人教版八年级上册第十一章 《三角形》章末练习题
人教版八年级上册第11章《三角形》章末达标检测卷
人教版八年级上册第11章《三角形》章末达标检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列图形具有稳定性的是()A.正方形B.长方形C.五边形D.直角三角形2.下列四组长度的小木棒中,按首尾顺次连结能组成一个三角形的是()A.1,2,3B.4,5,6C.3,4,12D.4,8,43.下列四个图形中,线段BE是△ABC的高的图形是()A.B.C.D.4.若△ABC的三个内角的比为3:5:2,则△ABC是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形5.下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180°C.三角形按边分可分为不等边三角形和等腰三角形D.三角形的一个外角大于任何一个内角6.如图,已知△ABC,点D在BC的延长线上,∠ACD=140°,∠ABC=50°,则∠A的大小为()A.50°B.140°C.120°D.90°7.如图,已知BD是△ABC的中线,AB=7,BC=4,△ABD和△BCD的周长的差是()A.2B.3C.4D.不能确定8.如图,在△ABC中,∠BAC=90°,BD平分∠ABC,CD∥AB交BD于点D,已知∠ACB =34°,则∠D的度数为()A.30°B.28°C.26°D.34°9.游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长10.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16二.填空题(共6小题,满分24分,每小题4分)11.在门框钉一根木条能固定住门框,不易变形,这里利用的数学原理是.12.三角形的三边长分别为3、8、x,则x的取值范围是.13.正六边形的一个内角是正n边形一个外角的4倍,则n=.14.在正六边形ABCDEF中,对角线BD、AC交于点M,则∠CMD的度数为.15.如图,把△ABC纸片沿DE折叠,使点A落在图中的A'处,若∠A=25°,∠BDA'=120°,则∠A'EC=.16.如图,在△ABC中,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF,以下结论:①AD∥BC;②∠ACB=∠ADB;③∠ADC+∠ABD=90°;④,其中正确的结论有.三.解答题(共7小题,满分46分)17.(5分)如图,Rt△ABC中,∠C=90°,∠B=3∠A,求∠B的度数.18.(5分)如图,已知∠1=20°,∠2=25°,∠A=50°,求∠BDC的度数.19.(6分)如图为一机器零件,∠A=36°的时候是合格的,小明测得∠BDC=98°,∠C =38°,∠B=23°.请问该机器零件是否合格并说明你的理由.20.(6分)三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.如图1,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.求证:∠ACD=∠A+∠B证明:过点C作CE∥AB(过直线外一点)∴∠B=∠A=∵∠ACD=∠1+∠2∴∠ACD=∠+∠B(等量代换)应用:如图2是一个五角星,请利用上述结论求∠A+∠B+∠C+∠D+∠E的值为21.(7分)已知:如图,点D是直线AB上一动点,连接CD.(1)如图1,当点D在线段AB上时,若∠ABC=105°,∠BCD=30°,求∠ADC度数;(2)当点D在直线AB上时,请写出∠ADC、∠ABC、∠BCD的数量关系,并证明.22.(8分)如图,在△ABC中,∠B=2∠C,AE平分∠BAC交BC于E.(1)若AD⊥BC于D,∠C=40°,求∠DAE的度数;(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.23.(9分)如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O.(1)若∠ABC=60°,∠C=70°,求∠DAE的度数.(2)若∠C=70°,求∠BOE的度数.(3)若∠ABC=α,∠C=β(α<β),则∠DAE=.(用含α、β的式子表示)参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:具有稳定性的图形是三角形.故选:D.2.解:A、1+2=3,不满足三角形三边关系定理,故错误,不符合题意;B、4+5>6,满足三边关系定理,故正确,符合题意;C、3+4<12.不满足三边关系定理,故错误,不符合题意;D、4+4=8.不满足三角形三边关系定理,故错误,不符合题意.故选:B.3.解:线段BE是△ABC的高的图是选项A.故选:A.4.解:∵△ABC的三个内角的比为3:5:2可设此三角形的三个内角分别为2x°,3x°,5x°,∴2x°+3x°+5x°=180°,解得x=18°,∴5x°=5×18°=90°.∴此三角形是直角三角形.故选:C.5.解:A、正确,符合线段的定义;B、正确,符合三角形内角和定理;C、正确;D、三角形的一个外角大于任何一个和它不相邻的内角,错误.故选:D.6.解:∵∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ACD=140°,∠ABC=50°,∴∠A=140°﹣50°=90°故选:D.7.解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=7﹣4=3.故选:B.8.解:∵∠BAC=90°,∠ACB=34°,∴∠ABC=180°﹣90°﹣34°=56°,∵BD平分∠ABC,∴∠ABD=∠ABC=28°,∵CD∥AB,∴∠D=∠ABD=28°,故选:B.9.解:∵从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,∴=72°,∴每走完一段直路后沿向右偏72°方向行走.故选:A.10.解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的四边形为13或14或15,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:利用的数学原理是三角形的稳定性,故答案为:三角形的稳定性.12.解:∵三角形的三边长分别为3,x,8,∴8﹣3<x<3+8,即5<x<11,故答案为:5<x<11.13.解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12.14.解:根据题意得∠ABC=,∵AB=BC,∴∠ACB=,∴∠CMD=2∠ACB=60°.故答案为:60°.15.解:如图,∵∠BDA'=120°,∴∠ADA'=60°,∵△ABC纸片沿DE折叠,使点A落在图中的A'处,∴∠ADE=∠A′DE=30°,∠AED=∠A′ED,∵∠CED=∠A+∠ADE=25°+30°=55°,∴∠AED=125°,∴∠A′ED=125°,∴∠A′EC=∠A′ED﹣∠CED=125°﹣55°=70°.故答案为70°.16.解:①∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确;②∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,故②错误;③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°,故③正确;④∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∴∠ADB=∠DBC,∵∠DCF=90°﹣∠ABC=∠DBC+∠BDC,∴∠BDC=90°﹣2∠DBC,∴∠DBC=45°﹣∠BDC,故④正确;故答案是:①③④.三.解答题(共7小题,满分46分)17.解:∵∠B=3∠A,∴∠A=∠B,∵∠C=90°,∴∠A+∠B=90°,∴∠B+∠B=90°,解得∠B=67.5°.18.解:∵∠1=20°,∠2=25°,∠A=50°,∴∠DBC+∠DCB=180°﹣20°﹣25°﹣50°=85°,在△BCD中,∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣85°=95°.19.解:作直线AD,∴∠3=∠B+∠1﹣﹣﹣(1)∴∠4=∠C+∠2﹣﹣﹣(2)由(1)、(2)得:∠3+∠4=∠B+∠C+∠1+∠2,即∠BDC=∠B+∠C+∠BAC,∵∠BDC=98°,∠C=38°,∠B=23°∴∠BAC=98°﹣38°﹣23°=37°≠36°,∴该机器零件不合格.20.证明:过点C作CE∥AB(过直线外一点有且只有一条直线与已知直线平行)∴∠B=∠2(两直线平行,同位角相等),∠A=∠1(两直线平行,内错角相等),∵∠ACD=∠1+∠2,∴∠ACD=∠A+∠B(等量代换)应用:对于△BDN,∠MNA=∠B+∠D,对于△CEM,∠NMA=∠C+∠E,对于△ANM,∠A+∠MNA+∠NMA=180°,∴∠A+∠B+∠D+∠C+∠E=180.故答案为:有且只有一条直线与已知直线平行;∠2(两直线平行,同位角相等);∠1(两直线平行,内错角相等);A;180°21.解:(1)如图1中,∵∠ADC=∠ABC+∠BCD,∠ABC=105°,∠BCD=30°,∴∠ADC=135°.(2)如图1中,当点D在线段AB上时,∠ADC=∠ABC+∠BCD.如图2中,当点D在线段AB的延长线上时,∠ABC=∠ADC+∠BCD.如图3中,当点D在线段BA的延长线上时,∠ADC+∠ABC+∠BCD=180°.22.(1)解:∵∠C=40°,∠B=2∠C,∴∠B=80°,∴∠BAC=60°,∵AE平分∠BAC,∴∠EAC=30°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=50°,∴∠DAE=50°﹣30°=20°;(2)证明:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°﹣∠B﹣∠C)=(180°﹣3∠C)=90°﹣∠C,∵∠DAE=∠DAC﹣∠EAC,∴∠DAE=∠DAC﹣(90°﹣∠C)=90°﹣∠C﹣90°+∠C=∠C,∴∠FEC=C,∴∠C=2∠FEC.23.解:(1)∠ABC=60°,∠C=70°∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣60°﹣70°=50°,∵AE是角平分线,∴∠EAC=∠BAC=×50°=25°,∵AD是高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣70°=20°,∴∠DAE=∠EAC﹣∠CAD=25°﹣20°=5°;(2)∵AE,BF是角平分线,∴∠OAB=∠BAC,∠OBA=∠ABC,∴∠BOE=∠OAB+∠OBA=(∠BAC+∠ABC)=(180°﹣∠C)=×(180°﹣70°)=55°;(3)∠ABC=α,∠C=β,∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣α﹣β,∵AE是角平分线,∴∠EAC=∠BAC=(180°﹣α﹣β),∵AD是高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣β,∴∠DAE=∠EAC﹣∠CAD═(180°﹣α﹣β)﹣(90°﹣β)=(β﹣α).故答案为(β﹣α).。
人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案
人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cm B.3cm,8cm,5cmC.4cm,5cm,10cm D.4cm,5cm,6cm2.以下四个图片中的物品,没有利用到三角形的稳定性的是()A.B.C.D.3.在△ABC中,若∠A=80°,∠B=20°则∠C=()A.80°B.70°C.60°D.100°4.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.55.如图AB∥CD,AE交CD于点F,连接DE,若∠D=28°,∠E=112°则∠A的度数为()A.48°B.46°C.42°D.40°6.如图∠A=100°,∠B=20°则∠ACD的度数是()A.100°B.110°C.120°D.140°7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE= 91°∠DCE=124°,则∠AEC的度数是( )A.29°B.30°C.31°D.33°8.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米二、填空题9.如图,A\B为池塘岸边两点,小丽在池塘的一侧取一点O,得到△OAB,测得OA=16米OB=12米,A\B 间最大的整数距离为米.10.正n形的每个内角都是120°,这个正n边形的对角线条数为条.11.如图,BD是△ABC的中线,DE⊥BC于点E,已知△ABD的面积是3,BC的长是4,则DE的长是.12.如图AB∥CD,若∠A=65°.∠E=38°,则∠C=.13.如图,△ABC中,AD\AE分别为角平分线和高∠B=46°,∠C=64°则∠DAE=.三、解答题14.若一个多边形的内角和比它的外角和的3倍多180°,求这个多边形的边数和对角线的条数.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=60°,∠BED=70°,求∠BAC的度数.17.如图,在△BCD中BC=3,BD=5.(1)若CD的长是偶数,直接写出CD的值;(2)若点A在CB的延长线上,点E、F在CD的延长线上,且AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.18.如图,在五边形ABCDE中AE∥CD,∠A=100°,∠B=120°.(1)若∠D=110°,请求∠E的度数;(2)试求出∠C的度数.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】2710.【答案】911.【答案】3212.【答案】27°13.【答案】9°14.【答案】解:设这个多边形的边数为n,则内角和为180°(n−2),依题意得:180(n−2)=360×3+180解得n=9=27对角线条数:9×(9−3)2答:这个多边形的边数是9,对角线有27条15.【答案】解:∵∠C=∠ABC=2∠A∴∠C+∠ABC+∠A=5∠A=180°∴∠A=36°则∠C=∠ABC=2∠A=72°又BD是AC边上的高则∠DBC=90°-∠C=18°16.【答案】解:∵AD是△ABC的高.即AD⊥BC∴∠ADB=90°∵在Rt△EBD中∠BED=70°∴∠DBE=20°∵BE平分∠ABC∴∠ABE=∠DBE=20°∴∠ABD=40°∴∠BAC=180°−∠ABD−∠C=180°−40°−60°=80°17.【答案】(1)解:在△BCD中BC=3,BD=5∴2<CD<8∵CD的长是偶数∴CD的长为4或6故答案为:4或6;(2)解:∵AE∥BD∴∠CBD=∠A=55°∵∠BDE=∠C+∠CBD=125°∴∠C=∠BDE−∠CBD=125°−55°=70°18.【答案】(1)解:∵AE∥CD∴∠D+∠E=180°∴∠E=180°−∠D=180°−110°=70°(2)解:五边形ABCDE中∵∠D+∠E=180°,∠A=100°∴∠C=540°−(∠D+∠E)−∠A−∠B=140°。
