输电线路的继电保护

合集下载

电力系统继电保护-线路及变压器保护配置-配置-1页-佚名16

电力系统继电保护-线路及变压器保护配置-配置-1页-佚名16

一、输电线路继电保护配置1、220KV线路通常配置:两套纵联保护和快速距离Ⅰ段作为主保护,三段式相间和接地距离、四段式零序方向电流保护作为后备保护,并配有综合重合闸装置。

一般采用近后备方式。

2、110kV线路保护配置:三段式相间距离保护,三段式接地距离保护和四段式零序方向电流保护;三相一次重合闸。

3、10kV线路保护配置:二段(三段)式相间(方向)电流保护;三相一次重合闸。

应采用远后备保护方式。

二、变压器保护配置气体保护(容量为户内400kV A及以上,户外800 kV A及以上变压器),电流速断保护(容量小于1500kV A的变压器)纵差动保护(容量为1500kV A及以上的变压器或装设电流速断保护灵敏度不能满足要求的变压器),相间后备保护(过流、复压启动过流、负序电流、阻抗),接地后备保护(零序电流、零序电压、间隙零序电流),过负荷保护,温度保护、压力释放保护。

三、母线保护配置1、母线保护配置原则:1)在110KV及以上的双母线和单母线分段情况下,为保证有选择性地切除任一组(或段)母线上所发生的故障,而另一组(或段)无故障的母线仍能继续进行,应装设专门的母线保护(母线差动保护)。

2)110KV及以上的单母线,重要发电厂的35KV母线或高压侧为110KV及以上的重要降压变电所的35KV母线,按照装设全线速动保护的要求必须快速切除母线上的故障时,应装设专用的母线保护(母线差动保护)。

3)35KV及以下变电所母线一般利用供电元件自身的保护装置切除母线故障。

2、微机母线保护装置配置的保护:母线差动保护,母联充电保护,母联过流保护,母联失灵保护,母联死区保护,母联非全相以及断路器失灵保护。

3.各电压等级母线保护配置:500KV3/2接线方式的母线配置母线差动保护(3/2接线母线相当于单母线),断路器失灵保护置于断路器保护中。

220KV级以上各电压等级母线配置双套微机母线保护装置。

110KV母线配置一套微机母线保护装置。

谈10KV中输电线路的继电保护基本配置及保护

谈10KV中输电线路的继电保护基本配置及保护

结 语 在 电力体制 改革不断深 化 , 电力技 术不断发展 , 是促进 我国社会经 主 要靠单 相接 地保护 装置 来进行输 电故障 信号的监 视 。 对 于 出线 对规 模越 来越 大的 输 电网络和输 电线路 来 较 少的 中性 点不接 点电网, 可采用无选择 性 的绝缘监 视信号 装置, 当装 济发展 的一个 重要 的助力。 如何保证 其 在输 电的过 程 中保 电力运 行的 安全 以及在 个人 和企 置动作以后 , 由人 工通过 选线找 出故 障的统一 口径 。 对于 出线 相对较 多 说 , 放心地 用电是值得 我们重视 的。 在 电力运 行的过 程 中, 要 的中性 点不接 点电 网, 可采用零序 电流保护及零序功率 方向保护等有选 业能够 安全、 对输 电线 路进行实时 的监 视及时 预警 , 灵敏 、 快速地 做出相应的动 作, 择性的小 电流 接地信号装 置。 隔离危险 , 将危害发生 的概率 降到最 低点 , 保护人们的生命 和财产的安 1 . 3 过负荷保护
而 不能全面地 进行故障 的分析和判 断, 不能满 足输 电线路对 于 足用电安全保 护的要求 , 要采取 阶段式 的电压保护, 就是 需要设 置带 方 的信息 , 纵联 继电保护也能做到 对输 向元件或 不带方向元件的阶段式 电流和电压保护 , 当阶段 电路 的距离 较 继 电保护要求而且线路 长度较长 的情 况下, 电线路及 时、 快速 和灵敏 的反应 , 比一 般的 电流激 动保护 、 距离保护 和 短 ( 小于4 千 米) 时, 可以使用 电流 电压保护 的方式 进行用电安 全保护 , 所以 双 回线 路中一 般都 会使 用纵 当这 种 方式 不能达 到 电力输 送 的灵敏性 和速度 性 的要求时 , 要 根据 阶 横 联继 电保护有无 法比拟 的优越 性 , 段 电路 的配置方向采取纵联 差动保护或 者横联方向保护。 1 . 2 监视信号装 置 联 继电保 护对输 电线路 进行 安全保护。

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计在电力系统中,35kV输电线路扮演着重要的角色,负责将发电厂产生的电能传输到各个用电点。

