离心泵的设计叶轮的设计

合集下载

叶轮的设计

叶轮的设计
) + 5 + 2 x l 9 】
取:
: 8 0( n l m)

2 . 叶 片 螺线 平 面 图
t 一一 背 叶 片 与 涡 室 间隙 取 t = 1 mm

根 据 上 述 叶 轮 叶 片 曲面 螺 线 计 算 结 果 ,绘 制 叶 片 螺 线 。在
圆周 上 取 1 6 个 轴 面 ,每 两 个 轴 面 夹 角 为2 2 . 5 。 ,当 Z = O 时, 空 螺 线 在 平 面 上投 影 , 如 图 所示 :
1 9 9 7 , 2 0 ( 5 ) : 6 -1 3
3 . 叶片 厚 度 计算 确 定 叶片 厚 度 时 ,应 注 意 到 铸 造 的 可能 性 ,对 铸 铁 叶 轮 , 叶 片 最 小 厚 度 为3—4 毫 米 ,本 次 设 计 的叶 轮 材 料 选 用MT 一 4 ,叶 … 馘 拙 :
【 1 】 丁成伟 . 离心 泵 与 轴 流 泵 . 北京: 机械 工 业 出版社, 1 9 8 1
1 4 3— 1 5 8
【 2 ] A . J . 斯捷潘诺夫. 离心 泵 和 轴 流 泵 . 北京: 机 械 工 业 出 版 社
19 80: 7 4—9 3
【 3 】 劳学苏, 何希杰. 螺旋 离心泵的原理 与设计方法. 水泵技术


5. 6 8 7 (mm )
S - - 6( I T l m)
4 . 背 叶 片 的设 计
图 卜 1叶 轮 轴 面 投 影 图
背 叶片 的主 要作 用 是 减 压 ,其 减 压 程 度 决 定 了背 叶片 的 几 何 参 数 。 背 叶 片 对 于 一 般 的 泵 而 言 ,还 有 另 一 个 作 用 , 就 是 能

离心泵叶轮的设计

离心泵叶轮的设计

离心泵叶轮的设计
离心泵的水力设计主要是设计叶轮和泵壳,下面我们了解下其中的叶轮。

离心泵产生的理论压头计算:
离心泵常被认为是一种动能机器。

叶轮的旋转使叶轮中的流体高速旋转,从而将能量传递给液体,这个概念可以用数学等式表示出来:
H i=u2x c u2/g
式中H i——离心泵产生的理论压头,ft;
u2——叶轮外直径处的旋转速度,ft/s;
c u2——液体离开叶轮的旋转速度,ft/s;
g——重力加速度,ft/s2。

下面是3种基本的叶轮设计:
1)封闭式叶轮,在叶轮的前后面都有封闭罩(旋转壳体);
2)半开放式叶轮,只在一边有封闭护罩,并且紧密地和另外一边静止壳体相连;
3)开放式叶轮,只在一边有或者没有封闭罩(如图)。

离心泵中液体的转速:
流体进入离心泵吸入管时没有旋转速度,当流体进入叶轮的旋转管路中时,它开始以叶轮的旋转速度旋转。

液体被挤出叶轮中心,并且它的旋转速度与叶轮直径成比例。

可以用下面方式算出任何直径的液体叶轮转速:
u=D X N/229
式中u——液体旋转速度,ft/s;
D——速度计算点的直径,in;
N——叶轮旋转速度,r/min;
1/229——单位换算系数。

叶轮里压头损失通常包括摩擦损失、涡流损失、流体再循环损失、入口耗损和出口损失。

在壳体会发生附加损失。

应当注意的是,离心泵产生的压头取决于流体速度而不是被泵吸入的流体。

离心泵的水力设计讲解

离心泵的水力设计讲解

离心泵的水力设计讲解离心泵的水力设计步骤如下:1.根据设计参数计算比转速ns;2.确定进出口直径;3.进行汽蚀计算;4.确定效率;5.确定功率;6.选择叶片数和进出口安放角;7.计算叶轮直径D2;8.计算叶片出口宽度b2;9.精算叶轮外径D2以满足要求;10.绘制模具图。