人教版 八年级数学 第11章 三角形 章末复习 (含答案)
人教版八年级数学第11章三角形章末复习(含答案)一、选择题(本大题共10道小题)1. 如图,在△ABC中,AC边上的高是()图A.线段DA B.线段BAC.线段BC D.线段BD2. 人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性3. 已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.104. 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°5. 如图,为估计池塘岸边A,B两地之间的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,那么A,B两地之间的距离可能是()A.2米B.15米C.18米D.28米6. 若一个正多边形的每一个外角都等于40°,则它是()A.正九边形B.正十边形C.正十一边形D.正十二边形7. 将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形8. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8C.8或9 D.7或8或99. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种10. 如图,在△ABC中,∠ACB=70°,∠1=∠2,则∠BPC的度数为()A.70°B.108°C.110°D.125°二、填空题(本大题共6道小题)11. 如图所示是一幅电动伸缩门的图片,则电动门能伸缩的几何原理是__________________________.12. (2019•怀化)若等腰三角形的一个底角为72 ,则这个等腰三角形的顶角为___ _______.13. 有一程序,如果机器人在平地上按如图所示的步骤行走,那么机器人回到A 处行走的路程是.14. 如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=________°.15. 如图,在四边形ABCD中,AB∥CD,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B=________°.16. 如图,在△ABC中,点D在BC的延长线上,∠A=m°,∠ABC和∠ACD 的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…;∠A2019BC和∠A2019CD的平分线交于点A2020,则∠A2020=________°.三、解答题(本大题共5道小题)17. 已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.18. 等面积法如图,BE,CF均是△ABC的中线,且BE=CF,AM⊥CF于点M,AN⊥BE于点N.求证:AM=AN.19. 如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.20. 如图11-Z-11,点B在点A的南偏西45°方向,点C在点A的南偏东30°方向,点C在点B的北偏东60°方向,求∠C的度数.21. 已知:如图11-Z-12,在△ABC中,∠ABC=∠C,D是AC边上一点,∠A =∠ADB,∠DBC=30°.求∠BDC的度数.人教版八年级数学第11章三角形章末复习-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D3. 【答案】C[解析] 设第三边的长为x,由三角形三边关系可得,4-1<x<4+1,即3<x<5.由于第三边长为整数,因此x=4,所以该三角形的周长为9.4. 【答案】A【解析】由AE∥BD,可得∠DBC=∠E=35°,由BD平分∠ABC 可得∠ABC=2∠DBC=70°,由AB=AC可得∠ABC=∠C=70°,由三角形内角和定理可得∠BAC=180°-70°-70°=40°.5. 【答案】B[解析] 设A,B两地之间的距离为x米.依据题意,得10-8<x <10+8,即2<x<18,所以A,B两地之间的距离可能是15米.6. 【答案】A [解析] 由于正多边形的外角和为360°,且每一个外角都相等,因此边数=360°40°=9.7. 【答案】C[解析] 如图①,沿虚线剪开即可得到两个直角三角形.如图②,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图③,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.8. 【答案】D[解析] 设内角和为1080°的多边形的边数为n ,则(n -2)×180°=1080°,解得n =8.则原多边形的边数为7或8或9.故选D.9. 【答案】C10. 【答案】C[解析] ∵在△ABC 中,∠ACB =70°,∠1=∠2,∴∠2+∠BCP =∠1+∠BCP =∠ACB =70°. ∴∠BPC =180°-∠2-∠BCP =180°-70°=110°.二、填空题(本大题共6道小题)11. 【答案】四边形具有不稳定性12. 【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.13. 【答案】30米 [解析] 360°÷24°=15,利用多边形的外角和等于360°,可知机器人回到A 处时,恰好沿着正十五边形的边走了一圈,即可求得路程为15×2=30(米).14. 【答案】75【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.15. 【答案】114[解析] 因为AB ∥CD ,所以∠BAB′=∠1=44°.由折叠的性质知∠BAC =12∠BAB′=22°.在△ABC 中,∠B =180°-(∠BAC +∠2)=114°.16. 【答案】(m22020)三、解答题(本大题共5道小题)17. 【答案】解:设这个多边形的边数是n.依题意,得(n -2)×180°=3×360°-180°, 解得n =7.∴这个多边形的边数是7.18. 【答案】证明:∵BE ,CF 均是△ABC 的中线, ∴S △ABE =S △ACF =12S △ABC .∵BE =CF ,AM ⊥CF 于点M ,AN ⊥BE 于点N , ∴12AM·CF =12AN·BE. ∴AM =AN.19. 【答案】解:(1)∵在Rt △ABC 中,∠ACB =90°,∠A =40°,∴∠ABC =90°-∠A =50°. ∴∠CBD =130°.∵BE 是∠CBD 的平分线, ∴∠CBE =12∠CBD =65°. (2)∵∠ACB =90°,∠CBE =65°, ∴∠CEB =90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.20. 【答案】解:∵∠NBC=60°,∠NBA=∠BAS=45°,∴∠ABC=∠NBC-∠NBA=60°-45°=15°.又∵∠BAC=∠BAS+∠SAC=45°+30°=75°,∴在△ABC中,∠C=180°-(75°+15°)=90°.21. 【答案】解:设∠C=x°,则∠ABC=x°,∠ABD=x°-30°.∵∠ADB是△DBC的外角,∴∠ADB=30°+x°,于是∠A=30°+x°.在△ABD中,2(30+x)+(x-30)=180,解得x=50.故∠BDC=180°-(30°+50°)=100°.。
人教版八年级数学上册作业课件 第十一章 三角形 章末复习 (一) 三角形
13.一张△ABC纸片,点M,N分别是AB,AC上的点, 若沿直线MN折叠后,点A落在AC边的下面A′的位置,如图所示. 则∠1,∠2,∠A之间的数量关系是( C ) A.∠1=∠2+∠A B.∠1=2∠2+∠A C.∠1=∠2+2∠A D.∠1=2∠2+2∠A
14.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC, 交BC于点D,DE∥AB,交AC于点E,则∠ADE的大小是4_0_°_.
19.(内江中考)问题引入:
(1)如图①,在△ABC 中,点 O 是∠ABC 和∠ACB 平分线的交点,
若∠A=α,则∠BOC=_9_0_°__+__12_ (α用α表示);如图②,∠CBO=13 ∠ABC, ∠BCO=13 ∠ACB,∠A=α,则∠BOC=_1_2_0_°__+__13__α_ (用α表示);
3.(自贡中考)已知三角形的两边长分别为1和4,第三边长为整数, 则该三角形的周长为( C) A.7 B.8 C.9 D.10
4.(绥化中考)三角形三边长分别为3,2a-1,4. 则a的取值范围是____1_<_a_<_4____.
5.如图,△ABC的角平分线BD与中线CE相交于点O.有下列两个结论: ①BO是△CBE的角平分线;②CO是△CBD的中线.其中( ) A A.只有①正确 B.只有②正确 C.①和②都正确 D.①和②都不正确
拓展研究:
(2)如图③,∠CBO=13 ∠DBC,∠BCO=13 ∠ECB,∠A=α, 猜想∠BOC=_1_2_0_°__-__13__α____ (用α表示),并说明理由;
(3)BO,CO 分别是△ABC 的外角∠DBC,∠ECB 的 n 等分线,
它们交于点 O,∠(Cn-BO1=)n1·∠18D0°BC-,α∠BCO=n1 ∠ECB,∠A=α,
八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)
第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。
人教版八年级数学上册章末测试题第11章三角形检测卷
第十一章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A.2、2、4 B.8、6、3C.2、6、3 D.11、4、62.如图,图中∠1的大小等于()A.40° B.50° C.60° D.70°3.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒4.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是() A.9 B.14 C.16 D.不能确定5.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是() A.76° B.81° C.92° D.104°6.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=1∶2∶3,能确定△ABC 为直角三角形的条件有()A.1个 B.2个 C.3个 D.0个7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108° B.90° C.72° D.60°8.若a、b、c是△ABC的三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是()A.a+b+c B.-a+3b-c C.a+b-c D.2b-2c9.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11 B.12 C.13 D.1410.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20° B.∠ADE=30°C.∠ADE=12∠ADC D.∠ADE=13∠ADC二、填空题(每小题3分,共24分)11.如图,共有______个三角形.12.若n边形内角和为900°,则边数n=______.13.一个三角形的两边长分别是3和8,周长是偶数,那么第三边边长是______.14.将一副三角板按如图所示的方式叠放,则∠α=______.15.如图,在△ABC中,CD是AB边上的中线,E是AC的中点,已知△DEC的面积是4cm2,则△ABC的面积是______.16.如图,把三角形纸片ABC沿DE折叠,使点A落在四边形BCDE的内部,已知∠1+∠2=80°,则∠A的度数为______.17.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=______.18.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO 上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=76°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值为______.三、解答题(共66分)19.(8分)如图:(1)在△ABC中,BC边上的高是AB;(1分)(2)在△AEC中,AE边上的高是CD;(2分)(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.20.(8分)如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.21.(8分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.22.(10分)如图,点E在AC上,点F在AB上,BE,CF交于点O,且∠C=2∠B,∠BFC-∠BEC=20°,求∠C的度数.23.(10分)如果多边形的每个内角都比它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.24.(10分)如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.25.(12分)如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,在(2)中,若射线OP、CP满足∠POC=1n ∠AOC,∠PCE=1n∠ACE,猜想∠OPC的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.B 2.D 3.C 4.A 5.A 6.B 7.C 8.B9.C 解析:n边形内角和为(n-2)·180°,并且每一个内角的度数都小于180°.∵(13-2)×180°=1980°,(14-2)×180°=2160°,1980°<2016°<2160°,∴n=13.故选C.10.D 解析:如图,在△AED中,∠AED=60°,∴∠A=180°-∠AED-∠ADE=120°-∠ADE.在四边形DEBC中,∠DEB=180°-∠AED=180°-60°=120°,∴∠B=∠C=(360°-∠DEB-∠EDC)÷2=120°-12∠EDC.∵∠A=∠B=∠C,∴120°-∠ADE=120°-12∠EDC,∴∠ADE=12∠EDC.∵∠ADC=∠ADE+∠EDC=12∠EDC+∠EDC=32∠EDC,∴∠ADE=13∠ADC.故选D.11.6 12.7 13.7或9 14.75°15.16cm2 16.40°17.24°解析:等边三角形的每个内角是60°,正方形的每个内角是(4-2)×180°4=90°,正五边形的每个内角是(5-2)×180°5=108°,正六边形的每个内角是(6-2)×180°6=120°,∴∠1=120°-108°=12°,∠2=108°-90°=18°,∠3=90°-60°=30°,∴∠3+∠1-∠2=30°+12°-18°=24°.18.76 6 解析:∵A1A2⊥AO,∠AOB=7°,∴∠1=∠2=90°-7°=83°,∴∠A=∠1-∠AOB=76°.