然而,由于外部环境、设备老化等原因,输电线路可能会出现故障,导致电力系统的不稳定甚至瘫痪。

为了确保电力系统的安全稳定运行,35kV输电线路的继电保护设计至关重要。

本文将深入探讨35kV输电线路继电保护的设计原则、方法和应用。

首先,我们需要了解什么是继电保护。

继电保护是电力系统中一种自动保护装置,它通过检测电力系统中的异常信号,如电流、电压、功率等,来判断系统是否存在故障。

一旦检测到故障,继电保护会发出信号,触发断路器等设备,切断故障点与系统的连接,从而保护电力系统的安全运行。

在35kV输电线路的继电保护设计中,我们需要遵循以下原则:1. 快速响应:继电保护应能够迅速响应输电线路的故障,切断故障点与系统的连接,避免故障扩大。

2. 准确判断:继电保护应能够准确判断输电线路的故障类型和位置,避免误判和漏判。

3. 可靠操作:继电保护应具备高度可靠性,确保在任何情况下都能正常工作。

4. 易于维护:继电保护应具备易维护性,便于日常检查、调试和更换。

在35kV输电线路的继电保护设计中,常用的方法包括电流保护、电压保护、距离保护和差动保护等。

这些方法各自有其特点和适用场景。

1. 电流保护:电流保护是通过检测输电线路中的电流变化来判断故障的存在。

当电流超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

2. 电压保护:电压保护是通过检测输电线路中的电压变化来判断故障的存在。

当电压超过或低于设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

3. 距离保护:距离保护是通过检测输电线路中的阻抗变化来判断故障的存在。

当阻抗超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

4. 差动保护:差动保护是通过比较输电线路两端的电流和电压差异来判断故障的存在。

当差动电流或差动电压超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

10kV中输电线路的继电保护基本配置及保护策略

10kV中输电线路的继电保护基本配置及保护策略

10kV中输电线路的继电保护基本配置及保护策略经济的发展离不开电力的供应,社会对电力需求的增多使电力用户数量成指数型增长,从而构成了庞大的用电需求,但是电力网络在迅速发展的同时也存在着诸多安全隐患,10kV输电线路中也开始暴露各种安全问题,严重时直接威胁着生命和财产安全。

为此,需要通过继电保护来提高10kV输电线路的安全性,为人们的安全用电保驾护航。

标签:10kV输电线路;继电保护;基本配置;保护策略一、10kV输电线路继电保护基本配置1.1故障信号监视装置10kV输电线路的继电保护方式可以分为两种:①速断保护;②过流保护,两种方式主要依靠电流的变化情况来判断线路中是否发生故障。

在通过电流变化来判断线路故障的过程中,当故障形式为单相接地故障时,通常采取发信号的方式来进行故障信息的传输,当监视装置发出相应的故障信号后,检修人员可以根据信号来对故障点进行准确的定位,以便能够及时解决故障问题,保证线路的稳定运行。

但若是电网的出线情况较多,则会采取小电流接地选线装置发出相应的故障信号,方便相关人员对线路中的故障进行准确判断,该种方式虽然能够准确对故障点进行定位和判断,但是其选线工作的展开较难,故障特征通常不明显,谐振接地系统在选线的过程中通常较难,如图1所示,该图是单项接地故障点巡查装置,包括信号发生装置、信号采集器以及信号接收定位器。

1.2电流保护装置电流保护装置在使用的过程中通常以“两相式电流”的阶段性保护保护方式为主,即:对电流进行分段控制,避免出现相间短路的情况影响故障判断。

该中方式可以将电源的保护方式分为两段进行:①速断保护;②过电流保护,采取上述分段的方式对电流进行保护所产生的效果较为理想。

若是10kV输电线路在运行的过程中有特殊需要,则可以在上述两段基本保护的基础之上再加上适当的速断保护,将两相式电流保护升级,转变为三段式保护方式,为线路的安全提供多重保护,降低其中的安全风险。

需要注意的是,上述两种保护方式并不是所有情况都适用,当遇到双侧电源的电流保护时,上述方式并不适用,需要采取阶段式保护方式来加强线路的保护,即:采取电压和电流联动保护模式,通过电压保护和阶段式电流保护方式来加强线路保护工作,在实际情况中需要根据具体情况来进行配置。

220kV输电线路继电保护设计

220kV输电线路继电保护设计

本科课程设计课程名称:电力系统继电保护原理设计题目:220kV输电线路继电保护设计院(部):专业:__________________班级:______________________姓名:________________________学号:_________________成绩:_____________________________指导教师:摘要继电保护是一种电力系统的反事故自动装置,它在电力系统中的地位十分重要。

继电保护伴随着电力系统而生,继电保护原理及继电保护装置的应用,是电力系统实用技术的重要环节。

继电保护技术的应用繁杂广泛,伴随着现代科技的飞速发展,继电保护在更新自身技术的基础上与现代的微机、通信技术相结合,使继电保护系统日趋先进。

电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的发展不断地注入新的活力,继电保护技术未来发展趋势是计算机化、网络化、智能化和数据通信一体化发展。

本次设计主要内容是220KV输电线路继电保护的配置和整定,设计内容包括:220KV电网元件参数的计算、中性点接地的选择、输电线路纵联保护、自动重合闸等。

关键词:参数计算接地的选择纵联保护自动重合闸目录1:220KV电网元件参数的计算 (1)1.1:设计原则和一般规定 (1)1.2:220KV电网元件参数计算原则 (1)1.3:变压器参数的计算 (2)1.4:输电线路参数的计算 (5)2:输电线路上TA、TV及中性点接地的选择 (6)2.1:输电线路上T A、TV变比的选择 (6)3: 输电线路纵联保护 (8)3.1:纵联保护的基本概念 (8)3.2: 各种差动保护及其动作方程 (9)3.3:纵联电流差动保护的原理 (9)3.4: 算例 (9)3.5: 纵联差动保护计算参数列表 (11)4:自动重合闸 (11)4.1: 自动重合闸的作用 (11)4.2:重合闸的前加速和后加速 (11)4.3: 自动重合闸动作时间整定应考虑问题 (12)4.4: 双侧电源线路三相跳闸后的重合闸检查条件 (13)4.5:综合重合闸的主要元件 (13)4.6: 综合重合闸整定计算算例 (14)5:参考文献 (15)6:致谢 (19)1:220KV电网元件参数的计算1.1:设计原则和一般规定电网继电保护和安全自动装置是电力系统的重要组成部分,对保证电力系统的正常运行,防止事故发生或扩大起了重要作用。