在设计离心泵之前,需要详细了解该泵的性能参数、使用场合、特殊要求等。

下表为本章中叶轮水力设计教程中使用的一组性能要求。

确定泵的进口直径时,应考虑泵吸入口的流速,一般取为3m/s左右。

大型泵的流速可以取大些,以减小泵的体积,提高过流能力;而对于高汽蚀性能要求的泵,应减小吸入流速。

本设计例题追求高效率,取Vs=2.2m/s,Ds=80.对于低扬程泵,出口直径可取与吸入口径相同。

高扬程泵,为减小泵的体积和排出管直径,可小于吸入口径。

本设计例题中,取Dd=0.81Ds=65.泵进出口直径都取了标准值,速度有所变化,需要重新计算。

本设计例题中,进口速度为Vs=2.05,出口速度为3.10.汽蚀是水力机械特有的一种现象,当流道中局部液流压力降低到接近某极限值时,液流中就开始发生空泡。

在确定泵转速时,需要考虑汽蚀条件的限制,选择C值,按给定的装置汽蚀余量和安装高度确定转速。

转速增大,过流不见磨损快,易产生振动和噪声。

汽蚀是液流中空泡发生、扩大、溃灭过程中涉及的物理、化学现象,会导致噪音、振动、甚至对流道材料产生侵蚀作用。

这些现象统称为汽蚀现象,一直是流体机械研究的热点和难点。

为了避免汽蚀带来的负面影响,需要计算汽蚀条件下允许的转速,并采用小于该转速的转速。

在计算汽蚀条件下的转速时,需要先计算汽蚀余量NPSHa,而NPSHa的计算需要知道泵的安装高度和设计要求中的数值。

例如,设计要求中给出的安装高度为3.3m,那么计算得到NPSHa为6.29m。

同时,还需要计算NPSHr,可以通过NPSHa除以1.3得到,例如计算得到NPSHr为2.54m。

比转速是一个综合性参数,它说明着流量、扬程、转数之间的相互关系。

离心泵叶轮轴面图的优化设计

离心泵叶轮轴面图的优化设计

进行正交试验直观分析计算时,首先计算各因 素的水平总值。将第 i 列所安排因素的第 j 个水平
总值记为Tij 其值等于该因素在第 j 个水平所做的试
验(计算)结果之和。 例如第 1 个因素(R1)
第1 个水平总值为 T11 y1 y2 y3 y4 第2 个水平总值为 T12 y5 y6 y7 y8 第3 个水平总值为 T13 y9 y10 y11 y12 第4 个水平总值为 T14 y13 y14 y15 y16
素确定为 R1 、 R2 、 R3 、1 。
2.3 确定因素水平 因素所处的状态称为因素水平。因素水平的确
定往往受到一定的限制,相当于非线性规划中设计 变量的约素束条件,如:
前盖板型线小圆弧段BC 的半径 R1 的最小值受 叶轮铸造工艺的限制,通常 R1min 5 mm;而 R1 的最大值 R1max 0.5(D2 D j ) L2 。
Fpi f (Li ) 17.91Li 1661
离心泵叶轮轴面图的优化设计
于是可按式(4)确定评价指标 y F ,并设定
表 1 L16 (45) 正交试验直观分析计算表
试验号
因素1 R1 (mm)
因素2 R2 (mm)
因素3 R3 (mm)
因素4 L2 (mm)
因素5 α1 (°)
评价指标 y
前盖板型线中出口直线段DE与大圆弧段 CD
交点处至叶轮出口直径的距离 L2 的最小值取有实 际意义的 L2min 5 mm,其最大值应为
L2max 0.5(D2 D j ) R1
前盖板型线中出口直线段DE 与纵坐标的夹角
1 通常在 5°~8°范围,因此可得 1min 5 和 1max 8 。
满足精度要求,可终止计算。此时对应于该 y 值的

离心泵的设计与选型

离心泵的设计与选型

离心泵的设计与选型1.引言1.1 概述离心泵是一种广泛应用于各个领域的流体传输设备,其工作原理是利用叶轮的旋转运动将液体带入泵体,并通过离心力将液体从泵体的中心推到出口,从而实现流体的输送。

离心泵具有结构简单、运行稳定、流量大、压力高等特点,已广泛应用于工业领域的冷却水循环、供水系统、石油化工、农业灌溉等领域。

在设计离心泵时,需要考虑一系列要点。

首先,泵的结构设计应合理,包括叶轮、泵体、轴承等部分的选择和设计,以确保泵能够正常运行并具有较长的使用寿命。

其次,泵的性能参数,如流量、扬程、效率等,应满足实际应用的需求。

同时,还需要考虑泵的工作环境和工作介质的特性,选择适合的材料和密封方式,以确保泵的运行安全可靠。

此外,对于大型离心泵,还需要考虑泵的运行成本和能耗情况,进行经济性分析,从而选型合适的离心泵。

综上所述,离心泵的设计与选型是一个综合性的工作,需要考虑多个因素的综合影响。

设计人员应充分了解离心泵的基本原理和设计要点,结合实际应用需求,合理选型,并根据具体情况提出设计与选型建议,以提高离心泵的工作效率和可靠性。

文章结构部分的内容可以是对整篇文章的组织和布局进行介绍,以引导读者了解文章的结构和内容安排。

可以按照以下方式编写文章1.2文章结构的内容:文章结构:本文将按照以下结构进行论述和分析离心泵的设计与选型:1. 引言:首先,我们将对离心泵的概述进行介绍,包括离心泵的定义和应用领域。