如图,当MN⊥OA时,光线沿原路返回,∴∠4=∠3=90°-7°=83°,∴∠6=∠5=∠4-∠AOB=83°-7°=76°=90°-14°,∴∠8=∠7=∠6-∠AOB=76°-7°=69°,∴∠9=∠8-∠AOB=69°-7°=62°=90°-2×14°,由以上规律可知∠A=90°-n·14°.当n=6时,∠A取得最小值,最小度数为6°,故答案为:76,6.19.解:(1)AB(1分) (2)CD(2分)(3)∵AE=3cm,CD=2cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).(5分)∵S△AEC=12CE·AB=3cm2,AB=2cm,∴CE=3cm.(8分)20.解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9.(4分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°.又∵∠A=55°,∴∠C=70°.(8分)21.(1)解:∵六边形ABCDEF的内角相等,∴∠B=∠A=∠BCD=120°.(1分)∵CF∥AB,∴∠B+∠BCF =180°,∴∠BCF=60°,∴∠FCD=60°.(4分)(2)证明:∵CF∥AB,∴∠A+∠AFC=180°,∴∠AFC=180°-120°=60°,∴∠AFC=∠FCD,∴AF ∥CD.(8分)22.解:由三角形的外角性质,得∠BFC =∠A +∠C ,∠BEC =∠A +∠B .(2分)∵∠BFC -∠BEC =20°,∴(∠A +∠C )-(∠A +∠B )=20°,即∠C -∠B =20°.(5分)∵∠C =2∠B ,∴∠B =20°,∠C =40°.(10分)23.解:设这个多边形的一个外角为x °,依题意有x +4x +30=180,解得x =30.(3分)∴这个多边形的边数为360°÷30°=12,(5分)∴这个多边形的内角和为(12-2)×180°=1800°,(7分)对角线的总条数为(12-3)×122=54(条).(10分) 24.解:设AB =x cm ,BC =y cm.有以下两种情况:(1)当AB +AD =12cm ,BC +CD =15cm 时,⎩⎪⎨⎪⎧x +12x =12,y +12x =15,解得⎩⎪⎨⎪⎧x =8,y =11.即AB =AC =8cm ,BC =11cm ,符合三边关系;(5分)(2)当AB +AD =15cm ,BC +CD =12cm 时,⎩⎪⎨⎪⎧x +12x =15,y +12x =12,解得⎩⎪⎨⎪⎧x =10,y =7.即AB =AC =10cm ,BC =7cm ,符合三边关系.(9分)综上所述,AB =AC =8cm ,BC =11cm 或AB =AC =10cm ,BC =7cm.(10分)25.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE =13(180°-45°)=45°.∵∠P +∠POC =∠PCE ,∴∠P =∠PCE -∠POC =15°.(7分)(3)解:∠OPC =45°n .(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n ×90°=90°n .∵∠PCE =1n ∠ACE ,∴∠PCE =1n (180°-45°)=135°n .(10分)∵∠OPC +∠POC =∠PCE ,∴∠OPC =∠PCE -∠POC =45°n .(12分)别浪费一分一秒——如何利用零散时间学人们常说,时间是公平的,每个人的一天只有24个小时,所以应该珍惜时间去充实自己。
人教版八年级数学上册《第11章三角形》单元测试题含答案
第十一章三角形测试题一、选择题(每小题3分,共30分)1.三角形按边分类可分为( )A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2.如图1,图中三角形的个数是( )图1A.6 B.7 C.8 D.93.如图2,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )图2A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高4.如图3,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )图3图45.如图5,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为( )图5A.118° B.119° C.120° D.121°6.如图6是六边形ABCDEF,则该图形的对角线的条数是( )图6A.6 B.9 C.12 D.187.如图7,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字型通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是( )图7A.75° B.80° C.85° D.90°8.如图8,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是( )图8A.x=y+z B.x=y-zC.x=z-y D.x+y+z=1809.如图9,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形(含三角形).若这两个多边形的内角和分别为M和N,则M+N不可能是( )图9A.360° B.540° C.720° D.630°10.某木材市场上木棒规格与对应价格如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m价格(元/根)101520253035小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场上购买一根木棒.则小明的爷爷至少带的钱数应为( )A.10元 B.15元 C.20元 D.25元请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是________.12.如图10,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.图1013.如图11,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.1114.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为________.图1215.有一程序,如果机器人在平地上按如图13所示的步骤行走,那么机器人回到A点处行走的路程是________.图1316.如图14所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,D,E分别为垂足.若∠AFD=158°,则∠EDF=________°.图14三、解答题(共52分)17.(6分)如图15,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校.这天两人从家到学校谁走的路远?为什么?图1518.(6分)已知一个多边形的内角和与外角和之比为11∶2.(1)求这个多边形的内角和;(2)求这个多边形的边数.19.(6分)如图16,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB =60°,∠ADB=97°,求∠A和∠ACE的度数.图1620.(6分)如图17,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出橡皮筋长x的取值范围吗?图1721.(6分)如图18,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?图1822.(7分)已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c 均为整数,求△ABC的三边长.23.(7分)如图19,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)如图①,作∠BAC的平分线AD,分别交CB,BE于点D,F.求证:∠EFD=∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD,交CB的延长线于点D,反向延长AD 交BE的延长线于点F,则(1)中的结论是否仍然成立?为什么?图1924.(8分)已知:如图20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图20①,若AE平分∠BAD,求证:EF⊥AE;(2)如图20②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?并说明理由.图20答案1.D 2.C 3.C . 4.B . 5.C 6.B . 7.C 8.A . 9.D 10.C 11.15 12.19 13.190° 14.105° . 15.30米 16.68 .17.解:佳佳从家到学校走的路远. 理由:佳佳从家到学校走的路是AC +CD +BD ,音音从家到学校走的路是AD +BD.∵在△ACD 中,AC +CD >AD ,∴AC +CD +BD >AD +BD ,即佳佳从家到学校走的路远.18.解:(1)360°×112=1980°.即这个多边形的内角和为1980°.(2)设该多边形的边数为n,则(n-2)×180°=1980°,解得n=13.即这个多边形的边数为13.19.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.20.解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得橡皮筋长x的取值范围为3<x<19.21.解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.符合设计要求,故这块模板是合格的.22.解:(1)依题意有b≥a,b≥c.∵a +c >b ,∴a +b +c ≤3b 且a +b +c >2b ,则2b <20≤3b ,解得203≤b <10. (2)∵203≤b <10,b 为整数, ∴b =7,8,9.∵b =3c ,且c 为整数,∴b =9,c =3,∴a =20-b -c =8.故△ABC 的三边长分别为a =8,b =9,c =3.23.解:(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC 仍然成立.理由:∵AD 平分∠BAG ,∴∠BAD =∠GAD.∵∠FAE =∠GAD ,∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.24.解:(1)证明:∵∠BAE =180°-∠ABC -∠AEB ,∠EFC =180°-∠BCD -∠CEF ,且∠ABC =∠BCD ,∠AEB =∠CEF ,∴∠BAE =∠EFC.∵AE 平分∠BAD ,∴∠BAE=∠DAE,∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°,∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2,∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°,∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.。
人教版八年级数学上册第11章 三角形 章末复习测试题(一)及答案
人教版八年级数学上册第十一章三角形单元测试题一.选择题1.在如图中,正确画出AC边上高的是()A.B.C.D.2.多边形的边数每增加一条,它的内角和增加()A.120°B.180°C.270°D.360°3.如图,∠A=70°,∠2=130°,则∠1=()A.130°B.120°C.140°D.110°4.如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠CDE的度数是()A.110°B.70°C.80°D.75°5.如图,△ABC中,∠C=80°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.260°C.180°D.140°6.△ABC的三边长是a、b、c,且a>b>c,若b=8,c=3,则a的取值范围是()A.3<a<8 B.5<a<11 C.8<a<11 D.6<a<107.点P是△ABC内任意一点,则∠BPC与∠A的大小关系是()A.∠BPC<∠A B.∠BPC>∠A C.∠BPC=∠A D.无法确定8.如图,AE,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAE的度数为()A.40°B.20°C.18°D.38°9.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B 间的距离不可能是()米.A.20 B.10 C.15 D.510.如图,在△ABC中,∠B=48°,三角形的外角∠DAC和∠ACF的平分线交于点E,∠AEC等于()A.56°B.66°C.76°D.无法确定11.如图所示,∠1+∠2+∠3+∠4等于()A.180°B.360°C.240°D.540°12.如图,∠MAN=100°,点B、C是射线AM、AN上的动点,∠ACB的平分线和∠MBC的平分线所在直线相交于点D,则∠BDC的大小()A.40°B.50°C.80°D.随点B、C的移动而变化二.填空题13.若一个三角形的三个内角比为2:3:5,则此三角形为角三角形.14.如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的性.15.如图,在△ABC中,∠A=40°,有一块直角三角板DEF的两条直角边DE、DF分别经过点B、C,若直角顶点D在三角形外部,则∠ABD+∠ACD的度数是度.16.在△ABC中,AB=14,AC=12,AD为中线,则△ABD与△ACD的周长之差为.17.如图所示,已知四边形ABCD,∠a、∠β分别是∠BAD、∠BCD的邻补角,且∠B+∠ADC=140°,则∠a+∠β=.18.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A3=.三.解答题19.如图,已知△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,若∠ADE=80°,∠EAC=20°,求∠B的度数.20.已知△ABC,(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.21.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.22.如图,已知△ABC中,∠B<∠C,AD平分∠BAC,E是线段AD(除去端点A、D)上一动点,EF⊥BC于点F.(1)若∠B=40°,∠DEF=10°,求∠C的度数.(2)当E在AD上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系:并说明理由.23.