输电线路继电保护设计

输电线路继电保护设计

输电线路继电保护设计输电线路继电保护是电力系统中非常重要的组成部分。

它的主要目的是在输电线路发生故障时,迅速切除故障段,保护线路的安全运行,同时最大程度地减少电网运行的受影响范围和时间。

本文将从输电线路基本原理、故障类型和继电保护的设计等方面进行详细阐述。

一、输电线路基本原理输电线路是将发电厂产生的电能输送到用户终端的通道,它主要由输电塔、导线和绝缘子等组成。

输电塔起到支撑导线和绝缘子的作用,导线用于传输电能,而绝缘子则用于保护导线在输电过程中不受地面和大气环境的影响。

在正常情况下,输电线路是处于正常运行状态的,电流和电压的波动很小。

然而,在发生故障时,可能出现短路、接地故障、过流和过压等问题,这些故障会导致电流和电压急剧增加,给输电线路带来很大的压力。

二、故障类型1.短路故障:当输电线路的两相或三相之间出现直接连接导致电流异常增大时,称为短路故障。

短路故障通常由于导线之间的绝缘破损或接触不良所引起。

2.接地故障:当输电线路中的导线与地面接触时,称为接地故障。

接地故障通常由于绝缘子破损或输电塔漏电引起。

3.过流:当输电线路中的电流超过额定值时,称为过流。

过流故障通常由于负荷过大或电网异常而引起。

4.过压:当输电线路中的电压超过额定值时,称为过压。

过压故障通常由于电压调节装置故障或电网异常而引起。

三、继电保护的设计继电保护是针对不同故障类型设计的一种保护装置,它通过检测输电线路的电流、电压、频率和绝缘电阻等参数,及时切除故障段,保护线路的安全运行。

1.短路保护:短路保护主要通过测量线路电流来实现。

当电流超过额定值或达到触发电流时,保护装置会启动切除装置,迅速切除故障段,保护线路不受损坏。

2.接地保护:接地保护主要通过测量线路的绝缘电阻来实现。

当绝缘电阻超过一定阈值或达到触发值时,保护装置会启动切除装置,迅速切除故障段,保护线路和运行设备。

3.过流保护:过流保护主要通过测量线路电流的大小和变化来实现。

特高压输电线路继电保护问题研究

特高压输电线路继电保护问题研究

特高压输电线路继电保护问题研究特高压输电线路是指输电线路电压等级高于1000kV的电力传输线路。

特高压输电线路具有输送功率大、线损低、经济性好等优点,是现代电力系统中不可或缺的重要组成部分。

特高压输电线路在传输电能的过程中也面临着各种继电保护问题,这些问题对于特高压输电线路的安全、稳定运行至关重要。

一、特高压输电线路继电保护问题的现状特高压输电线路的继电保护系统是保障输电线路安全运行的重要组成部分。

其主要功能是在线路出现故障时,及时准确地切除故障故障部分,保护线路设备和人员安全,同时尽快地恢复线路正常运行。

由于特高压输电线路的电压等级高、线路距离长、环境复杂等特点,使得其继电保护面临着以下几个主要问题:1. 故障识别精度低:特高压输电线路的电压等级较高,故障电流较小,因此故障识别精度要求很高。

而目前继电保护设备在对故障进行识别时,存在误判率较高的情况,尤其是在复杂的运行条件下,故障识别更加困难。

2. 保护动作速度慢:特高压输电线路的长度较长,电压等级高,使得保护动作速度对于保护线路设备和人员安全至关重要。

目前继电保护设备的动作速度有待提高,无法满足特高压输电线路对于保护动作速度的苛刻要求。

3. 维护成本高:特高压输电线路的继电保护设备数量较大,而目前的继电保护设备大多为传统硬件型态,需要定期检修、更换部件,而这些维护成本较高,给运维带来一定的压力。

4. 抗干扰能力差:特高压输电线路的运行环境复杂,受外部干扰较大,目前的继电保护设备在抗干扰能力上有所欠缺,容易受到外部干扰而误动作。

以上问题严重制约了特高压输电线路继电保护系统的性能,降低了特高压输电线路的安全稳定运行能力。

二、特高压输电线路继电保护问题的研究方向为了解决特高压输电线路继电保护问题,需要从以下几个方面进行深入研究:1. 提高故障识别精度:针对特高压输电线路的电压等级较高、故障电流较小的特点,可以采用数字继电保护装置,结合数字信号处理技术、模式识别技术等手段,提高故障识别的精度和准确性,尽量减少误判情况。

