SSS(2)两角和它们的夹边对应相等的两个三角形全等。
ASA(3)两角和其中一角的对边对应相等的两个三角形全等.AAS(4)两边和它们的夹角对应相等的两个三角形全等。
SAS(5)斜边和一条直角边对应相等的两个直角三角形全等.HL4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:角的内部到角的两边的距离相等的点在角的平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1。
确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
人教版初中数学八年级上册第十二章 角的平分线的性质(第1课时)
如图,在Rt△ABC中,AC=BC,∠C=90°,AP平分
∠BAC交BC于点P,若PC=4, AB=14. (1)则点P到AB的距离为___4____.
D
B
P
A
C
提示:存在一条垂线段——构造应用.
探究新知
12.3 角的平分线的性质/
归纳总结
1.应用角平分线性质: 存在角平分线 条件 涉及距离问题
2.联系角平分线性质:
面积 周长
利用角平分线的性质所得到的等 量关系进行转化求解
链接中考
12.3 角的平分线的性质/
如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且
∠ADC=110°,则∠MAB=( B )
A.30° B.35° C.45° D.60°
解析:作MN⊥AD于N,∵∠B=∠C=90°,
∴AB∥CD, ∴∠DAB=180°–∠ADC=70°.
12.3 角的平分线的性质/
2.如 图所示,D是 ∠ACG的平分线上的一点 .DE⊥AC,
DF⊥CG,垂足分别为E,F. 求证:CE=CF.
证明:∵CD是∠ACG的平分线,DE⊥AC,DF⊥CG,
∴DE=DF. 在Rt△CDE和Rt△CDF中, CD CD, DE DF, ∴Rt△CDE≌Rt△CDF(HL), ∴CE=CF.
应用所具备的条件:
(1)角的平分线;
(2)点在该平分线上; (3)垂直距离.
O
定理的作用:证明线段相等.
A D
PC
E
B
应用格式:
∵OP 是∠AOB的平分线, PD⊥OA, PE⊥OB,
∴PD = PE
推理的理由有三个, 必须写完全,不能
少了任何一个.
八年级数学上册 第十二章 全等三角形知识点总结 新人教版
第十二章全等三角形一、知识框架:二、知识清单:1.全等图形与全等三角形:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.全等三角形中互相重合的顶点叫做对应顶点;全等三角形中互相重合的边叫做对应边;全等三角形中互相重合的角叫做对应角.2.全等三角形性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定公理:⑴边边边公理:三边对应相等的两个三角形全等.(简记为“边边边”或“SSS”)⑵边角边公理:两边和它们的夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”)⑶角边角公理:两角和它们的夹边对应相等的两个三角形全等.(简记为“角边角”或“ASA”)⑷角角边推论:两角和其中一角的对边对应相等的两个三角形全等.(简记为“角角边”或“AAS”)⑸斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等.(简记为“斜边、直角边”或“HL”)4.角平分线:把一个角平均分成两个等角的射线称为角的平分线.⑴角平分线的画法:a.以角的顶点为圆心,适当长为半径画弧,与角两边交于两个点;b.分别以两个交点为圆心,大于两交点连线段的1/2的相同长度为半径画弧,在角内交于一点;c.过角的顶点和b中的交点做射线.射线即为角的平分线.⑵角平分线性质定理:角平分线上的点到角两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(三角形三条角平分线的交点到三边距离相等,三条角平分线的交点称为三角形的内心)5.证明的基本步骤:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.。
人教版八年级上册数学第十二章知识点总结与复习课件
理由:
A
E
方法一 可证△CBF ≌△DAE;
方法二 可证△CAF ≌△DBE.
F
B
D
归纳小结
(1)本章的核心知识有哪些?这些知识之间有何联系? (2)结合本节课的学习,谈谈全等三角形的知识在解
题中有哪些作用?
布置作业
教科书第55页第10、11、13题.
体系建构
问题2 请同学们整理一下本章所学的主要知识, 你能发现它们之间的联系吗?你能画出一个本章的知 识结构图吗?
本章的知识结构图:
SSS、SAS、ASA、AAS、HL
判定
全等形
全等三角形
角平分线的性质
性质
对应边相等,对应角相等
体系建构
问题3 结合本章知识结构图,思考以下问题: (1)回顾本章的学习过程,全等三角形的性质和判定
人教版八年级 上册
第十二章 知识点总结与复习
课件说明
• 全等三角形的概念是学习本章的基础,研究全等三 角形性质和判定是对对应边之间、对应角之间的相 等关系方面进行的探究,是证明角平分线的性质和 判定的基础.全等三角形的性质和判定又是证明线 段相等和角相等的重要方法.在性质和判定的探究 过程中,渗透了研究几何图形的基本思路和方法.
课件说明
• 学习目标: 1.复习本章的重点内容,整理本章知识,形成知识 体系. 2.巩固和运用全等三角形的相关知识解决问题,进 一步发展推理能力.
• 学习重点: 复习全等三角形判定、性质及角平分线的性质和判 定,建立本章知识结构;运用全等三角形的知识解 决问题.
知识梳理
问题1 请同学们回答下列问题: (1)你能举出一些实际生活中全等形的例子吗? (2)举例说明全等三角形有什么性质? (3)从三角形的三条边对应相等、三个角对应相等中
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级数学上册知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:①概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.②相关的名词:三角形的角(内角)、边、顶点、记法、读法。
③三角形的分类:两种分类方法(边、角)2.三边关系(性质):三角形任意两边的和大于第三边,任意两边的差小于第三边.(重点)数学表达式:3.高:①概念:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.②作法:③性质:④垂心:4.中线:①概念:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.②作法:③性质:④重心:5.角平分线:①概念:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.②作法:③性质:④内心:补充:三角形的内心、外心、垂心、重心、旁心。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.三角形的内角和定理:①内容:三角形的内角和为180°②证明:(掌握证明的过程即可)③应用:8.直角三角形:①概念:②性质:③判定:9.三角形的外角:①概念:②性质:10.三角形的外角和定理:①内容:②证明:(掌握证明的过程即可)③应用:11.多边形:①概念:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.②相关的名词:多边形的角(内角)、边、顶点。
12.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.13.多边形的对角线:①概念:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.②条数公式:14.正多边形:①概念:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.②性质:③判定:15.多边形内角和:①公式:n边形的内角和等于(2)n-·180°n-·180°。
即:W=(2)②推理过程:16.多边形的外角和:①内容:多边形的外角和为360°.②证明:(掌握证明的过程即可)第十二章全等三角形一、知识框架:二、知识概念:1.全等三角形:⑴全等图形的概念:能够完全重合的两个图形叫做全等图形,简称全等形.⑵全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.全等三角形的基本性质:⑴全等三角形的对应边相等.⑵全等三角形的对应角相等.⑶全等三角形的周长、面积都相等.⑷3.全等三角形的判定定理:边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角的平分线:回顾角的平分线的基础知识⑴角平分仪:⑵角的评分线的作法:(尺规作图)⑶性质定理:角平分线上的点到角的两边的距离相等.基本模型:(证明命题)⑷性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.基本模型:(证明命题)5.证明命题的基本方法:回顾命题的基础知识:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章 轴对称一、知识框架:二、知识概念:1.基本概念: ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边). ⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()nm mn a a = ⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用其中一个多项式除以另一个多项式再把所得的商相加5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++第十五章 分式一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()nm mn a a =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸nn n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a -=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程); ②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。