接着,我们将说明本文的目的,即为读者提供关于离心泵设计与选型的详细指导。

2. 正文:在正文部分,我们将详细阐述离心泵的基本原理,包括其工作原理和结构特点。

同时,我们还将重点讨论离心泵的设计要点,涵盖了功率计算、叶轮设计、进出口截面积的确定等关键问题。

通过深入分析这些要点,读者能够更好地理解离心泵的设计与选型过程。

3. 结论:最后,我们将总结本文的主要内容和结论。

在总结部分,我们将回顾离心泵的基本原理和设计要点,并给出相应的设计与选型建议。

离心泵叶轮的参数化设计

离心泵叶轮的参数化设计

Pa a e rc d sg f c n r f g lp m p i p l r r m t i e i n o e t iu a u m e l s e
Z a g Re h i h n i h n n u ,Z e g Ka , 几 u h ,L n n gJ n u i Re n a
r n ile u to sme h d wa s d t o to he g o t h p fc n rf g li e lr a a ti al e t q ai n t o su e o c n r lt e mer s a e o e tiu a mp l sp r merc ly, a y e
在 离心 泵 的传 统 设 计 方 法 中 , 计 人 员 的 经 验 设
对 泵产 品 的设计 质量 有 很 大 的影 响 , 优 秀 的水 力 且 模 型需 要较 长 的设 计 周 期 , 化 设 计 难 以进 行 . 优 这 是 由于泵 的水 力性 能 与其 复 杂 的 内流 道 形 状 之 间 复 杂 的隐式关 系所 致 , 问题 在 形状 优 化 领 域 被称 该 为 具有 流动 约束 的功 能 曲面 的形 状 优 化 问题 , 是 也
aecnt t n erso s sr c e oooy ( S )w sa pi pi z ed s no e . r o s n dt ep ne u aem t d l a a h f h g RM a p l dt ot et ei f n e o mi h g c
p mp i elr u mp le s,s c st u h a he NURBS s ra e meho u c t d,fe —u a e d f r to t o n a t ld f f r e s r c eo main meh d a d p ri i- f a

离心泵 - 设计和应用

离心泵 - 设计和应用

离心泵 - 设计和应用
离心泵是一种常见的动力泵,通过离心力将液体从低压区域输送到高压区域。

下面是离心泵的设计和应用的一些基本信息:
设计要点:
1.叶轮设计:离心泵的关键部分是叶轮。

叶轮设计会影响泵的
能效、流量和扬程等性能指标。

叶轮通常采用单吸入式或双吸入式,叶片形状和数量的选择取决于具体需求。

2.泵壳和进出口管道:泵壳应具备充分的强度和密封性能,以
承受泵的工作压力。

进出口管道的设计应考虑液体进出泵的流畅性和减少能量损失。

3.轴封和轴承:泵的轴封和轴承需要具备耐腐蚀性和高可靠性。

常用的轴封形式包括填料密封、机械密封和磁力密封。

4.驱动装置:离心泵可以由电动机、内燃机或其他动力源驱动。

选用合适的驱动装置需要考虑功率、转速和机械耦合等因素。

应用领域:
1.工业领域:离心泵广泛应用于工业过程中的液体输送、冷却
系统、供水循环、化工生产等。

不同的行业有不同的需求,如石油化工、矿山、造纸业等。

2.建筑行业:离心泵在建筑行业中常用于供水、排水、消防系
统、暖通空调等。

它们可提供稳定的水压和流量。

3.农业领域:农业灌溉系统、污水处理、渔业养殖等需要液体
输送的农业领域也常用到离心泵。

4.能源行业:离心泵在能源行业中用于输送原油、天然气、煤
浆等,以及核电站中的循环水系统。

5.生活领域:离心泵也应用于居民区的供水、水循环系统、游
泳池等。

总而言之,离心泵由于其结构简单、稳定可靠以及广泛的应用领域而备受青睐。

根据具体需求,可以选择合适的离心泵类型和规格,以满足不同应用的要求。

离心泵——叶轮设计说明书

离心泵——叶轮设计说明书

主要设计参数本设计给定的设计参数为: 流量Q=33500.01389mmhs=,扬程H=32m ,功率P=15Kw ,转速1450minrn =。

确定比转速s n根据比转速公式343.65145046.3632s n ⨯=== 叶轮主要几何参数的计算和确定1. 轴径与轮毂直径的初步计算1.1. 泵轴传递的扭矩3159.5510955098.81450t P M N m n =⨯=⨯=⋅其中P ——电机功率。

1.2泵的最小轴径对于35号调质钢,取[]5235010Nm τ=⨯,则最小轴径0.02424d m mm ==== 根据结构及工艺要求,初步确定叶轮安装处的轴径为40B d mm =,而轮毂直径为(1.2~1.4)h B d d =,取51h d mm = 2. 叶轮进口直径jD 的初步计算取叶轮进口断面当量直径系数0 4.5K =,则0 4.50.09696D K m mm ====对于开式单级泵,096j D D mm == 3. 叶片进口直径1D 的初步计算由于泵的比转速为46.36,比较小,故1k 应取较大值。

不妨取10.85k =,则110.859682j D k D mm ==⨯=4. 叶片出口直径2D 的初步计算220.50.5246.369.359.3513.7310010013.730.292292s D D n K D K m mm --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭====5. 叶片进口宽度1b 的初步计算()002221114/4//v vm j j hvQ Q V V D D d Q b DV ηηππηπ===-=所以 220111144j j v V D D b V D K D ==其中,10v V K V =,不妨取0.8v K =,则22118535.42440.863.75jv D b mm K D ===⨯⨯6. 叶片出口宽度2b 的初步计算225/65/6246.360.640.640.33731001000.33730.00727.2s b b n K b K m mm ⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭====7. 叶片出口角2β的确定取2β=15°8. 叶片数Z 的计算与选择取叶片数Z=8,叶片进口角0155.8β=。

简述离心泵叶轮水力设计时,速度系数法和模型相似换算法的区别_概述说明

简述离心泵叶轮水力设计时,速度系数法和模型相似换算法的区别_概述说明

简述离心泵叶轮水力设计时,速度系数法和模型相似换算法的区别概述说明1. 引言1.1 概述离心泵是一种常用的液体输送设备,其工作原理是通过叶轮的旋转产生离心力,将液体从低压区域转移到高压区域。