如图,在△ABC中,内角平分线BP和外角平分线CP相交于点P,根据下列条件求∠P的度数.(1)若∠ABC=50°,∠ACB=80°,则∠P=,若∠ABC+∠ACB=110°,则∠P=;(2)若∠BAC=90°,则∠P=;(3)从以上的计算中,你能发现∠P与∠BAC的关系是;(4)证明第(3)题中你所猜想的结论.参考答案一.选择题1.解:画出AC边上高就是过B作AC的垂线,故选:C.2.解:n边形的内角和可以表示成(n﹣2)•180°,可以得到增加一条边时,边数变为n+1,则内角和是(n﹣1)•180°,因而内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°.故选:B.3.解:如图,∵∠2=130°,∵∠3=180°﹣∠2=180°﹣130°=50°,∴∠1=∠A+∠3=70°+50°=120°.故选:B.4.解:∵BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,∴∠CBE=∠ABC=40°,∠FCB=∠ACB=30°,∴∠CDE=∠CBE+∠FCB=70°.故选:B.5.解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=80°+180°=260°.故选:B.6.解:∵a>b>c,b=8,c=3,∴根据三角形的三边关系,得8<a<11.故选:C.7.解:连接BP并延长交AC于D,连接CP,∠BPC>∠BDC,∠BDC>∠A,因而∠BPC>∠A.故∠BPC与∠A的大小关系是∠BPC>∠A.故选:B.8.解:∵△ABC中已知∠B=36°,∠C=76,∴∠BAC=68°.∴∠BAD=∠DAC=34°,∴∠ADC=∠B+∠BAD=70°,∴∠DAE=20°.故选:B.9.解:根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴AB的值在5和25之间,A、B间的距离不可能是5米.故选:D.10.解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF,∵∠DAC=∠B+∠2,∠ACF=∠B+∠1∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2),∵∠B=48°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=114°∴∠AEC=180°﹣(∠DAC+∠ACF)=66°.故选:B.11.解:∵∠1+∠2+∠5=360°,∠3+∠6+∠4=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=720°,又∵∠5+∠6=180°,∴∠1+∠2+∠3+∠4=720°﹣180°=540°.故选:D.12.解:∵CD平分∠ACB,BE平分∠MBC,∴∠ACB=2∠DCB,∠MBC=2∠CBE,∵∠MBC=2∠CBE=∠A+∠ACB,∠CBE=∠D+∠DCB,∴2∠CBE=∠D+∠DCB,∴∠MBC=2∠D+∠ACB,∴2∠D+∠ACB=∠A+∠ACB,∴∠A=2∠D,∵∠A=100°,∴∠D=50°.故选:B.二.填空题(共6小题)13.解:∵∠A+∠B+∠C=180°,∠B:∠C:∠A=2:3:5,∴∠A=×180°=90°,∴△ABC是直角三角形,故答案为:直.14.解:三角形的支架很牢固,这是利用了三角形的稳定性,故答案为:稳定.15.解:在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=40°∴∠ABC+∠ACB=180°﹣40°=140°在△BCD中,∠D+∠BCD+∠CBD=180°∴∠BCD+∠CBD=180°﹣∠D在△DEF中,∠D+∠E+∠F=180°∴∠E+∠F=180°﹣∠D∴∠CBD+∠BCD=∠E+∠F=90°∴∠ABD+∠ACD=∠ABC+∠CBD+∠ACB+∠BCD=140°+90°=230°.故答案为:230.16.解:∵AD为中线,∴BD=DC,∴(AB+BD+AD)﹣(AC+AD+CD)=AB+BD+AD﹣AC﹣AD﹣CD=AB﹣AC=2,故答案为:2.17.解:∵∠B+∠D+∠DAB+∠BCD=360°,∠B+∠ADC=140°,∴∠DAB+∠BCD=360°﹣140°=220°,∵∠a+∠β+∠DAB+∠BCD=360°,∴∠a+∠β=360°﹣220°=140°.故答案为:140°.18.解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∴∠A1=×64°=32°,∵∠A1=∠A,∠A2=∠A1=∠A,∴∠A3=∠A2=∠A=×64°=8°.故答案为:8°.三.解答题(共5小题)19.解:∵AE⊥BC,∠EAC=20°,∴∠C=70°,∴∠BAC+∠B=110°.∵∠ADE=∠B+∠BAD=(∠BAC+∠B)+∠B,∴∠B=50°.20.解:(1)证明:延长BD交AC于点E.∵∠BDC是△CDE的外角,∴∠BDC=∠2+∠CED,∵∠CED是△ABE的外角,∴∠CED=∠A+∠1.∴∠BDC=∠A+∠1+∠2.即∠D=∠A+∠ABD+∠ACD.(2)∵∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+∠DCB,即∠D+∠A+∠ABD+∠ACD=180°+180°=360°,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+∠DCB=180°,∴∠D+∠A+∠ABD+∠ACD=360°.(3)证明:令BD、AC交于点E,∵∠AED是△ABE的外角,∴∠AED=∠1+∠A,∵∠AED是△CDE的外角,∴∠AED=∠D+∠2.∴∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.21.证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.22.解:(1)∵EF⊥BC,∠DEF=10°,∴∠EDF=80°,∵∠B=40°∴∠BAD=∠EDF﹣∠B=80°﹣40°=40,∵AD平分∠BAC,∴∠BAC=80°,∴∠C=180°﹣40°﹣80°=60°;(2)∵EF⊥BC,∴∠EDF=90°﹣∠DEF,∵∠EDF=∠B+∠BAD,∴∠BAD=90°﹣∠DEF﹣∠B,∵AD平分∠BAC,∴∠BAC=2∠BAD=180°﹣2∠DEF﹣2∠B,∴∠B+180°﹣2∠DEF﹣2∠B+∠C=180°,∴∠C﹣∠B=2∠DEF.23.(1)解:∵∠ACB=80°,∴∠ACD=180°﹣80°=100°,∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC=×50°=25°,∠PCD=∠ACD=×100°=50°,在△PCD中,∠PBC+∠P=∠PCD,即25°+∠P=50°,解得∠P=25°;∵∠ABC+∠ACB=110°,∴∠A=180°﹣110°=70°,∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC,∠PCD=∠ACD,根据三角形的外角性质,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴∠A+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P,∴∠A=2∠P,∠P=∠A=×70°=35°;(2)解:∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC,∠PCD=∠ACD,根据三角形的外角性质,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴∠BAC+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P,∴∠BAC=2∠P,∠P=∠BAC,∵∠BAC=90°,∴∠P=45°;(3)由计算可知,∠P=∠A;(4)证明:∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC,∠PCD=∠ACD,根据三角形的外角性质,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴∠BAC+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P,∴∠BAC=2∠P,∠P=∠BAC.故答案为:(1)25°,35°;(2)45°;(3)∠P=∠A.。
(人教版)八年级上册数学第11章《三角形》单元检测(含答案)
(人教版)八年级上册数学第11章《三角形》练习一.选择题(共19小题)1.(2020春•开福区校级期末)如图,在三角形ABC中,∠A=45°,三角形ABC的高线BD,CE交于点O,则∠BOC的度数()A.120°B.125°C.135°D.145°2.(2020春•永州期末)富有灿烂文化的永州,现今保留着许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容.图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的多边形,根据绘制的图形,则∠1+∠2+∠3+∠4+∠5的度数为()A.72°B.108°C.360°D.540°3.(2020春•雨花区校级期末)以下列各组线段的长为边,能组成三角形的是()A.3cm,6cm,8cm B.3cm,2cm,6cmC.5cm,6cm,11cm D.2cm,7cm,4cm4.(2020春•雨花区期末)在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°5.(2020春•雨花区期末)如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°6.(2020春•天心区期末)如图,一副直角三角板图示放置,点C在DF的延长线上,点A在边EF上,AB ∥CD,∠ACB=∠EDF=90°,则∠CAF=()A.10°B.15°C.20°D.25°7.(2019秋•赫山区期末)已知三角形三边长3,4,x,则x的取值范围是()A.x>1B.x<7C.1<x<7D.﹣1<x<78.(2019秋•永定区期末)长度分别为3,7,x的三条线段能组成一个三角形,x的值可以是()A.2B.3C.4D.59.(2020春•天心区期末)△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC的形状是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形10.(2020春•天心区期末)已知三角形三边长为2,3,x,则x的取值范围是()A.x>1B.x<5C.1<x<5D.﹣1<x<511.(2020春•岳麓区校级期末)如图,点C在线段AB的延长线上,∠DAC=15°,∠DBC=110°,则∠D的度数是()A.95°B.85°C.100°D.125°12.(2019秋•浏阳市期末)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm13.(2020春•衡阳期末)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.七边形B.六边形C.五边形D.四边形14.(2019秋•永定区期末)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.915.(2020春•赫山区期末)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.1316.(2020春•长沙期末)△ABC中BC边上的高作法正确的是()A.B.C.D.17.(2019春•永州期末)在Rt△ABC中,若∠A=40°,∠C=90°,则∠B的度数是()A.20°B.30°C.40°D.50°18.(2019春•靖州县期末)下列度数不可能是多边形内角和的是()A.360°B.560°C.720°D.1440°19.(2018秋•江华县期末)以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4B.5a2,6a2,10a2C.3a,4a,a D.a﹣1,a﹣2,3a﹣3二.填空题(共9小题)20.(2020春•涟源市期末)如图,在Rt△ABC中,∠B=90°,∠ACD=130°,则∠A=°.21.(2020春•长沙期末)如图,四边形ABCD中,且∠1,∠2分别是∠BCD和∠BAD的邻补角,若∠1+∠2=150°.则∠B+∠ADC=.22.(2020春•开福区校级期末)已知三条线段长度分别为1、2、4,能否组成三角形?.(填“能”或“不能”).23.(2020春•雨花区期末)如图,若∠A=30°,∠ACD=105°,则∠EBC=°.24.(2020春•衡阳期末)如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是.25.(2019秋•涟源市期末)如图,∠BDC=130°,∠A=40°,∠B+∠C的大小是.26.(2020春•岳麓区校级期末)如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=度.27.(2020春•常德期末)如图,两直线AB与CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=°.28.(2019春•开福区校级期末)三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为.三.解答题(共7小题)29.(2020春•永州期末)如图所示,在四边形ABCD中,∠A=110°,∠ABC=70°,BD⊥CD于点D,EF⊥CD于点F,试说明∠1=∠2.30.(2019秋•双清区期末)如图,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C,过点B作BD平分∠ABC交AC于点D,且∠NAC+∠ABC=90°.(1)求证:MN∥PQ;(2)若∠ABC=∠NAC+10°,求∠ADB的度数.31.(2020春•益阳期末)阅读:如图1,CE∥AB,所以∠1=∠A,∠2=∠B.所以∠ACD=∠1+∠2=∠A+∠B.这是一个有用的结论,请用这个结论,在图2的四边形ABCD内引一条和一边平行的直线,求∠A+∠B+∠C+∠D的度数.32.(2018秋•靖州县期末)已知:如图,△ABC中,AD⊥BC于D,BE是三角形的角平分线,交AD于F.(1)若∠ABC=40°,求∠AFE的度数.(2)若∠BAC是直角,请猜想:△AFE的形状,并写出证明.33.(2019春•雨花区校级期末)如图,AD是△ABC的角平分线,∠B=45°,点E在BC延长线上且EH ⊥AD于H.(1)若∠BAD=30°,求∠ACE的度数.(2)若∠ACB=85°,求∠E的度数.34.(2018秋•安仁县期末)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.35.(2019春•天心区校级期末)一个多边形的内角和与外角和的和是1440°,通过计算说明它是几边形.参考答案与试题解析一.选择题(共19小题)1.