10KV供配电输电线路的继电保护

10KV供配电输电线路的继电保护

10KV供配电输电线路的继电保护概述随着电力系统不断发展和完善,各种新型设备不断引入,电网的运行安全和稳定性已成为电力系统日益迫切的问题。

而继电保护作为电力系统不可或缺的一种保护手段,对于电网的安全运行至关重要。

本文将围绕10KV供配电输电线路的继电保护进行介绍和探讨。

10KV供配电输电线路的基础保护10KV供配电输电线路主要包括四种基础保护:过流保护、接地保护、差动保护和跳闸保护。

过流保护过流保护是指在设备发生故障时,通过检测故障电流是否超过一定的设定值,从而实现对电力设备的保护。

在10KV供配电输电线路中,常见的过流保护有欠压保护、过流保护和地锁闭环保护等。

接地保护接地保护是通过对电力设备的接地电流进行监测,当系统出现接地故障时,及时切断故障点的电源,保护系统其他部位的正常运行。

在10KV供配电输电线路中,常见的接地保护有单个接地保护和非整定接地保护。

差动保护差动保护是指在电力系统出现故障时,通过检测设备的两端电流是否相等,以判断设备是否出现故障。

差动保护应用广泛,在10KV供配电输电线路中,常见的差动保护有线路差动保护和变压器差动保护。

跳闸保护跳闸保护是电力系统中保护装置中最基本的保护措施。

它主要是通过检测电力设备的电压、电流以及保护区段的信号,从而实现对电力设备的切断。

在10KV供配电输电线路中,常见的跳闸保护有距离保护、低压保护和分段保护等。

10KV供配电输电线路的差动保护差动保护可以实现对供配电设备进行保护,是电力系统中非常重要的一种保护手段。

在10KV供配电输电线路中,差动保护可以分为线路差动保护和变压器差动保护。

线路差动保护线路差动保护是指在10KV输电线路自助中,采用线路差动保护装置作为主要的继电保护措施,对输电线路的故障实行保护。

线路差动保护通常包括电流互感器、差动保护装置等组成。

在差动保护中,选择适当的互感器比值,对于保护的可靠性和速度都有着重要的影响。

变压器差动保护变压器差动保护是指在输电变压器的保护中,采用差动保护装置作为主要的措施,对变压器出现故障时进行保护。

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计
35kV输电线路的继电保护设计需要考虑以下几个方面:
1. 选择合适的继电保护装置:根据35kV输电线路的特点和要求,
选择适合的继电保护装置,例如差动保护装置、过电流保护装置、
跳闸保护装置等。

2. 确定保护区域:根据线路的拓扑结构和电气参数,确定继电保护
的保护区域,即需要保护的线路段和设备。

3. 设置保护动作条件:根据线路的额定电流、短路容量和故障类型,设置继电保护的动作条件,例如过电流保护的动作电流、时间等。

4. 确定保护动作时间:根据线路的长度和传输速度,计算继电保护
的动作时间,以确保故障发生时能够及时切除故障区域。

5. 设置保护动作逻辑:根据线路的拓扑结构和故障类型,确定继电
保护的动作逻辑,即保护装置的动作顺序和动作方式。

6. 考虑通信和互锁功能:根据线路的通信需求和操作要求,设计继
电保护的通信和互锁功能,以实现线路的自动化控制和远程监控。

7. 进行保护设备的参数设置和校验:根据线路的实际运行情况,设
置继电保护装置的参数,并进行校验和测试,以确保保护装置的可
靠性和准确性。

8. 编制继电保护接线图和操作手册:根据继电保护设计的结果,编
制继电保护接线图和操作手册,以供操作人员参考和使用。

需要注意的是,35kV输电线路的继电保护设计需要根据具体的工程
要求和标准进行,以上仅为一般性的设计步骤,具体设计还需根据
实际情况进行细化和调整。

110kv高压输电线路继电保护设计

110kv高压输电线路继电保护设计

110kv高压输电线路的继电保护设计前言随着电力系统迅速发展,我们不断对它提出新的要求,电力系统对继电保护的要求也不断提高。

继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。

对电力系统继电保护的基本性能要求是有选择性,速动性,灵敏性,可靠性。

这次课程设计以最常见的110KV电网线路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。

特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。

重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。

目录第1章绪论 (11)1.1 设计基础条件 (11)1.2 设计内容 (11)1.3 设计要求 (22)第2章短路电流计算 (33)2.1 短路电流计算原则 (33)2.2 电力网络元件参数计算 (33)2.3 最大运行方式 (33)2.4 最小运行方式 (44)第3章110kv高压输电线路继电保护整定计算 (66)3.1 三段式方向性电流保护整定计算 (66)3.11 QF6的三段式电流保护整定计算 (77)3.12 QF4的三段式电流保护整定计算 (77)3.13 QF2的三段式电流保护整定计算 (88)3.2 三段式距离保护正定计算 (99)3.21 QF6的距离保护 (99)3.22 QF4的距离保护 (99)3.23 QF2的距离保护 (1010)3.3 线路差动保护 (1010)3.31 A’C段线路差动保护 (1010)3.32 BC段线路纵差保护 (1111)3.33 AB段线路纵差保护 (1111)第4章自动重合闸装置 (1111)第5章电力系统各元件继电保护装置的选择 (1212)5.1 保护配置 (1313)5.2 各插件原理说明 (1313)5.3 主要技术指标 (1313)收获和体会 (1414)参考文献 (1515)附录1616第1章绪论1.1 设计基础条件单侧电源环形网络如图1.1所示,已知:(1)网络中各线路采用带方向或不带方向的电流电压保护,所有变压器均采用纵联差动保护作为主保护,变压器均为Y,d11接线;(2)发电厂的最大发电容量为3×50MW,最小发电容量为2×50MW;(3)网络的正常运行方式为发电厂发电容量最大且闭环运行;(4)允许的最大故障切除时间为0.85s;(5)线路AB、BC、AD、CD的最大负荷电流分别为230、150、230和140A,负荷自起动系数5.1ssK;(6)各变电所引出线上的后备保护的动作时间如图示,△t=0.5s;(7)线路正序电抗每公里均为0.4Ω;图1.1 单侧电源环形网络图1.2设计内容(1)短路电流计算1)确定电力系统最大运行方式和最小运行方式,计算最大短路电流值和最小短路电流值。