在离心泵的设计过程中,叶轮的水力设计是非常重要的一部分。

而叶轮水力设计方法中,速度系数法和模型相似换算法是两种常用的计算方法。

1.2 文章结构本文将分为以下几个部分来详细介绍离心泵叶轮水力设计时的速度系数法和模型相似换算法及其区别。

首先会对速度系数法进行简要介绍,包括其原理和计算方法。

然后会对模型相似换算法进行类似的介绍。

之后会比较这两种方法存在的区别,包括相似性原理差异、计算方法差异以及适用性分析。

最后会通过工程实际应用案例对比分析来加深对这两种方法区别的理解。

1.3 目的本文旨在全面了解并比较离心泵叶轮水力设计时的速度系数法和模型相似换算法,并明确它们之间存在的差异。

通过对比分析,可以更好地选择合适的方法用于离心泵叶轮水力设计,在实际工程应用中提高设计的效果和质量。

同时,本文还希望能够为相关领域的研究者和从业人员提供有价值的参考和指导。

2. 离心泵叶轮水力设计时的速度系数法:2.1 简介:离心泵是一种常见的水力机械设备,在许多工程领域中被广泛应用。

离心泵的性能参数主要包括流量、扬程和效率等。

其中,叶轮是离心泵中最关键的部件之一,其水力设计对于泵的性能至关重要。

2.2 原理及计算方法:速度系数法是一种常用于离心泵叶轮水力设计的方法。

该方法基于流体动量守恒原理,通过选择适当的叶轮出口径向速度分布来满足设计要求。

主要包括以下步骤:1. 设定目标流量和扬程。

2. 根据所选定的叶轮进口径向速度分布形式和角动量平衡原理,确定出口径向速度。

3. 通过展开叶片并考虑角速度差等因素,得到切线方向上瞬时相对流速。

4. 根据相对流速与切线方向的夹角以及转子出口直径确定绝对流速。

5. 根据绝对流速的大小确定叶片出口角度,并进行修正以满足稳态工况要求。

离心泵叶轮设计范文

离心泵叶轮设计范文

离心泵叶轮设计范文离心泵是一种常见的流体机械设备,广泛应用于工农业生产、城市供水和排水等领域。

其工作原理是利用叶轮受离心力作用,将流体加速并转化为压力能,从而实现输送的目的。

离心泵的叶轮是其核心部件,直接关系到泵的性能和效率。

叶轮的设计需要考虑多个因素,包括流体的流动特性、流量需求、扬程要求、泵的转速、叶轮材料等。

在离心泵叶轮的设计过程中,首先需要确定泵的工况参数,包括流量Q、扬程H、泵的转速N等。

这些参数可以通过工程实际需要来确定,也可以根据已有的类似泵的性能曲线来选择。

接下来,需要确定叶轮的进出口直径D1和D2,以及出口角β2、进口直径D1一般根据泵的流量来确定,而出口直径D2则常常使用等速线绘制法来确定。

该法通过绘制流速三角形和散失系数曲线来确定出口直径,从而使得出口速度恒定。

然后,需要根据进口和出口直径来确定叶轮的元素形状。

叶轮通常采用流线型的设计,使得流体能够顺利进入和流出。

叶轮的元素形状可以使用叶片角、曲率半径和叶片厚度等参数来描述。

在确定叶轮的元素形状后,还需要进行叶轮的流场分析。

这可以通过CFD仿真等方法来实现,以验证叶轮是否满足设计要求,以及是否能够提供理想的流体流动状态。

另外,还需要进行叶轮的强度和动力分析。

叶轮的强度分析主要包括静力学和动力学两个方面,以确保叶轮在工作过程中能够承受流体的压力和惯性力。

动力分析则主要是考虑叶轮的转动惯量和动力平衡等问题。

最后,在叶轮设计完成后,需要进行叶轮的制造和装配。

制造时需要考虑叶轮的材料选择和加工工艺,保证叶轮的质量和精度。

装配时需要注意叶轮与轴的连接方式,以及叶轮与泵壳等配合关系。

总之,离心泵叶轮的设计是一项综合性的工程,需要综合考虑多个因素,从而得到理想的叶轮形状和性能。

随着计算机技术的发展,仿真分析在叶轮设计中的应用越来越广泛,可以提高设计效率和精度。

在实际应用中,还需要根据具体情况进行不断的优化和改进,以满足不同领域和需求的泵的要求。

离心泵叶轮设计方法的探讨

离心泵叶轮设计方法的探讨

离心泵叶轮设计方法的探讨离心泵叶轮的设计是离心泵性能决定的关键因素之一、离心泵叶轮将液体的动能转化为静压能,其设计对于泵的效率、流量和扬程等性能参数有着重要的影响。