【解答】解:∵∠A+∠ABC+∠ACB=180°,∠A=45°,∴∠ABC+∠ACB=135°,∵BD⊥AC,CE⊥AB,∴∠ABC+∠BCE=∠ACB+∠CBD=90°,∴∠ABC+∠BCE+∠ACB+∠CBD=180°,∴∠BCE+∠CBD=45°,∵∠BOC+∠BCE+∠DBC=180°,∴∠BOC=135°.故选:C.2.【解答】解:由多边形的外角和等于360度,可得∠1+∠2+∠3+∠4+∠5=360度.故选:C.3.【解答】解:根据三角形的三边关系,A、3+6=9>8,能组成三角形;B、2+3=5<6,不能够组成三角形;C、5+6=11,不能组成三角形;D、4+2=6<7,不能组成三角形.故选:A.4.【解答】解:∵在一个直角三角形中,有一个锐角等于25°,∴另一个锐角的度数是90°﹣25°=65°.故选:C.5.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵CD和BE是△ABC的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°,故选:C.6.【解答】解:∵AB∥CD,∴∠BAC=∠ACD=30°,∵∠AFD=∠CAF+∠ACF=45°,∴∠CAF=45°﹣30°=15°,故选:B.7.【解答】解:由题意得:4﹣3<x<4+3,即:1<x<7,故选:C.8.【解答】解:7﹣3<x<7+3,4<x<10,只有选项D符合题意.故选:D.9.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x.∵∠A+∠B+∠C=180°,即x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴△ABC是直角三角形.故选:A.10.【解答】解:由三角形三边关系可知,3﹣2<x<3+2,∴1<x<5,故选:C.11.【解答】解:∵∠DBC是△ABD的外角,∴∠DBC=∠D+∠A,则∠D=∠DBC﹣∠A=110°﹣15°=95°,故选:A.12.【解答】解:A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.13.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:D.14.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.15.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.16.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.17.【解答】解:∵∠A=40°,∠C=90°,∴∠B=90°﹣40°=50°,故选:D.18.【解答】解:360°、720°、1440°都是180°的倍数,它们是多边形内角和;560°不是180°的倍数,所以它不可能是多边形内角和;故选:B.19.【解答】解:当a>3时,根据三角形的三边关系,得A、a+3+a+4=2a+7,不能组成三角形;B、5a2+6a2>10a2,能组成三角形;C、a+3a=4a,不能够组成三角形;D、a﹣1+a﹣2=2a﹣3,3a﹣3﹣2a+3=a>3,2a﹣3<3a﹣3,不能组成三角形.故选:B.二.填空题(共9小题)20.【解答】解:∵∠ACD的△ABC的一个外角,∴∠A=∠ACD﹣∠B=130°﹣90°=40°,故答案为:40.21.【解答】解:∵∠1+∠2=150°,∴∠DAB+∠DCB=360°﹣150°=210°,∵∠B+∠D+∠DAB+∠DCB=360°,∴∠B+∠ADC=360°﹣(∠DAB+∠DCB)=150°,故答案为150°.22.【解答】解:根据三角形的三边关系,1+2=3<4,不能组成三角形;故答案为:不能.23.【解答】解:∵∠ACD=∠A+∠ABC,∴105°=30°+∠ABC,∴∠ABC=75°,∴∠EBC=180°﹣∠ABC=105°,故答案为105.24.【解答】解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.25.【解答】解:延长BD交AC于H,∵∠BDC=∠DHC+∠C,∠DHC=∠A+∠B,∴∠BDC=∠A+∠B+∠C,∵∠BDC=130°,∠A=40°,∴∠B+∠C=130°﹣40°=90°故答案为90°.26.【解答】解:∵AD是高线,∴∠ADB=90°∵∠BAD=42°,∴∠ABC=48°,∵BE是角平分线,∴∠FBD=24°,在△FBD中,∠BFD=180°﹣90°﹣24°=66°.故答案为:66.27.【解答】解:分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB 利用内错角和同旁内角,把这六个角转化一下,可得,有5个180°的角,∴180×5=900°.故答案为:900.28.【解答】解:当第三边为5cm时,此时三角形的三边分别为:5cm,5cm和12cm,∵5+5<12,∴不能组成三角形;当第三边为12cm时,此时三角形的三边分别为:5cm,12cm和12cm,∵5+12>12,∴能组成三角形;此时周长为5+12+12=29cm,故答案为:29cm.三.解答题(共7小题)29.【解答】解:∵∠A=110°,∠ABC=70°,∴∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∵BD⊥CD,EF⊥CD,∴∠BDC=∠EFC=90°,∴BD∥EF,∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠2(等量代换).30.【解答】(1)证明:∵AC⊥AB,∴∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠NAC+∠ABC=90°,∴∠NAC=∠ACB,∴MN∥PQ;(2)解:∵∠ABC=∠NAC+10°=∠ACB+10°,∵∠ACB+∠ABC=90°,∴∠ACB+∠ACB+10°=90°,∴∠ACB=40°,∴∠ABC=50°,∵BD平分∠ABC,∴∠ABD=12∠ABC=25°,∵∠BAC=90°,∴∠ADB=90°﹣25°=65°.31.【解答】解:作DE∥AB,交BC于E,由题意,∠DEB=∠C+∠EDC,∴∠A+∠ADE=180°,∠B+∠DEB=180°,则∠A+∠B+∠C+∠ADC=∠A+∠B+∠C+∠EDC+∠ADE=∠A+∠B+∠DEB+∠ADE=360°.32.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°,∵∠ABC=40°,BE平分∠ABC,∴∠DBF=12∠ABC=20°,∴∠BFD=90°﹣20°=70°∴∠AFE=∠BFD=70°(2)结论:△AEF是等腰三角形.理由:∵∠BAE=∠ADF=90°,∴∠AEF+∠ABE=90°,∠BFD+∠FBD=90°,∵∠ABE=∠DBF,∴∠AEF=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠AEF,∴AE=AF,∴△AEF是等腰三角形.33.【解答】解:∵AD是△ABC的角平分线∴∠BAD=∠CAD=12∠BAC(1)∵∠BAD=30°∴∠BAC=2∠BAD=60°∵∠B=45°∴∠ACE=∠B+∠BAC=45°+60°=105°(2)∵∠ACB=85°,∠B=45°,且∠ACB+∠B+∠BAC=180°∴∠BAC=50°∴∠CAD=25°∵∠ACB+∠CAD+∠ADC=180°∴∠ADC=70°∵EH⊥AD∴∠E+∠ADC=90°∴∠E=90°﹣70°=20°.34.【解答】解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=12∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.35.【解答】解:设它是n边形,依题意得:(n﹣2)180°+360°=1440°.解得:n=8.答:它是八边形.。
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版
八年级数学上册《第十一章三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.给出下列长度的三条线段,不能构成三角形的是()A.10,8,6 B.4,8,7 C.2,3,4 D.3,4,72.把一副三角板按如图所示平放在桌面上,点E恰好落在CB的延长线上FE⊥CE,则∠BDE的大小为()A.10°B.15°C.20°D.25°3.一个正多边形的每个内角都等于135°,那么它是()A.正六边形B.正十边形C.正八边形D.正十二边形4.如图,点D、E分别是△ABC边BC、AC上一点BD=2CD,AE=CE连接AD、BE交于点F,若△ABC 的面积为12,则△BDF与△AEF的面积之差S△BDF−S△AEF等于()A.1 B.2 C.3 D.45.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑皮正五边形的内角和是()A.180°B.360°C.540°D.720°6.如图AD,AE,AF分别是△ABC的中线、角平分线、高线,下列结论中错误的是()BC B.2∠BAE=∠BACA.CD=12C.∠C+∠CAF=90°D.AE=AC7.如图,在直角三角形ABC中∠BAC=90°,∠B=56°,AD⊥BC,DE//AC则∠ADE的度数为( )A.56°B.46°C.44°D.34°8.某市为了方便市民绿色出行,推出了共享单车服务,图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行∠BCD=62°,∠BAC=54°当∠MAC为()度时,AM与CB平行.A.54 B.64 C.74 D.114二、填空题9.若一个三角形两边的长分别为8cm和9cm(三边长均为整厘米数),则这个三角形第三边最长可以是cm.10.已知一个正多边形的一个外角为36°,则这个正多边形的边数是.11.将一副三角板按如图所示的位置摆放,图中∠2−∠1=°.12.如图,将一把直尺摆放在含30°角的三角尺(∠A=30°,∠C=90°)上,其中顶点B在直尺的一边上,已知∠1=55°,则∠2的度数为.13.如图,在△ABC中,AD是BC边上的中线,若S△ABC=12,AC=3则点D到AC的距离为.三、解答题14.如图,在△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠DCE=10°,∠B=60°,求∠A的度数.15.如图,在△ABC中DE∥BC,F是AC上一点,FD的延长线与CB的延长线交于点G.求证:∠DGH>∠AED.16.如图,在△ABC中,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD= 35°,∠ABE=20°求∠BFD的度数.17.如图,DE∥AB(1)判断AD与BE是否平行,并说明理由.(2)若∠A=∠C=2∠ABC,求∠E的度数.18.如图AC∥EF,∠1+∠3=180°.(1)求证AF∥CD;(2)若AC平分∠FAB,AC⊥EB于点C,∠4=78°求∠BCD的度数.参考答案1.D2.B3.C4.B5.C6.D7.A8.B9.1610.1011.3012.25°13.414.解:∵CE是AB边上的高∴∠A+∠ACE=90°,∠B+∠BCE=90°.∵CD是∠ACB的角平分线∠ACB∴∠ACD=∠BCD= 12又∵∠DCE=10°,∠B=60°∴∠BCE=90°﹣∠B=30°,∠BCD=∠BCE+∠DCE=40°∴∠ACE=∠ACD+∠DCE=∠BCD+∠DCE=50°∴∠A=90°﹣∠ACE=40°.15.证明:∵∠DGH是△DBG的一个外角∴∠DGH>∠DBG∵∠DBG是△ABC的一个外角∴∠DBG>∠C∴∠DGH>∠C∵DE∥BC∴∠AED=∠C∴∠DGH>∠AED.16.解:∵∠A=62°∴∠BDC=∠A+∠ACD=62°+35°=97°在△BDF中∵∠ABE=20°∴∠BFD=180°−∠ABE−∠BDC=180°−20°−97°=63°. 17.(1)解:AD∥BE,理由为:∵DE∥AB∴∠ABE+∠E=180°∵∠ABE+∠CDF=180°∴∠E=∠CDF∴AD∥BE;(2)解:∵∠A=∠C=2∠ABC∴5∠ABC=180°,则∠ABC=36°∴∠A=2∠ABC=72°∴∠E=∠CDF=∠A=72°.18.(1)证明:∵AC∥EF∴∠1+∠2=180°.又∵∠1+∠3=180°∴∠2=∠3.∴AF∥CD.(2)解:∵AC平分∠FAB∴∠2=∠CAD.∵∠2=∠3∴∠CAD=∠3.∵∠4+∠ADC=180°且∠4=78°∴∠ADC=180°−78°=102°.∴∠CAD=∠3=180°−102°=39°2∵AC⊥EB ∴∠ACB=90°.∴∠BCD=90°−∠3=90°−39°=51°.。
八年级数学上册《第十一章 三角形》单元测试卷附答案-人教版
八年级数学上册《第十一章三角形》单元测试卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.以下列每组数为长度(单位:)的三根小木棒,其中能搭成三角形的是()A.2,2,4 B.1,2,3 C.3,4,5 D.3,4,82.如图,是的中线,点E为的中点,连接,若的面积为,则的面积为()A.3 B.5 C.4 D.63.在中,AB=2n-5,AC=4,BC=13,则的取值范围是()A.B.C.D.4.如图,在三角形中,为的平分线∠ABC=115°,∠A=25°则的度数为()A.B.C.D.5.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑色皮块的内角和是()A.180°B.360°C.540°D.720°6.如图,已知直线,∠CAB=135°,∠ABD=75°,则等于()A.B.C.D.7.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.180米B.110米C.120米D.100米8.把一块直角三角板和一把直尺如图放置,若,则的度数等于()A.B.C.D.二、填空题9.来修理一条摇晃的凳子的数学原理是利用三角形的.10.如图,AD∥BC,AD=2,BC=3,三角形ABC的面积是4,那三角形ACD的面积是.11.如图,AC⊥BD于点C,已知∠A=40°,∠AEF=70°,则∠D=.12.如图,已知为的中线,为的中线.过点作于.若的面积为40,EF=5,则的长为.13.如图,直线,直线分别交,于点E,F,EG平分,交于点G.已知,则的度数为.14.“花影遮墙,峰峦叠窗”,苏州园林空透的窗棂中蕴含着许多的数学元素.图①中的窗棂是冰裂纹窗棂,图②是这种窗棂中的部分图案.若∠1+∠3+∠5=186°,则∠2+∠4+∠6=°.三、解答题15.如图,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB=60°,∠ADB=100°,求∠A和∠ACE的度数.16.已知:如图,过AC上一点D,作交BC于点F.求证:.17.如图,在三角形中,AB=10cm,AC=6cm,是的中点,点在边上.若三角形的周长与四边形的周长相等,求线段的长.18.在中,于,是的平分线,∠A=20°,∠B=60°;求:(1)的度数;(2)的度数;(3)的度数.19.已知:如图,四边形中,∠A=∠C=90°,BE、DF分别是∠ABC、∠ADC的平分线.求证:(1)(2).参考答案1.C2.A3.B4.D5.C6.B7.D8.B9.稳定性10.11.20°12.413.14.36615.解:∵∠ADB=∠DBC+∠ACB∴∠DBC=∠ADB﹣∠ACB=100°﹣60°=40°.∵BD是角平分线∴∠ABC=80°∴∠A=180°﹣∠ABC﹣∠ACB=40°;∵CE是高∴∠AEC=90°∴∠ACE=90°﹣∠A=50°16.证明:∵∴∵∴∵∴.17.解:由图可知:三角形的周长,四边形的周长又∵三角形的周长与四边形的周长相等,是的中点∴∴又∵∴∴∴cm18.(1)解:由得(2)解:(3)解:是的平分线.19.(1)证明:∵∠A+∠ABC+∠C+∠CDA=360°,∠A=∠C=90°∴∠ABC+∠CDA=180°.∵BE、DF分别是∠ABC、∠ADC的角平分线∴∠1=∠ABC,∠2=∠ADC∴∠1+∠2=(∠ABC+∠ADC)=×180°=90°.(2)证明:∵∠2+∠DFC=90°,∠1+∠2=90°∴∠2=90°-∠1∴90°-∠1+∠DFC=90°∴∠1=∠DFC∴BE∥DF.。