试论220kV输电线路故障继电保护动作

试论220kV输电线路故障继电保护动作
线, 传 送 线 路 两 侧 电信 号 的 保 护 , 原 理
的重要 手段之 一 ,对 于保 障 电力

输 电线路 故障的特征主要有 4个 : 是 电流增大 ,即连接 电源和短 路点的 电气设 备 内电流 增大 ;二是 电压 下降 , 即故 障点 周 围的 电气 设 备上 的 电压 降 低 ,而 且到故 障点距 离越近 ,电压 的下
【 关键词 】继 电保 护 高压 输 电线路 保 护
到对 侧加 以比较 而决 定保护是否动作 。
高 频保护包括相差 高频保护 、高频 闭锁
动作
1 . 2 . 1 横向故障。
此 种故障包括单相接地故 障、双相 距 离保 护和功率方 向闭锁高频保护。
继 电保护是研究 电力系统 的故 障和 运行异常 状况 ,探讨应对 策略的反事故 自动化措施 。由于继 电保 护在 发展过程 中曾经主 要是用有触点 的继 电器来对 电 力系统及 发 电机 、变压器 等元件进行保 护 ,使之 免遭损害 ,所 以被 称为继 电保
P o w e r E l e c t r o n i c s・ 电力电子
试论 2 2 0 k V输 电线路故障继电保 护动作
文/ 谢 小 玲
1 . 1输 电线路故 障的特征
继 电 保 护 是 维 护 电 力 系 统
对端 。可以用该端采样 以后的瞬 时值 作 为传送 电流信号 ,这个 瞬时值 包含幅值 和相位 的信息 ,也可 以传送 电流相量 的 实部 和虚 部 ,保护装置 收到对端传来 的 光信 号先 转换成 电信号再 与本端 的电流 信号构成纵 差保 护。 2 . 1 . 2高频保护。 高频保护 是用 高频 载波代替 二次导
2 . 2 . 1 零序 电流保护 。 输 电 ห้องสมุดไป่ตู้路 零序 电流保 护 是 反应 输 电线路 一端零序 电流的保 护。反应输 电 线路一 端 电气量变化 的保 护 由于无法 区 分本 线路末端短路和相邻 线路始端 的短

35kV输电线路继电保护系统设计

35kV输电线路继电保护系统设计

35 kV 输电线路继电保护系统设计摘要:在现在的电网中,输电线路显得尤其重要,输电线路和电网系统的安全有着紧密的联系,一个出问题,另一个也就会出故障。

所以,如何快速而有准确的去解决问题,这便给输电线路的保护提了很高的一个要求。

本文35kV输电线路继电保护系统的设计主要是利用距离保护原理,还得加上微机保护装置,在许多的高压电网中设计的一套保护系统。

距离保护可以很好的对所设计的输电线路进行保护,它可以看出来线路中是不是有故障,或者说是可以鉴定它有没有在保护区之内,然后来观察动作的大小,距离保护克服了很大的影响,因为电流和电压保护的缺点由系统运行模式去决定,还有很好的保护性能。

关键词:继电保护;继电保护;距离一、绪论由于在露天环境下,分布着许许多多的架空线路,而且长时间处于运行状态中,又因为平时可能会受到火灾,或者周围的一些自然环境发生改变等等诸多影响,可能会导致输电线路在运行的时候会发生一些故障。

在过去的很多时间里,因为要杜绝这类不安全事故(短路故障)的发生,但同时还得保证输电线路得保持运行状态,那么就有必要对线路进行检测,保护和修缮。

在高压输电线路保护的现实运用中,常常会发生故障,这就影响了继电保护装置的积极功能,在工作过程中,可能运行的设备就会特别多,保障电气设备的安全运行才可以提高输配电的服务质量水平。

对于35kV输电线路的运行而言,加强继电保护的应用是重中之重,而当高电压电力系统出现故障时,如果有继电保护的话,就会对它发出报警信号,从这一点就看出来了电气系统继电保护的必要性[1]。

二、输电线路故障分析与保护配置在外边的环境里,分布着许许多多的架空线路,而且长时间处于运行状态中,又因为平时可能会受到火灾,或者周围的一些自然环境发生改变等等诸多影响,可能会导致输电线路在运行的时候会发生一些突发性的意外。

(一)、引起故障的原因1. 雷击故障当输电线路正常工作的时候,突然来一声爆雷,很有可能会发生故障,而它可以分为好几种类型,导线和金属可能会对横担构件放电,而且第一片绝缘子也可能会对导线放电,复合绝缘子之间会相互放电等等很多类型,而且雷击状况的出现会让低零值绝缘子钢帽发生爆裂,可能会导致发生断电[2]。

35KV线路保护

35KV线路保护

35KV输电线路继电保护设计作者:鄢凯指导教师:陕春玲教学单位:三峡大学葛洲坝集团电力有限责任公司摘要:35KV输电线路继电保护主要是阶段式电流保护,即第Ⅰ段为电流速断保护,第Ⅱ段为限时电流速断保护,第Ⅲ段为过电流保护。