本文将从叶轮的几何形状、通道设计和材料选择等方面探讨离心泵叶轮的设计方法。

首先,离心泵叶轮的几何形状对泵的性能有着重要的影响。

叶轮的叶片数目、倾角和弯度等参数应根据泵的使用场景和所需性能来选择。

叶片数目的选择应考虑流体的特性、流量和扬程等因素,一般来说,叶片数目越多,泵的效率越高,但过多的叶片会增加摩擦损失,从而降低泵的效率。

叶片的倾角和弯度则决定了流体在叶轮中的流动情况,倾角适当增大可以提高泵的扬程,但也会增加泵的压力损失。

其次,叶轮的通道设计是叶轮性能优化的关键。

通道的设计包括进口通道、叶片形状和出口通道三个方面。

进口通道应尽量减小流体的流量不均匀性,减小流体的涡流损失。

叶片的形状应使得流体在通过叶轮时能够稳定地流动,减小涡流损失和漏流现象。

出口通道应能够使流体的速度适当增大,以提高泵的扬程。

通道设计的优化可以通过计算流体的传递过程中的各种流动参数,然后进行较为复杂的模型计算或者使用计算流体动力学(CFD)软件仿真分析。

最后,叶轮材料的选择也对离心泵叶轮的性能有着直接的影响。

叶轮在工作中需要承受较大的离心力、摩擦和冲击,因此材料选择应考虑到强度、耐磨性和耐腐蚀性等因素。

一般来说,常用的叶轮材料包括铸铁、不锈钢和耐腐蚀合金等。

不同的泵工况需要使用不同的叶轮材料,因此应根据实际工作条件进行选择。

综上所述,离心泵叶轮的设计涉及叶轮几何形状、通道设计和材料选择等多个方面。

针对不同的工况和需求,可以通过调整叶轮的几何参数和通道设计来实现泵的性能优化。

通过合理选择叶轮材料,可以提高泵的耐久性和使用寿命。

离心泵叶轮的设计方法需要综合考虑多种因素,以确保泵的运行稳定和高效。

离心泵叶轮的三维CAD系统设计及仿真

离心泵叶轮的三维CAD系统设计及仿真

离心泵叶轮的三维CAD系统设计及仿真离心泵是一种常见的液体输送设备,其工作原理是通过转动叶轮,将液体吸入并通过离心力将其排出。

离心泵的关键部件之一就是叶轮,其设计质量和几何形状对泵的性能起着至关重要的作用。

在设计离心泵叶轮的三维CAD系统时,需要考虑以下几个关键因素:1.几何形状设计:离心泵叶轮的几何形状对泵的性能起着决定性的影响。

一般来说,叶轮的几何形状应满足以下要求:叶片的长度、高度和倾角要合理,以确保液体在流经叶轮时能得到充分的离心力;叶片的截面形状应符合气动学的要求,一般选择空气动力学良好的宽扁形或狭长形;叶轮的几何形状应保持对称性,避免不必要的振动和不平衡。