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如果一个多边形的内角和等于360度,那么这个多边形的边数为( )A .4B .5C .6D .72.已知三角形的两边长分别为4和9,则此三角形的第三边长可以是( )A .4B .5C .9D .133.如图,在△ABC 中,∠C =90°,若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( )A .40°B .60°C .70°D .80°4.如图,在 ABC 中,点 D 是 BC 边的延长线上一点, ABC ∠ 与 ACD ∠ 的平分线相交于点 E ,若 50A ∠=︒ ,则 E ∠= ( )A .25°B .30°C .40°D .45°5.在△ABC 中,如图,CD 平分∠ACB ,BE 平分∠ABC ,CD 与BE 交于点F ,若∠DEF=120°,则∠A=( )A .30°B .45°C .60°D .90°6.如图,在五边形ABCDE 中,∠A+∠B+∠E=∠EDC+∠BCD+140°,DF ,CF 分别平分∠EDC 和∠BCD ,则∠F 的度数为( )A .100°B .90°C .80°D .70°7.如图,在ABC 中AB AC =,中线AD 与角平分线CE 相交于点F ,已知40ACB ∠=︒,则AFC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒8.如图,从ABC 各顶点作平行线AD EB FC ,各与其对边或其延长线相交于点D ,E ,F.若ABE 的面积为1S ,AFC 的面积为2S ,EDC 的面积为3S ,只要知道下列哪个值就可以求出DEF 的面积( )A .12S S +B .123S S S ++C .3SD .1232S S S ++二、填空题:(本题共5小题,每小题3分,共15分.)9.为了使做好的木门窗在运输、安装过程中不变形,木工师傅在木门窗上斜着加钉了一根木条.其原理是10.从一个多边形的顶点出发,分别连接这个点与其余各个顶点,得到分割成的十个三角形,那么,这个多边形为 边形.11.已知 ABC 的高为 AD , ∠BAD=65°,∠CAD=25° ,则 BAC ∠ 的度数是 .12.如图,小明在操场上从A 点出发,沿直线前进5米后向左转40°,再沿直线前进5米后,又向左转40°,照这样走下去,他第一次回到出发地A 点时,一共走了 米.13.纸片△ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=20°,则∠2的度数为 .三、解答题:(本题共5题,共45分)14.在△ABC 中,∠ADB=100°,∠C=80°,∠BAD= ∠DAC ,BE 平分∠ABC ,求∠BED 的度数15.如图,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,AD 与CE 相交于点P ,∠BAC=66°,∠BCE=40°,求∠ADC 和∠APC 的度数.16.如图所示,在 ABC ∆ 中,∠A=38° ,∠ABC=70° , CD AB ⊥ 于点 D , CE 平分 ACB ∠ , DF CE ⊥ 于点 F ,求 CDF ∠ 的度数.17.如图,AD 为△ABC 的中线,BE 为△ABD 的中线,过点E 作EF 垂直BC ,垂足为点F .(1)∠ABC=35°,∠EBD=18°,∠BAD=30°,求∠BED的度数;(2)若△ABC的面积为30,EF=5,求CD的长度.18.在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C 三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.参考答案:1.A 2.C 3.C 4.A 5.C 6.C 7.B 8.C9.三角形的稳定性10.十二11.90°或40°12.4513.60°14.解答:∵∠ADB=100°,∠C=80°∴∠DAC=∠ADB-∠C=100°-80°=20°∵∠BAD= ∠DAC∴∠BAD= ×20°=10°在△ABD 中,∠ABC=180°-∠ADB-∠BAD=180°-100°-10°=70° ∵BE 平分∠ABC∴∠ABE= ∠ABC= ×70°=35°∴∠BED=∠ABE+∠BAD=35°+10°=45°.15.解:∵AD 是△ABC 的角平分线,∠BAC=66°∴∠BAD=∠CAD= 12∠BAC=33° ∵CE 是△ABC 的高∴∠BEC=90°∵∠BCE=40°∴∠B=50°∴∠ADC=∠BAD+∠B=33°+50°=83°;∠APC=∠ADC+∠BCE=83°+40°=123°16.∵在 ABC 中, ∠A=38°, ∠ABC=70°∴∠ACB =180°−∠A −∠ABC =72°∵CE 平分 ACB ∠∴∠ECB =12∠ACB =36°∵CD AB ⊥ 于点 D∴90CDB ∠=︒∴在 CDB 中∴∠FCD =∠ECB −∠DCB =36°−20°=16°∵DF CE ⊥ 于点 F∴∠CDF =90°−∠FCD =74°17.(1)解:∵∠ABC =35°,∠EBD =18°∴∠ABE =35°﹣18°=17°∴∠BED =∠ABE+∠BAD =17°+30°=47°(2)解:∵AD 是△ABC 的中线∴S△ABD=12S△ABC又∵S△ABC=30∴S△ABD=12×30=15又∵BE为△ABD的中线∴S△BDE=12S△ABD∴S△BDE=12×15=152∵EF⊥BC,且EF=5∴S△BDE=12•BD•EF∴12•BD×5=152∴BD=3∴CD=BD=3.18.(1)解:∵PQ⊥AB∴∠EQB=∠C=90°∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°∵BD为∠ABC的平分线∴∠CBD=∠EBQ∵∠PED=∠BEQ∴∠PDE=∠PED(2)解:当P在线段AC上时,如图1所示,此时PF∥BD理由为:∵∠PDE=∠PED∴PD=PE∵PF为∠CPQ的平分线,∠CPQ为△PDE的外角∴∠CPF=∠QPF=∠PDE=∠PED∴PF∥BD;当P在线段AC延长线上时,如图2所示,PF⊥BD 理由为:∵∠PDE=∠PED∴PD=PE∵PM为∠CPQ的平分线∴PF⊥BD。
人教版 八年级数学上册 期末单元复习练习卷 第11章 三角形 含答案
第11章三角形一.选择题(共11小题)1.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm3.下列各图中,正确画出AC边上的高的是()A.B.C.D.4.下列说法中错误的是()A.三角形三条高至少有一条在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条角平分线都在三角形的内部D.三角形三条高都在三角形的内部5.三角形两边长为2,5,则第三边的长不能是()A.3 B.4 C.5 D.66.在一个三角形中,如果一个外角是其相邻内角的4倍,那么这个外角的度数为()A.36°B.45°C.135°D.144°7.如图,若∠A=70°,∠B=40°,∠C=32°.则∠BDC=()A.102°B.110°C.142°D.148°8.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有()A.2对B.3对C.4对D.5对9.下列多边形中,对角线是5条的多边形是()A.四边形B.五边形C.六边形D.七边形10.将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5 B.6 C.7 D.811.若一个n边形的内角和是1620°,则n的值为()A.9 B.10 C.11 D.12二.填空题(共8小题)12.如图,在△ABC中,∠ACB=120°,CD平分∠ACB,作AE∥DC,交BC的延长线于点E,则△ACE是三角形.13.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD的周长为15cm,则AC长为.14.若△ABC的周长为18,其中一条边长为4,则△ABC中的最长边x的取值范围为.15.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A5=.16.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.17.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B 的度数为.18.如图所示,将多边形分割成三角形、图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出个三角形.19.如图,在正六边形ABCDEF中,连接AE,DF交于点O,则∠AOD=°.三.解答题(共5小题)20.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC 和∠DAE的度数.21.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,∠B=60°,试求∠EDC的度数.解:∵AD是∠BAC的平分线(已知)∠BAC=2∠1()又∵EF平分∠DEC(已知)∴()又∵∠1=∠2(已知)∴∠BAC=()∴AB∥DE()∴∠EDC═60°()22.如图,点D是△ABC的边BC上的一点,∠B=∠1,∠ADC=70°,∠C=70°(1)求∠B的度数;(2)求∠BAC的度数.23.请在下面括号里补充完整证明过程:已知:如图,△ABC中,∠ACB=90°,AF平分∠CAB,交CD于点E,交CB于点F,且∠CEF=∠CFE.求证:CD⊥AB.证明:∵AF平分∠CAB(已知)∴∠1=∠2∵∠CEF=∠CFE,又∠3=∠CEF(对顶角相等)∴∠CFE=∠3(等量代换)∵在△ACF中,∠ACF=90°(已知)∴+∠CFE=90°∵∠1=∠2,∠CFE=∠3(已证)∴+ =90°(等量代换)在△AED中,∠ADE=90°(三角形内角和定理)∴CD⊥AB.24.(1)如图1,计算下列五角星图案中五个顶角的度数和.即:求∠A+∠B+∠C+∠D+∠E的大小.(2)如图2,若五角星的五个顶角的度数相等,求∠1的大小.参考答案与试题解析一.选择题(共11小题)1.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【分析】根据三角形的分类可直接得到答案.【解答】解:三角形根据边分类,∴图中小椭圆圈里的A表示等边三角形.故选:D.2.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm【分析】根据题意得到AB=AC+3,根据中线的定义得到BD=DC,根据三角形的周长公式计算即可.【解答】解:由题意得,AB=AC+3,∵AD是△ABC的中线,∴BD=DC,∵△ABD的周长为22,∴AB+BD+AD=AC+3+DC+AD=22,则AC+DC+AD=19,∴△ACD的周长=AC+DC+AD=19(cm),故选:A.3.下列各图中,正确画出AC边上的高的是()A.B.C.D.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在直线AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.4.下列说法中错误的是()A.三角形三条高至少有一条在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条角平分线都在三角形的内部D.三角形三条高都在三角形的内部【分析】根据三角形的中线,角平分线和高线的定义以及在三角形的位置对各选项分析判断后利用排除法求解.【解答】解:A、三角形三条高至少有一条在三角形的内部,故正确;B、三角形三条中线都在三角形的内部,故正确;C、三角形三条角平分线都在三角形的内部,故正确.D、直角三角形有两条高就是直角三角形的边,一条在内部,钝角三角形有两条高在外部,一条在内部,故错误.故选:D.5.三角形两边长为2,5,则第三边的长不能是()A.3 B.4 C.5 D.6【分析】根据三角形的第三边大于两边之差小于两边之和,即可解决问题.【解答】解:∵三角形的第三边大于两边之差小于两边之和,∴三角形的两边长分别是2、5,则第三边长a的取值范围是3<a<7.故选:A.6.在一个三角形中,如果一个外角是其相邻内角的4倍,那么这个外角的度数为()A.36°B.45°C.135°D.144°【分析】设这个内角为α,则与其相邻的外角为4α,根据邻补角的和等于180°列式进行计算即可得解.【解答】解:设这个内角为α,则与其相邻的外角为4α,所以,α+4α=180°,解得α=36°,4α=4×36°=144°.故选:D.7.如图,若∠A=70°,∠B=40°,∠C=32°.则∠BDC=()A.102°B.110°C.142°D.148°【分析】连接AD并延长,根据三角形的外角性质计算,得到答案.【解答】解:连接AD并延长,∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C,则∠BDC=∠BDE+∠CDE=∠BAD+∠B+∠CAD+∠C=∠BAC+∠B+∠C=142°,故选:C.8.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有()A.2对B.3对C.4对D.5对【分析】根据直角和高线可得三对相等的角,根据同角的余角相等可得其它两对角相等:∠A=∠DCB,∠B=∠ACD.【解答】解:∵CD是直角△ABC斜边AB上的高,∴∠ACB=∠ADC=∠CDB=90°,∴∠A+∠ACD=∠ACD+∠DCB=90°,∴∠A=∠DCB,同理得:∠B=∠ACD,∴相等的角一共有5对,故选:D.9.下列多边形中,对角线是5条的多边形是()A.四边形B.五边形C.六边形D.七边形【分析】根据n边形的对角线有条,把5代入即可得到结论.【解答】解:由题意得,=5,解得:n=5,(负值舍去),故选:B.10.将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5 B.6 C.7 D.8【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【解答】解:如图可知,原来多边形的边数可能是5,6,7.不可能是8.故选:D.11.