它以第Ⅰ段和第Ⅱ段作为主保护,以第Ⅲ段作为辅助保护。

当第Ⅰ、Ⅱ段灵敏系数不够时,可采用电流、电压联锁速段保护。

第Ⅰ段保护动作时间短,速动性好,但其动作电流较大,不能保护线路全长,保护范围最小;第Ⅱ段保护有较短的动作时限,而且能保护线路全长,却不能作为相邻元件的后备保护;第Ⅲ段保护的动作电流较前两段小,保护范围大,既能保护本线路的全长又能作为相邻线路的后备保护,灵敏性最好,但其动作时限较长,速动性差。

使用Ⅰ段、Ⅱ段、Ⅲ段组成的阶段式电流保护的主要优点是简单、可靠,并且在一般情况下能够满足快速切除故障的要求。

阶段式电流保护,在灵敏系数能满足要求时,用于35KV中性点非直接接地电网的线路上,作为相间短路的保护。

在35KV线路继电保护的设计中,还用到了单相接地保护,一般采用无选择性的绝缘监视信号装置。

关键词:35KV线路阶段式电流保护单相接地保护整定计算原理接线图评价及应用前言电力系统继电保护技术,是随电力系统的发展而发展起来的一门专业技术。

电力系统的发展,使发电设备容量和供电范围不断扩大,电压等级不断提高,电力系统的网络也越来越复杂。

这对于保证电力系统安全、可靠、稳定运动必不可少的继电保护技术,便提出了越来越高的要求,从而也就有了电力系统继电保护原理和装置从简单到复杂的发展过程。

再次我们所介绍的继电保护原理及装置主要用于35KV输电线路中。

35KV电力系统属中性点非直接接地系统,其中性点或经消弧线圈接地或不接地;对于相间短路和单相接地,由于接地电流小,三相电压仍能保持平衡,对用户没有很大的影响。

因此,单相接地保护一般动作于信号,但单相接地对人身和设备的安全产生危害时,就应动作于断路器跳闸,故均应装设相应的继电保护装置,一般由具有阶梯时限特性的多段式保护构成。

220KV输电线路继电保护-输电线路继电保护

220KV输电线路继电保护-输电线路继电保护

220KV输电线路继电保护:输电线路继电保护XX大学课程设计课程名称:电力系统继电保护原理设计题目:220KV输电线路继电保护院(部):电力学院专业:电气工程及其自动化班级:姓名:学号:成绩:指导教师:日期:20XX年6月8日—— 6月21日目录前言 2 第一章绪论 3 1.1继电保护的概论 3 1.2继电保护的基本任务 3 1.3继电保护的构成 3 1.4课程设计的目标及基本要求 4 第二章 220KV输电线路保护 4 2.1 220KV 线路保护概要 4 2.2纵联保护 5 2.2.1纵联方向保护原理 5 2.2.2纵联保护通道 6 2.3 输电线路参数的计算 6 第三章输电线路上TA、TV及中性点接地的选择73.1 输电线路上T A、TV的选择73.2 变压器中性点接地方式的选择 8 第四章相间距离保护整定计算 94.1 距离保护的基本概念 9 4.2距离保护的整定9 4.3 距离保护的评价及应用范围 11 第五章电力网零序继电保护方式选择与整定计算 11 5.1 零序电流保护的特点 11 5.2 接地短路计算的运行方式选择 12 5.3 最大分支系数的运行方式和短路点位置的选择 12 5.4 电力网零序继电保护的整定计算 12 5.5 零序电流保护的评价及使用范围 14 心得体会15 参考文献 16 前言继电保护伴随着电力系统而生,继电保护原理及继电保护装置的应用,是电力系统实用技术的重要环节。

继电保护技术的应用繁杂广泛,随着现代科技的飞速发展,继电保护在更新自身技术的基础上与现代的微机、通信技术相结合,使继电保护系统日趋先进。

无论是继电保护装置还是继电保护系统,都蕴含着严谨而又富有创兴的科学哲理,同时也折射出现代技术发展的光芒。

可以说继电保护是一门艺术。

由于电力系统是一个整体,电能的生产、传输、分配和使用是同时实现的,各设备之间都有电或磁的联系。

因此,当某一设备或线路发生短路故障时,在瞬间就会影响到整个电力系统的其它部分,为此要求切除故障设备或输电线路的时间必须很短,通常切除故障的时间小到十分之几秒到百分之几秒。

特高压输电线路的继电保护技术及其措施

特高压输电线路的继电保护技术及其措施

特高压输电线路的继电保护技术及其措施Summary:特高压输电线路对于促进电力系统与社会经济发展的非常关键,因此为了保障特高压输电线路的安全运行,本文阐述了特高压输电线路的继电保护重要性,对特高压输电线路的继电保护技术及其措施进行了探讨分析。

Keys:特高压输电线路;继电保护;重要性;技术;措施社会经济的快速发展,使得特高压输电线路日显重要,其具有距离长、损耗低等特点,与高压输电线路相比,特高压线路的导线直径、传输功率、相间电容、线路电容电流都有所增大,阻抗有所下降,这都对继电保护产生较大影响,基于此,以下就特高压输电线路的继电保护技术及其措施进行了探讨分析。