2.流场分析:在进行离心泵叶轮的三维CAD系统设计时,还需要进行流场分析,以评估叶轮的性能和效率。

通过使用流体力学软件,可以对叶轮的气动性能进行仿真分析,包括流速、压力和流量等参数。

通过优化叶片的几何形状,可以使得离心泵的效率和性能得到提高。

3.强度分析:离心泵在工作过程中会受到较大的离心力和液压力的作用,因此叶轮的强度分析是不可忽视的。

在进行强度分析时,需要考虑叶轮材料的力学性能、叶片的几何形状和边界条件等因素。

通过有限元分析方法,可以估计叶轮在工作过程中的应力和变形情况,以确保叶轮的结构安全可靠。

4.叶轮制造:在进行离心泵叶轮的CAD系统设计时,还需要考虑叶轮的制造问题。

根据叶轮的几何形状和材料特性,选择适当的制造工艺,如锻造、铸造或数控加工等。

同时,还需要考虑到叶轮的装配和调试问题,以确保叶轮能够正常运行。

总之,离心泵叶轮的三维CAD系统设计及仿真是一个涉及多个方面的复杂过程。

通过合理设计叶轮的几何形状、进行流场分析和强度分析,可以提高离心泵的效率和性能。

同时,在设计过程中还需要考虑叶轮的制造和装配问题,以确保叶轮的可靠运行。

离心泵叶轮水力设计

离心泵叶轮水力设计

离心泵叶轮水力设计离心泵叶轮的流道形状是其水力设计的一个重要方面。

流道形状的优化可以降低水流速度的变化,减小能量损失,提高泵的效率。

一般来说,对于离心泵叶轮的水力设计来说,流道形状应该尽量保持平滑,避免出现过于复杂的几何结构,以减小流阻和涡流损失。

叶片角度也是离心泵叶轮水力设计的重要因素之一、叶片角度的选择直接影响着叶轮的流道流速和角动量的大小。

一般来说,在离心泵叶轮的水力设计中,叶片角度应该根据流体性质和工作条件的不同而有所调整。

例如,对于高粘度液体的泵来说,叶片角度一般选择较小,以减小流体的阻力和摩擦损失。

除了流道形状和叶片角度外,离心泵叶轮的几何参数也是水力设计的重要考虑因素。

例如,叶轮的进口直径、出口直径、叶片数等。

这些参数的选择应该根据需要泵送流量和扬程的不同进行调整。

一般来说,随着泵送流量的增大,叶轮的进口直径和出口直径也应该相应增大,以保持叶轮的稳定运行和高效性能。

在离心泵叶轮的水力设计中,还需要考虑到流动的非定常性以及液体的旋转运动对叶轮的影响。

非定常流动包括流场的非均匀性和流体的非线性特性。

为了减小非定常性的影响,可以通过减小流道的长度和宽度来降低流动的不均匀性。

而液体的旋转运动主要是由于叶轮的旋转导致的,对于这种情况,可以通过增大出口直径和叶片角度来减小涡流的损失。

总之,离心泵叶轮的水力设计是离心泵性能优化的关键步骤之一、在水力设计过程中,需要综合考虑流道形状、叶片角度和叶轮几何参数等方面的因素,以提高离心泵的效率和性能。

此外,还需要考虑流动的非定常性和液体的旋转运动对叶轮的影响,以减小能量损失和涡流损失,提高泵的工作效率。

只有在水力设计的合理指导下,离心泵才能够实现更高的效率和更好的性能。

离心泵叶轮水力设计

离心泵叶轮水力设计

设计题目:离心泵叶轮水力设计设计参数:流量0.1m3/s,扬程71.5m,转速1450rpm比转速:68.07目录一、已知设计参数二、速度系数法1.计算泵的比转速2.计算泵的进出口直径4. 计算叶轮进口直径D j5. 确定叶轮进口流速4. 确定叶轮叶片数z和叶片包角5. 确定叶轮叶片的出口安放角6. 确定叶轮外径D2及叶片厚度7. 确定叶轮出口轴面流速8. 确定叶轮出口宽度b29. 绘制叶轮的轴面投影图,检查过流面积变化10. 做叶片进口边11. 绘制轴面液流的流线(分流线) 三、 叶轮叶片的绘型1. 掌握方格网绘型的过程2. 掌握叶片木模图绘制过程3. 绘制木模图一、已知设计参数流量:Q=0.1m ³/s 扬程:H=71.5m 转速:n=1450rpm二、速度系数法1. 计算泵的比转速根据比转速公式s n ==435.711.0145065.3⨯⨯=68.07 故泵的水力方案为:单级单吸式离心泵。

2确定泵的总体结构形式进出口直径泵吸入口直径 泵的吸入口直径由合理的进口流速确定,而泵的入口流速一般为3m s 。

暂取2.7m s 泵的吸入口直径按下式确定S D =πs 4υQ =π⨯⨯7.21.04= 217mm取标准值220mm泵的排出口直径为D d = 0.8D s =220mm (因设计的泵扬程较低) t D —泵吸入口直径s D —泵排出口直径将选定的标准值代入上式,得泵的进出口流速为2.63m s 。

5确定比转速s n 和泵的水力方案根据比转速公式s n ==435.711.0145065.3⨯⨯=68.07 根据以往的运行经验。

依算得的s n =68.07,宜采用单级单吸的水力结构方案。

6估算泵的效率和功率查《泵的理论和设计》手册,根据经验公式得a 水力效率计算10.0835lg h η=+314501.0lg 0835.01+=0.884 取h η=0.88 b 容积效率23110.68v s n η-=+=3207.6868.011-⨯+=0.961取v η=0.96c 圆盘损失效率 76110.07()100m s n η=-=8710007.68107.01)(-=0.89 d 机械效率假定轴承填料损失约为2% ,则m η=0.89×0.98=0.87 f 总效率m v h ηηηη= =0.87×0.96×0.88=0.73 g 轴功率1000rQH N η==73.010005.711.0100081.9⨯⨯⨯⨯=96.08KW h 计算配套功率'N =KN=1.2×68.7=115.3KW K 取1.27叶轮主要参数的选择和计算叶轮主要几何参数有叶轮进口直径0D 、叶片进口直径1D 、叶轮轮毂直径h d 、叶片进口角1β、叶轮出口直径2D 、叶轮出口宽度2b 、叶片出口角2β和叶片数Z 。

离心泵叶轮水力设计

离心泵叶轮水力设计

离心泵叶轮水力设计0.98根据上述三种效率计算得到总效率为:hvm0.880.960.890.98=0.73根据公式,计算泵的功率:P=QH/=10000.171.5/0.73=.86W≈10.4kW因此,选用11kW的电机作为泵的动力源。

三、叶轮叶片的绘型1.掌握方格网绘型的过程方格网绘图法是一种快速、简便的绘图方法,适用于各种形状的叶轮叶片的绘制。

具体步骤如下:1)在方格纸上按比例放大叶片木模图;2)将叶片木模图的每一个关键点的坐标标在方格纸上;3)用直尺将每个关键点连接起来,形成叶片的外形;4)用曲线连接相邻的直线段,形成光滑的曲线。

2.掌握叶片木模图绘制过程叶片木模图是叶片外形的模型图,是绘制方格网图的基础。

其绘制过程如下:1)确定叶片的进口和出口圆直径;2)确定叶片的最大厚度和最大弦长;3)在方格纸上按比例画出进口和出口圆的圆弧;4)在进口圆弧上划分出若干等分点,根据叶片的包角和进口流角确定各等分点的位置;5)根据叶片的最大厚度和最大弦长,在进口圆弧上确定叶片的最大厚度点和最大弦长点;6)连接最大厚度点和最大弦长点,形成叶片的中心线;7)在最大厚度点和最大弦长点上分别确定叶片的前缘和后缘线;8)根据叶片的包角和出口流角,在出口圆弧上确定各等分点的位置;9)用曲线连接相邻的等分点和前后缘线,形成叶片的外形。