若一个n边形的内角和是1620°,则n的值为()A.9 B.10 C.11 D.12【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=1620°,解得n=11.故选:C.二.填空题(共8小题)12.如图,在△ABC中,∠ACB=120°,CD平分∠ACB,作AE∥DC,交BC的延长线于点E,则△ACE是等边三角形.【分析】根据角平分线的性质及平行的性质求得△ACE的各个角均为60度,从而得出△ACE是等边三角形.【解答】解:∵CD平分∠ACB,∠ACB=120°∴∠1=∠2==60°∵AE∥DC∴∠3=∠2=60°,∠E=∠1=60°∴∠3=∠4=∠E=60°∴△ACE是等边三角形.故答案是:等边.13.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD的周长为15cm,则AC长为7cm.【分析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BD的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.【解答】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm,故答案为:7cm.14.若△ABC的周长为18,其中一条边长为4,则△ABC中的最长边x的取值范围为7≤x <9 .【分析】根据已知条件可以得到三角形的第三边的长,再根据三角形的三边关系以及x 为△ABC中的最长边可以得到关于x的不等式组,解出不等式组即可.【解答】解:∵△ABC的周长为18,其中一条边长为4,这个三角形的最大边长为x,∴第三边的长为:18﹣4﹣x=14﹣x,∴x>4且x≥14﹣x,∴x≥7,根据三角形的三边关系,得:x<14﹣x+4,解得:x<9;∴7≤x<9,故答案为:7≤x<9.15.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A5=2°.【分析】根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可求出∠A1的度数,同理求出∠A2,可以发现后一个角等于前一个角的,根据发现后一个角等于前一个角的的规律即可得解,把∠A=64°代入∠A n=∠A解答即可.【解答】解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,同理可得∠A2=∠A1=×∠A=∠A,由此可得一下规律:∠A n=∠A,当∠A=64°时,∠A5=∠A=2°,故答案为:2°.16.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=70°.【分析】先根据三角形内角和定理计算出∠BAC+∠BCA=180°﹣∠B=140°,则利用邻补角定义计算出∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=220°,再根据角平分线定义得到∠EAC=∠DAC,∠ECA=∠FCA,所以∠EAC+∠ECA=(∠DAC+∠FCA)=110°,然后再利用三角形内角和计算∠AEC的度数.【解答】解:∵∠B=40°,∴∠BAC+∠BCA=180°﹣40°=140°,∴∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=360°﹣140°=220°,∵AE和CE分别平分∠DAC和∠FCA,∴∠EAC=∠DAC,∠ECA=∠FCA,∴∠EAC+∠ECA=(∠DAC+∠FCA)=110°,∴∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣110°=70°.故答案为:70°.17.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B 的度数为60°.【分析】利用平行线的性质,三角形的外角的性质求出∠A即可解决问题.【解答】解:如图,∵a∥b,∴∠1=∠3=54°,∵∠3=∠2+∠A,∴∠A=54°﹣24°=30°,∵∠ACB=90°,∴∠B=90°﹣30°=60°,故答案为60°.18.如图所示,将多边形分割成三角形、图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出(n ﹣1)个三角形.【分析】(1)三角形分割成了两个三角形;(2)四边形分割成了三个三角形;(3)以此类推,n边形分割成了(n﹣1)个三角形.【解答】解:n边形可以分割出(n﹣1)个三角形.19.如图,在正六边形ABCDEF中,连接AE,DF交于点O,则∠AOD=120 °.【分析】由正六边形的性质得出∠AFB=∠DEF=120°,AF=EF=DE,由等腰三角形的性质和三角形内角和定理得出∠FAE=∠FEA=∠EFD=30°,求出∠AFD=90°,由三角形的外角性质即可求出∠AOD的度数.【解答】解:∵六边形ABCDEF是正六边形,∴∠AFB=∠DEF=120°,AF=EF=DE,∴∠FAE=∠FEA=∠EFD=(180°﹣120°)÷2=30°,∴∠AFD=120°﹣30°=90°,∴∠AOD=∠FAE+∠AFD=30°+90°=120°.故答案为:120.三.解答题(共5小题)20.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC 和∠DAE的度数.【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=∠BAC,故∠EAD=∠EAC﹣∠DAC.【解答】解:∵∠B=42°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC=∠BAC=34°.∵AD是高,∠C=70°,∴∠DAC=90°﹣∠C=20°,∴∠EAD=∠EAC﹣∠DAC=34°﹣20°=14°,∠AEC=90°﹣14°=76°.21.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,∠B=60°,试求∠EDC的度数.解:∵AD是∠BAC的平分线(已知)∠BAC=2∠1(角平分线的定义)又∵EF平分∠DEC(已知)∴∠DEC=2∠2 (角平分线的定义)又∵∠1=∠2(已知)∴∠BAC=∠DEC(等量代换)∴AB∥DE(同位角相等两直线平行)∴∠EDC═60°(两直线平行同位角相等)【分析】根据平行线的判定方法以及角平分线的定义解决问题即可.【解答】解:∵AD是∠BAC的平分线(已知)∠BAC=2∠1(角平分线的定义)又∵EF平分∠DEC(已知)∴∠DEC=2∠2(角平分线的定义)又∵∠1=∠2(已知)∴∠BAC=∠DEC(等量代换)∴AB∥DE(同位角相等两直线平行)∴∠EDC═60°(两直线平行同位角相等)故答案为:角平分线的定义,∠DEC=2∠2,角平分线的定义,∠DEC,等量代换,同位角相等两直线平行,两直线平行同位角相等.22.如图,点D是△ABC的边BC上的一点,∠B=∠1,∠ADC=70°,∠C=70°(1)求∠B的度数;(2)求∠BAC的度数.【分析】(1)根据三角形的外角性质计算;(2)根据三角形内角和定理计算.【解答】解:(1)∵∠ADC=∠1+∠B,∠B=∠1,∴∠B=∠ADC=×70°=35°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣35°﹣70°=75°.23.请在下面括号里补充完整证明过程:已知:如图,△ABC中,∠ACB=90°,AF平分∠CAB,交CD于点E,交CB于点F,且∠CEF=∠CFE.求证:CD⊥AB.证明:∵AF平分∠CAB(已知)∴∠1=∠2 (角平分线的定义)∵∠CEF=∠CFE,又∠3=∠CEF(对顶角相等)∴∠CFE=∠3(等量代换)∵在△ACF中,∠ACF=90°(已知)∴∠1 +∠CFE=90°(直角三角形的性质)∵∠1=∠2,∠CFE=∠3(已证)∴∠2 + ∠3 =90°(等量代换)在△AED中,∠ADE=90°(三角形内角和定理)∴CD⊥AB(垂直的定义).【分析】根据角平分线的定义、直角三角形的性质、三角形内角和定理、垂直的定义填空.【解答】证明:∵AF平分∠CAB(已知)∴∠1=∠2(角平分线的定义)∵∠CEF=∠CFE,又∠3=∠CEF(对顶角相等)∴∠CFE=∠3(等量代换)∵在△ACF中,∠ACF=90°(已知)∴∠1+∠CFE=90°(直角三角形的性质)∵∠1=∠2,∠CFE=∠3(已证)∴(∠2)+(∠3)=90°(等量代换)在△AED中,∠ADE=90°(三角形内角和定理)∴CD⊥AB(垂直的定义).故答案为:(角平分线的定义);∠1;(直角三角形的性质);∠2;∠3;(垂直的定义).24.(1)如图1,计算下列五角星图案中五个顶角的度数和.即:求∠A+∠B+∠C+∠D+∠E的大小.(2)如图2,若五角星的五个顶角的度数相等,求∠1的大小.【分析】(1)设CE与BD、AD的交点分别为M、N,可分别在△MBE和△NAC中,由三角形的外角性质求得∠DMN=∠B+∠E、∠DNM=∠A+∠C,进而在△DMN中根据三角形内角和定理得出所求的结论;(2)根据多边形的外角和等于360°解答即可.【解答】解:(1)如图1,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°;(2)如图2,∵五角星的五个顶角的度数相等,∴,∴∠1=180°﹣∠2=108°.。
八年级数学上册《第十一章 三角形》单元测试卷-带答案(人教版)
八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、单选题1.下列语句正确的是()A.三角形的角平分线、中线和高都在三角形内B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外2.正多边形的每一个外角都等于45°,则这个多边形的边数是()A.6 B.7 C.8 D.93.已知三角形的两边长分别是4、7,则第三边长a的取值范围是()A.3<a<11 B.3≤a≤11 C.a>3 D.a<114.如图,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.270°C.360°D.不能确定5.如图,在△ABC中AB=AC,点D是B C延长线上一点,且∠BAC=2∠CAD已知BC=4,AD= 7则△ACD的面积为()A.7 B.14 C.21 D.286.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S37.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°8.如图,将三角尺的直角顶点放在直尺的一边上∠1=30°,∠2=50°则∠3的度数等于()A.20°B.30°C.50°D.80°二、填空题9.在△ABC中,∠A=50°,∠B,∠C的角平分线相交于点O,则∠BOC的度数是.10.正多边形的每一个内角比相邻的外角大90°,则这个多边形的边数是11.已知△ABC的三个内角的度数之比∠A:∠B:∠C=1:3:5则∠B=度,∠C=度.12.如图,已知AB//DE,∠ABC=70°,∠CDE=140°则∠BCD=.13.如图,△ABC中,点D在BC上且BD=2DC,点E是AC中点,已知△CDE面积为2,那么△ABC的面积为.14.如图所示,在△ABC中∠A=66°,点I是三条角平分线的交点,则∠BIC的大小为三、解答题15.将长度为24的一根铝丝折成各边均为正整数的三角形,这个三角形的三边分别记为a、b、c,且a≤b≤c,请写出满足题意的a、b、c.16.已知:如图,△ABC的两条高线BD、CE相交于H点∠A=56°求∠BHC的度数.17.探索归纳:(1)如图1,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( ) A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中∠A=40°,剪去∠A后成四边形,则∠1+∠2=(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.18.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.19.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.20.如图,已知直线AB,CD,AC上的点M,N,E满足ME⊥NE,∠AME+∠CNE=90°,∠ACD的平分线CG 交MN于G,作射线GF∥AB.(1)直线AB与CD平行吗?为什么?(2)若∠CAB=66°,求∠CGF的度数.参考答案1.C2.C3.A4.C5.A6.C7.C8.A9.115°10.811.60;10012.30°13.1214.123°15.解答:∵a+b+c=24,且a+b>c,a≤b≤c,∴8≤c≤11,即c=8,9,10,11,故可得(a,b,c)共12组:当c=11时,有:2,11,11; 3,10,11;4,9,11;5,8,1;6,7,11.当c=10时,有:4,10,10;5,9,10;6,8,10;7,7,10.当c=9时,有: 6,9,9;7,8,9.当c=8时,有:8,8,8.16.∵BD⊥AC,CE⊥AB∴∠AEH=∠ADH=90°在四边形AEHD中,∠AEH=∠ADH=90°,∠A=56°∴∠EHD=360°-∠AEH-∠ADH-∠A=360°-90°-90°-56°=124°∵∠BHC与∠EHD是对顶角∴∠BHC=∠EHD=124°.17.(1)C(2)220°(3)∠1+∠2=180°+∠A(4)∵△EFP是由△EFA折叠得到的∴∠AFE=∠PFE,∠AEF=∠PEF∴∠1=180°﹣2∠AFE,∠2=180°﹣2∠AEF∴∠1+∠2=360°﹣2(∠AFE+∠AEF)又∵∠AFE+∠AEF=180°﹣∠A∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A.18.解:∵DE=EB∴设∠BDE=∠ABD=x∴∠AED=∠BDE+∠ABD=2x∵AD=DE∴∠AED=∠A=2x∴∠BDC=∠A+∠ABD=3x∵BD=BC∴∠C=∠BDC=3x∵AB=AC∴∠ABC=∠C=3x在△ABC中,3x+3x+2x=180°解得x=22.5°∴∠A=2x=22.5°×2=45°.19.(1)解:∵六边形ABCDEF的内角相等∴∠B=∠A=∠BCD=120°∵CF∥AB∴∠B+∠BCF=180°∴∠BCF=60°∴∠FCD=60°(2)解:∵∠AFC=360°﹣120°﹣120°﹣60°=60°∴∠AFC=∠FCD∴AF∥CD20.(1)解:平行,理由如下:∵ ME⊥NE,即∠MEN=90°∴∠AEM+∠CEN=90°又∵∠AME+∠CNE=90°∴∠A+∠ECN=180°+180°-(∠AEM+∠CEN+∠AME+∠CNE) =360°-90°×2=180°∴ AB∥CD.(2)解:∵GF∥AB, AB∥CD∴GF∥CD∴∠GNC=∠FGN∴∠CGF=∠CGN+∠FGN=∠CGN+GNC=180°-∠GCN∵AB∥CD,∠CAB=66°∴∠ACD=180°-∠CAB=180°-66°=114°∴CG 平分∠ACD∠ACD=57°∴∠GCN=12∴∠CGF=180°-∠GCN=180°-57°=123°。
八年级数学上册《第十一章-三角形》单元测试卷-带答案(人教版)