一、特高压输电线路的继电保护重要性特高压输电技术的合理应用不仅能够降低电网投资,优化资源配置,减少线路损耗,提高电网运行的稳定性,还能够满足电力增长需求。

特高压输电线路的优点是能够进行远距离、大容量的电力传输,具有较好的经济性,能够节省线路走廊。

但在特高压输电线路建设过程中,系统的稳定性问题不容易解决,而继电保护是保证特高压输电线路稳定运行的关键,因此需要合理运用特高压继电保护技术及其措施,才能保障特高压输电线路的稳定运行。

二、特高压输电线路的继电保护技术分析1、纵联保护技术。

纵联保护的原理是发生线路故障时,使线路两侧发生纵向联系,进行信息交换,作为故障排查的判断依据,并有选择的快速切出全线故障的继电保护技术。

其中,判断依据是线路两侧判别量的特定关系,通过判别量的交换和与本侧判别量的对照分析,对故障发生位置进行判断,区分区内故障和区外故障。

纵联保护的主要方式包括锁闭式、允许式纵联距离保护和纵联电流差动保护等。

2、纵联距离保护技术。

纵联距离保护根据方向判别元件动作情况对线路两侧的故障方向进行比较,判断线路故障的发生位置。

如果是内部故障,则线路两侧的故障方向都是正方向。

如果是外部故障,则必定有一侧的故障方向是反方向。

纵联距离保护发挥作用的基本条件是具有明确的方向性,能够对各种对称和不对称故障作出快速反应,能够对本线路全长进行可靠保护,并且能够对系统振动或二次回路断线采取闭锁措施。

35KV线路保护

35KV线路保护

35KV输电线路继电保护设计作者:鄢凯指导教师:陕春玲教学单位:三峡大学葛洲坝集团电力有限责任公司摘要:35KV输电线路继电保护主要是阶段式电流保护,即第Ⅰ段为电流速断保护,第Ⅱ段为限时电流速断保护,第Ⅲ段为过电流保护。

它以第Ⅰ段和第Ⅱ段作为主保护,以第Ⅲ段作为辅助保护。

当第Ⅰ、Ⅱ段灵敏系数不够时,可采用电流、电压联锁速段保护。

第Ⅰ段保护动作时间短,速动性好,但其动作电流较大,不能保护线路全长,保护范围最小;第Ⅱ段保护有较短的动作时限,而且能保护线路全长,却不能作为相邻元件的后备保护;第Ⅲ段保护的动作电流较前两段小,保护范围大,既能保护本线路的全长又能作为相邻线路的后备保护,灵敏性最好,但其动作时限较长,速动性差。

使用Ⅰ段、Ⅱ段、Ⅲ段组成的阶段式电流保护的主要优点是简单、可靠,并且在一般情况下能够满足快速切除故障的要求。

阶段式电流保护,在灵敏系数能满足要求时,用于35KV中性点非直接接地电网的线路上,作为相间短路的保护。

在35KV线路继电保护的设计中,还用到了单相接地保护,一般采用无选择性的绝缘监视信号装置。

关键词:35KV线路阶段式电流保护单相接地保护整定计算原理接线图评价及应用前言电力系统继电保护技术,是随电力系统的发展而发展起来的一门专业技术。

电力系统的发展,使发电设备容量和供电范围不断扩大,电压等级不断提高,电力系统的网络也越来越复杂。

这对于保证电力系统安全、可靠、稳定运动必不可少的继电保护技术,便提出了越来越高的要求,从而也就有了电力系统继电保护原理和装置从简单到复杂的发展过程。

再次我们所介绍的继电保护原理及装置主要用于35KV输电线路中。

35KV电力系统属中性点非直接接地系统,其中性点或经消弧线圈接地或不接地;对于相间短路和单相接地,由于接地电流小,三相电压仍能保持平衡,对用户没有很大的影响。

因此,单相接地保护一般动作于信号,但单相接地对人身和设备的安全产生危害时,就应动作于断路器跳闸,故均应装设相应的继电保护装置,一般由具有阶梯时限特性的多段式保护构成。

输电线路继电保护的基本要求及整定计算

输电线路继电保护的基本要求及整定计算

输电线路继电保护的基本要求及整定计算摘要:随着科技的进步,继电保护技术将越来越成熟,为保证输电线路的正常、安全、稳定运行发挥越来越大的作用。

本文阐述了输电线路继电保护的基本要求及整定计算。

关键词:输电线路;继电保护;基本要求;引言继电保护整定计算是继电保护工作中的一项重要工作,它以电网故障分析为基础,按照严格而复杂的整定计算原则,进行大量的定值计算、比较和筛选。