3.绘制木模图根据已知的设计参数和叶轮的水力方案,确定叶轮的进口和出口直径,最大厚度和最大弦长。

然后,按照叶片木模图的绘制过程,在方格纸上绘制出叶片的中心线、前后缘线和外形曲线。

最后,检查叶片的包角、出口流角和叶片的流线等重要参数是否符合设计要求。

叶片外径D2和叶片出口角β2等出口几何参数是影响泵扬程的最重要因素。

另外影响泵扬程的有限叶片数的修正系数也与D2和β2及叶片等参数有关。

可见,D2的精确与否,间接影响着泵的性能。

根据经验公式D2=K3Q1,取K=11.333,Q1=168.07,可得D2=465 mm(初步计算值)。

离心泵 - 设计和应用

离心泵 - 设计和应用

离心泵 - 设计和应用
离心泵是一种常见的动力机械设备,广泛应用于各个领域,包括工业、建筑、农业、水处理等。

下面将简要介绍离心泵的设计和应用。

设计:
叶轮设计:离心泵的核心部件是叶轮,其设计应考虑流体力学和叶轮的材料特性。

叶轮的形状和叶片角度会影响泵的性能和效率。

泵壳设计:泵壳通常采用圆柱形设计,以容纳叶轮和流体。

泵壳的设计应考虑流体流动的顺畅性,减小能量损失和阻力。

轴承和密封:离心泵通常需要轴承和密封系统来支持和保护旋转部件。

轴承的设计应确保平稳运转和长寿命,密封系统的设计则旨在防止泄漏。

应用:
污水处理:离心泵可用于将污水从低地区输送到处理站或排放点,具有较高的处理能力和耐腐蚀性能。

工业用途:离心泵广泛应用于工业领域,如石油、化工、冶金等。

用于输送液体、化学物质、冷却剂等。

建筑领域:在建筑工程中,离心泵可用于供水、排水、消防系统等。

它们能够提供足够的水压和流量,满足建筑物的需求。

农业灌溉:离心泵在农业灌溉中扮演重要角色,将水从水源(如
河流、湖泊或水井)提升到农田,用于农作物的灌溉和农业用水。

水处理:离心泵可用于供水厂、水处理设施和污水处理厂等,进行供水和处理过程中的输送、提升和循环。

需要注意的是,离心泵的选型和应用应根据具体的需求和工况来进行,包括流量、扬程、介质性质、温度、压力等参数。

同时,安装和维护离心泵时,应严格按照制造商的要求和相关标准进行操作,以确保泵的正常运行和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叶轮的设计
概述
1982 年,A.布斯曼较早地在离心泵叶轮上采用对数螺旋线。1961 年,J. 郝比奇在“模型挖泥泵特性”一文中,通过实验指出,采用对数螺旋线叶形叶轮 的泵,其输送清水和浆体时的效率均高于渐开线等叶形的叶轮。目前渣浆泵叶轮 叶片型线设计中,比较广泛地采用对数螺旋线。本次的叶轮设计是以劳学苏以及 何希杰提出的螺旋离心泵叶轮叶片工作面和负压面空间曲线方程为依据进行的 设计,叶轮叶片型线为对数螺旋线。
订做机械设计(有图纸CAD和WORD论文) QQ 1003471643 或QQ 2419131780
θ r Z N θ r Z
67.6 8.4 97.1 22 495 12.5 59.8 63.1 26.3 92.9 23 517.5 12.2 55.7 58.7 24.3 88.8 24 520 12 55.2 54.4 22.4 84.7 50.4 21.1 80.5 405 20.3 76.4 427.5 16.3 72.2 450 14.1 68.1 472.5 13 64
(5) b2 b3 曲面螺线方程:
2
θ = −150� ~ − 100�
订做机械设计(有图纸CAD和WORD论文) bb
(6)
3 4
r = 99.8[1 − 0.006θ ] Z = 186.41[1 − 0.006θ ]
θ = −100� ~86�
曲面螺线方程:
θ = 86 ~520 QQ 1003471643 或QQ 2419131780 r Z
取 α 2 =45 � 11.叶轮出口倾角 α 3 :
α 3 =7.79 × ln n s − 24.03
=7.79 × ln 115.244 − 24.03 =12.95 � 取 α 3 =13 � 12.叶轮出口最小直径 D2 min :
D2 min = D2 max − 2b2 tgα 3
=260-2 × 80 × tg13 �
(3) a 1b1 曲面螺线方程:
2
θ θ r = 130 + ⋅ 80 ⋅ tg12 � 150 Z = 115 −
(4) b1 b 2 曲面螺线方程:
θ = 0 � ~ − 150 �
Z = 169.23 − 0.172θ r = 146.81 − 4900 − ( Z − 186.41)
Z = 150.85 − 0.184θ
� �
= 229.31 − 48400 − ( 2 45
− 55)
2
N θ r Z N θ
0 0
1 22.5
表 3-1 轮缘侧曲面螺线(部分)值 3 4 5 6 7 67.5 90 112.5 135 157.5 106.6 101.4 94.3 89.7 14 15 315 337.5 58.7 42.5 24 535 46 0 96.3 81.5 16 360 54.4 37.7
其中:
Q n
K1 = 3.5~6.5 D1 = K1 × 3
80 3600 1450
=0.836~0.161(m) 取 4.轮毂直径 d h :
D1 =100(mm )
(主要考虑效率兼顾泵的抗汽蚀性能)
d h =19.96+0.07× n s
=19.96+0.07×115.244 =28(mm) 5.叶轮轴向长度 L: L= (1.24 + 0.23 × = (1.24 + 0.23 × =195.66(mm) 圆整后得: L=195(mm) 6.轮缘侧圆弧半径 R1 :
ns ) × r2 max 100
115.244 ) × 130 100
R1 =52.28+0.91 × n s R1 =52.28+0.91×115.244