八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、选择题(共9题)1.下列图形中具有稳定性的是( )A.B.C.D.2.判断下列说法,正确的是( )A.三角形的外角大于任意一个内角B.三角形的三条高相交于一点C.各条边都相等的多边形叫做正多边形D.四边形的一组对角互补,则另一组对角也互补3.等腰三角形的两边长分别是5cm和11cm,则它的周长是( )A.27cm B.21cmC.27cm或21cm D.无法确定4.两根木棒分别为5cm和6cm,要选择第三根,将它们钉成一个三角形,如果第三根木棒长为偶数,则方法有( )A.3种B.4种C.5种D.6种5.如图所示,直线m∥n,∠1=63∘,∠2=34∘则∠BAC的大小是( )A.73∘B.83∘C.77∘D.87∘6.如图l1∥l2,∠1=120∘,∠2=100∘,则∠3=( )A.20∘B.40∘C.50∘D.60∘7.将一副直角三角板按如图所示的位置放置,使含30∘角的三角板的一条直角边和含45∘角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.35∘B.45∘C.60∘D.75∘8.如图,在△ABC中,E,F分别是AD,CE边的中点,且S△ABC=8cm2,则S△BEF为( )A.4cm2B.3cm2C.2cm2D.1cm29.如图,△ABC中,∠ABC=50∘,∠ACB=70∘,AD平分线∠BAC,过点D作DE⊥AB于点E,则∠ADE的度数是( )A.45∘B.50∘C.60∘D.70∘二、填空题(共5题)10.一个正多边形的每个内角都是150∘,则它是正边形.11.如图,△ABC中,∠BAC=70∘,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=度.12.如图,直线a∥b,∠1=60∘,∠2=40∘则∠3=∘.13.如图,△ABC的∠A为40∘,剪去∠A后得到一个四边形,则∠1+∠2=度.14.如图∠A=20∘,∠B=30∘,∠C=50∘则∠ADB的度数.三、解答题(共6题)15.已知:如图,△ABC中,AD是高,AE平分∠BAC,∠B=50∘,∠C=80∘求∠DAE的度数.16.如图,在△ABC中∠B=∠C=45∘点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1) 当∠BAD=60∘,则∠CDE的度数是:.(2) 当点D在BC(点B,C除外)边上运动时,设∠CDE=α,请用α表示∠BAD,并说明理由.17.在△ABC中∠B<∠C,AQ平分∠BAC,交BC于点Q,P是AQ上的一点(不与点Q重合)PH⊥BC于点H.(1) 若∠C=2∠B=60∘,如图1,当点P与点A重合时,求∠QPH的度数;(2) 当△ABC是锐角三角形时,如图2,试探索∠QPH,∠C,∠B之间的数量关系,并说明理由.18.如图,已知点E,F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1) 请说出AB∥CD的理由.(2) 若∠EHF=100∘,∠D=30∘,求∠AEM的度数.19.如图,在四边形ABCD中∠B=50∘,∠C=110∘,∠D=90∘,AE⊥BC,AF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.20.如图,已知点E,F为四边形ABDC的边CA的延长线上的两点,连接DE,BF,作∠BDH的平分线DP交AB的延长线于点P.若∠1=∠2,∠3=∠4,∠5=∠C.(1) 判断DE与BF是否平行?并说明理由;(2) 试说明:∠C=2∠P.参考答案1.【答案】A2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】C9.【答案】C10.【答案】十二11.【答案】3512.【答案】8013.【答案】22014. 100°15. 【答案】∵△ABC中∠B=50∘,∠C=80∘∴∠BAC=180∘−∠B−∠C=180∘−50∘−80∘=50∘,∵AE是∠BAC的平分线∠BAC=25∘∴∠EAC=12∵AD是BC边上的高∴在直角△ADC中∠DAC=90∘−∠C=90∘−80∘=10∘∴∠DAE=∠EAC−∠DAC=25∘−10∘=15∘.16.【答案】(1) 30∘ (2) ∠BAD=2α.证明:设∠BAD=x∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=45∘+x∵∠AED是△CDE的外角∴∠AED=∠C+∠CDE∵∠B=∠C,∠ADE=∠AED∴∠ADC−α=∠45∘+x−α=45∘+α解得:∠BAD=2∠CDE=2α.17.【答案】(1) ∵∠C=2∠B=60∘∴∠B=30∘,∠BAC=180∘−60∘−30∘=90∘.∵AQ平分∠BAC∠BAC=45∘∴∠BAQ=∠QAC=12∴∠AQH=∠B+∠BAQ=30∘+45∘=75∘∵PH⊥BC∴∠PHQ=90∘∴∠QPH=∠QAH=90∘−75∘=15∘.(2) 如图,过点A作AG⊥BC于点G 则∠PHQ=∠AGQ=90∘∴PH∥AG∴∠QPH=∠QAG设∠QPH=∠QAG=x∵AQ平分∠BAC∴∠BAQ=∠QAC=x+∠GAC∵∠AQH=∠B+∠BAQ又∠AQH=90∘−x∴∠BAQ=90∘−x−∠B.∴x+∠GAC=90∘−x−∠B∵AG⊥BC∴∠GAC=90∘−∠C∴x+90∘−∠C=90∘−x−∠B∴x=12(∠C−∠B),即∠QPH=12(∠C−∠B).18. 【答案】 (1) ∵∠CED=∠GHD∴CE∥GF∵∠C=∠FGD又∵∠C=∠EFG∴∠FGD=∠EFG∴AB∥CD∴∠AED+∠D=180∘.(2) ∵∠DHG=∠EHF=100∘,∠D=30∘∴∠CGF=100∘+30∘=130∘∵CE∥GF∴∠C=180∘−130∘=50∘∵AB∥CD∴∠AEC=50∘∴∠AEM=180∘−50∘=130∘.19. 【答案】∵AE⊥BC∴∠AEC=∠AEB=90∘∵∠B=50∘∴∠BAE=180∘−90∘−50∘=40∘∵∠C=110∘,∠D=90∘∴∠DAE=360∘−∠D−∠C−∠AEC=70∘∴∠DAB=∠BAE+∠DAE=40∘+70∘=110∘∵AF平分∠DAB∴∠FAB=12∠DAB=12×110∘=55∘∴∠EAF=∠FAB−∠BAE=55∘−40∘=15∘.20. 【答案】 (1) DE∥BF理由是:因为∠3=∠4所以BD∥CE所以∠5=∠FAB因为∠5=∠C所以∠C=∠FAB所以AB∥CD所以∠2=∠BGD因为∠1=∠2所以∠1=∠BGD所以DE∥BF.(2) 因为AB∥CD所以∠P=∠PDH因为DP平分∠BDH所以∠BDP=∠PDH所以∠BDP=∠PDH=∠P 因为∠5=∠P+∠BDP所以∠5=2∠P所以∠C=∠5所以∠C=2∠P.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形》章末练习题一.选择题1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm2.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.103.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.5米B.10米C.15米D.20米4.一个多边形每个外角都等于36°,则这个多边形是几边形()A.7 B.8 C.9 D.105.若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于()A.65°B.25°C.65°或25°D.60°或20°6.下列各图中,正确画出AC边上的高的是()A. B.C.D.7.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°8.若三角形的三边长分别为3,4,x,则x的值可能是()A.1 B.6 C.7 D.109.如图,∠1,∠2,∠3,∠4恒满足关系式是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°二.填空题11.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE 交于H,则∠CHD=.12.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数为.13.三角形两边长分别是2,4,第三边长为偶数,第三边长为.14.起重机的吊臂都是用铁条焊成三角形,这是利用了.15.如果将一副三角板按如图方式叠放,那么∠1=.三.解答题16.如图,在△ABC中,∠C=60°,AM是△ABC的角平分线,AD是△ABC的高线.(1)若∠BAD=50°,求高线AD与角平分线AM的夹角∠MAD的度数.(2)若∠MAD=α°,则∠BAD=.17.已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.18.45°和60°的两个三角板拼成四边形ABCD,求四边形ABCD各个角的度数,并猜想四边形四个内角的和是多少度.19.如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=70°,∠OBA、∠OAB的平分线交于点C,求∠ACB的度数.(2)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,则∠ADB 等于度(用含字母n的代数式表示);(3)如图3,若∠MON=70°,BE是∠ABN的平分线,BE的反向延长线与∠OAB的平分线交于点F,试问:随着点A、B的运动,∠F的大小会变吗?如果不会,求∠F的度数;如果会,请说明理由.20.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=α,∠ACB=β,用α,β的代数式表示∠BOC的度数.(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用α,β的代数式表示∠BOC的度数.参考答案一.选择题1.解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.2.解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.3.解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.4.解:这个多边形的边数是:=10.故答案是D.5.解:本题分两种情况讨论:(1)当OC在三角形内部时,如图1,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB﹣∠EOB=45°﹣20°=25°;(2)当OC在三角形外部时,如图2,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB+∠EOB=45°+20°=65°.故选:C.6.解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.7.解:∵∠A+∠B+∠ACB=180°,∠ACB=100°,∠A=20°,∴∠B=60°,根据翻折不变性可知:∠CB′D=∠B=60°,∵∠DB′C=∠A+∠ADB′,∴60°=20°+∠ADB′,∴∠ADB′=40°,故选:A.8.解:∵4﹣3=1,4+3=7,∴1<x<7,∴x的值可能是6.故选:B.9.解:∵∠6是△ABC的外角,∴∠1+∠4=∠6,﹣﹣﹣(1);又∵∠2是△CDF的外角,∴∠6=∠2﹣∠3,﹣﹣﹣(2);由(1)(2)得:∠1+∠4=∠2﹣∠3.故选:D.10.解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.二.填空题(共5小题)11.解:延长CH交AB于点H,在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.12.解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.13.解:设第三边为a,根据三角形的三边关系知,4﹣2<a<4+2.即2<a<6,由周长为偶数,则a为4.故答案为:4.14.解:起重机的臂膀中都有三角形结构,这是利用了三角形的稳定性.故答案为:稳定性.15.解:给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.三.解答题(共5小题)16.解:(1)∵AD⊥BC,∠C=60°,∴∠DAC=30°,∵∠BAD=50°,∴∠BAC=50°+30°=80°,∵AM是△ABC的角平分线,∴∠MAC=∠BAC=40°,∴∠MAD=∠MAC﹣∠DAC=40°﹣30°=10°;(2))∵AD⊥BC,∠C=60°,∴∠DAC=30°,∵∠MAD=α°,∴∠MAC=30°+α°∵AM是△ABC的角平分线,∴∠MAB=∠MAC=∠BAC,∴∠BAD=∠MAB+∠MAD=30°+α°+α°=30°+2α°;故答案为30°+2α°17.(1)证明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,∴∠F+∠FEC=∠F+∠A+∠ADE,∵∠ADE=∠BDF,∴∠F+∠FEC=∠A+∠ABC,∵∠A=∠ABC,∴∠F+∠FEC=∠A+∠ABC=2∠A.(2)∠MBC=∠F+∠FEC.证明:∵BM∥AC,∴∠MBA=∠A,、∵∠A=∠ABC,∴∠MBC=∠MBA+∠ABC=2∠A,又∵∠F+∠FEC=2∠A,∴∠MBC=∠F+∠FEC.18.解:如图,根据直角三角板的内角的度数知:∠DAB=45°+30°=75°,∠DCB=45°+60°=105°,∠D=∠B=90°,猜想:四边形的内角和为360°.19.解:∵∠MON=70°,∴∠OBA+∠OAB=180°﹣70°=110°,∵BC、AC分别为∠OBA、∠OAB的平分线,∴∠ABC=∠OBA,∠BAC=∠OAB,∴∠ABC+∠BAC=×(∠OBA+∠OAB)=55°,∴∠ACB=180°﹣55°=125°;(2)∵∠MON=n°,∴∠OBA+∠OAB=180°﹣n°,∴∠NBA+∠MAB=180°+n°,∵BD、AD分别为∠NBA、∠MAB的平分线,∴∠DBA=∠NBA,∠DAB=∠MAB,∴∠DBA+∠DAB=×(∠NBA+∠MAB)=90°+n°,∴∠ADB=180°﹣(90°+n°)=90°﹣n°,故答案为:90﹣n;(3)∠F的大小不变,理由如下:∠NBA﹣∠BAO=∠MON=70°,∵BE是∠ABN的平分线,AF是∠OAB的平分线,∴∠EBA=∠NBA,∠BAF=∠BAO,∴∠F=∠EBA﹣∠BAF=(∠NBA﹣∠BAO)=35°.20.解:(1)∵∠ABC和∠ACB的平分线交于点O,∠ABC=50°,∠ACB=60°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×(50°+60°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°;(2)∵∠ABC和∠ACB的平分线交于点O,∠ABC=α,∠ACB=β,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(α+β),∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(α+β);(3)如图所示:∵∠ABC和∠ACB邻补角的平分线交于点O,∴∠CBO+∠BCO =+=180°﹣,∴∠BOC=180°﹣(180°﹣)=α+β.11 / 11。