=157.15 圆整后等: R1 =160(mm) 7.轮毂侧圆弧半径 R 2 :
R 2 =73.4+1.29 × n s
=73.4+1.29 × 115.244 =222.06 圆整后等: R 2 =220(mm) 8.轮毂侧圆弧半径 R 3 :
-7 -150 113.5 194.5 2 45 70 136.1 12 270 30.5 101.2 21 3 67.5 65.5 110
-6 -135 110.5 192.5 4 90 1 34.3 13
103.5 188.6 5 112.5 56.6 130.2 14
1 22.5 74.7 161.2 11 247.5 33.7 105.4 20
R 3 =60~90(mm)
取 R 3 =70(mm) 9.轮缘侧叶片倾角 α 1 :
α 1 =60.51-0.13 × n s α 1 =60.51-0.13 × 115.244
=45.528 � 取 α 1 =45 � 10.轮毂侧叶片倾角 α 2 :
α 2 =57.1-0.1 × n s α 2 =57.1-0.1 × 115.244 α 2 =45.58 �
-112.5
-1 -22.5 127.5 126.9
表 3-2 出口段螺线(部分)值 -2 -3 -4 -5 -6 -45 -67.5 -90 -112.5 -135 125.1 122.6 120.1 117.6 115.2 138.9 150.8 162.7 174.6 186.6 表 3-3 轮毂侧曲面螺线(部分)值 -4 -3 -2 -1 0 -90 -67.5 -45 -22.5 0 97.9 93.2 88.6 84 79.3 287.1 261.9 236.7 211.6 186.4 6 7 8 9 10 135 157.5 180 202.5 225 52.2 48 44 40.5 37 126.1 121.9 111.8 113.6 109.5 15 16 17 18 19
r = (1 ± bθ ) r0 z = (1 ± bθ ) z 0
式中 ( z 0 , r0 )为a1点坐标(115,130) 根 据 边 界 条 件 , 以 o ′点为坐标原点得 a1 a 2 空 间 曲 线 方 程 为 : r=130[1-0.00163θ] z=115[1-0.00163θ]
=189.45 取 D2 min =190(mm) 13.轮缘和轮毂各段轴向长度 L1~ L 4 : L 1=(0.45~0.68)L=(0.45~0.68) × 195=87.75~132.6 (作图在范围内)
L2 = ( 0.6~0.8) L = ( 0.6~0.8) × 195 = 117~156
=11.6 � 15.轮毂侧叶片出口安放角 β 2 hu :
β 2 hu = tg −1
V2 m u 2 hu (1 − K hu )
其中: u 2 uh =
πD2 min ⋅ n 60
3.14 × 190 × 1450 60 =14.42 =
K hu = 0.848(
=0.789 所以: β 2 hu = tg −1
=0.238~0.298(m)
取: 2.叶轮出口宽度 b 2 :
D2 max =260mm
b2 = 3 × (
= 3× (
n s 0 .53 ) × Dq 100
115.244 0 .53 ) × 0.025 100 =80.86(mm) 取:
b 2 =80(mm)
3.叶轮出口直径 D1 :
D1 = K1 × 3
S = KD2 max
3.2 叶轮主要参数的确定
图 3-1 叶轮轴面投影图
1.叶轮最大外径 D2 max :
D2 max = k ( n s / 100 ) − 0. 168 × Dq (m)
式中:
Dq = 3 Q / n = 3
80 3600 = 0.025 1450
k=10~12.5 故:
D2 max = k × (115.244 / 100) −0 .168 × 0.025
n s 0. 2 ) = 0.04938 100
u 2 sh = πD2 max ⋅ n / 60 = 3.14 × 260 × 1450 / 60
=19.7297
K sh = 0.826(
n s − 0. 177 ) = 0.8055 100
所以: β 2 sh = tg −1
0.04938 × 2 × 9.8 × 13 19.7297 × (1 − 0.8055)
17.叶轮出口叶片包角 ϕ ex :
ϕ ex =156.95(
=147.67 取
n s − 0 .43 ) 100
ϕ ex =150 �
18.轮缘螺线起点处圆弧半径 R 0 :
R 0 =0.63 n s − 4.17
=0.63 × 115.244-4.17 =68.43 圆整得: R 0 =70(mm) 19.轮毂侧叶片包角 ϕ hu :
8 180 91.3 76.6 17 382.5 50.4 32.9
130 125.2 120.5 115.7 110.5 115 110.7 106.6 102.4 97.8 9 10 11 12 13 202.5 225 247.5 270 292.5
r 86.4 81.6 76.9 72.2 67.6 63.1 Z 71.8 66.9 62 57.2 52.3 47.5 N 18 19 20 21 22 23 θ 405 427.5 450 472.5 495 517.5 r 48.6 47.9 47.2 46.8 46.3 46.1 Z 28 23.2 18.3 13.4 8.6 3.7 N θ r Z N θ r Z N θ r Z N 0 0 130 115 -5
n s − 0. 164 ) 100
0.04938 ⋅ 2 × 9.8 × 13 14.42 × (1 − 0.789)
=14.5 � 16.叶片进口安放角 β1 sh , β1 hu :
相关文档
最新文档