一个整定方案由于整定配合方法的不同,会有不同的保护效果。

如何得到一个最优的整定方案,是继电保护能可靠有效发挥作用的关键。

1输电线路继电保护的基本要求当电力系统发生短路等异常情况时,继电保护根据电气量的变化进行动作,进而使系统不受异常情况的影响。

一般而言,继电保护可以分为测量、逻辑和执行三个阶段,基本要求主要包括可靠性、灵敏性、速动性和选择性[1-2]。

1.1可靠性可靠性是继电保护最重要也是最根本的要求,有两方面的含义。

一方面,指在输电线路需要保护动作的时候继电保护可靠动作;另一方面,指在线路不需要保护动作时继电保护可靠不动作。

1.2灵敏性当输电线路或设备在保护范围内发生短路故障时,需要继电保护按照系统最小灵敏度的要求发挥灵敏性作用。

灵敏性要求也是继电保护的一个重要要求。

1.3速动性速动性指继电保护在动作时要迅速,即及时切除相应故障,从而尽可能缩小故障范围,减小故障对设备的损坏,以及故障对整个系统及用户所造成的影响。

1.4选择性当输电线路发生故障时,继电保护装置动作,将故障设备或线路切除,而非故障设备或线路仍然正常运行。

这便是继电保护的选择性要求。

2继电保护常用的保护形式2.1电流保护为了保证迅速而有选择地切除故障,在日常工作中,常常将电流速断保护、限时电流速断保护和过电流保护组合应用,构成三段式保护。

根据实际情况,可以采用速断加过电流保护、限时速断加过电流保护,或三种保护同时采用。

当输电线路发生故障或出现过负荷时,继电保护通过有时限或无时限动作来保证线路的安全,即根据所采集到的参数信号做出相应的跳闸动作。

220kv输电线路继电保护设计探讨

220kv输电线路继电保护设计探讨

220kv输电线路继电保护设计探讨摘要:输电线路的继电保护是输电线路运行维护必不可少的关键环节,担负着保证供电的可靠性、保证良好的电能质量的重要职责。

本文主要探讨220k V输电线路的继电保护,分析和总结输电线路继电保护的设计原则和配置方式。

输电线路的继电保护是输电线路运行维护必不可少的关键环节,为实现保证供电的可靠性和保证良好的电能质量的发挥着至关重要的作用。

输电线路的继电保护能否可靠动作、快速切除故障以保证非故障线路的正常运行,是电力系统能否可靠工作的基本保障。

继电保护新技术技术运用与发展、继电保护自动装置的新设备的合理配置和应用以及继电保护的设计原则和配置方式对输电线路的安全可靠、经济有效运行意义非凡。

关键词:输电线路;继电保护;探讨1输电线路继电保护的设计原则(1)输电线路的继电保护必须设置主保护和后备保护,视情况在必要时增加辅助保护。

输电线路的主保护主要考虑输电线路的安全可靠运行,维护电力系统的稳定;后备保护主要是考虑主保护失效或线路断路器拒动时,能迅速识别故障,快速切除故障;辅助保护是在主保护退出时作为补充防护,也作为对主保护和后备保护保护性能的补充防护;(2)输电线路继电保护之间或输电线路的继电保护与设备的继电保护之间应在可靠性、灵敏性、选择性和速动性上满足保护的需求,也要相互配合,相互补充,以保证电力系统的安全、可靠、稳定运行;(3)输电线路所有可能的故障或异常运行方式都应设置相应的继电保护自动保护装置,满足任何情况下,故障能快速动作于跳闸、异常运行能可靠动作于信号。

2 220k V输电线路继电保护整定原则(1)220k V输电线路作为主要的高压输电网络,其线路联系密切,发生故障后,继电保护自动装置如果不能快速切除故障线路,电力系统的稳定将受到严重的影响。

一般情况下,220k V输电线路的继电保护应按“加强主保护、简化后被保护”的基本原则配置和整定。

(2)220k V输电线路的主保护设置原则是:输电线路故障的主保护保护方式选择三段式相间距离保护;输电线路接地短路的保护方式采用阶段式零序电流保护。

电力系统继电保护-输电线路的阶段式继电保护

电力系统继电保护-输电线路的阶段式继电保护

各段保护间整定值(边界)的配合
设DⅠ、DⅡ、DⅢ分别为第Ⅰ段、第Ⅱ段和第Ⅲ 段保护的整定值,同一断路器上反应测量量增加 而动作的保护:
DⅠ> DⅡ>DⅢ 反应测量量减小而动作的保护:
DⅠ< DⅡ<DⅢ 当上级保护的保护范围伸到了下级时,上级保
护的整定值必须与下级保护的整定值进行配合。 即:D上级=Kmat D下级
解决配合问题: 保护范围的配合 动作时间的配合 整定值(边界)的配合。
一、各段保护间保护范围和动作时间的配合
保护范围的配合
ቤተ መጻሕፍቲ ባይዱ
第Ⅰ段保护的保护范围分析
第Ⅰ段保护又称为瞬时速断保护,其保护范围 被限制在被保护线路全长的85%以内。
???为什么不能让第Ⅰ段保护保护范围更长一 点,甚至保护线路的长 ?
根据选择性的要求:
在迭加原理之上的),是继电保护基础。
输电线路为什么要采用阶段式继电保 护
简单的回答是为满足“四个基本要求”。
具体分析可从两方面理解: 一、测量误差,即被保护线路故障时保护测
得的故障量会出现误差; 二、为防止线路故障时主保护及Ⅰ、 Ⅱ段
保护由于某种原因拒动,而增设的后备 保护即第Ⅲ段保护。
阶段式保护要解决的问题
O
X
整定值是保护动作与不动作的分界(边 界)。如果保护的原理是反应测量量增加 而动作的,则:测量量大于或等于整定值 时保护动作,测量量小于整定值时保护不 动作。如果保护的原理是反应测量量减小 而动作的,则:测量量小于或等于整定值 时保护动作,测量量大于整定值时保护不 动作。
复杂的保护装置,整定值是一个或几个 矢量,其动作边界表示在复坐标平面上为 直线、圆或其他几何图形
第Ⅱ段保护与下级线路第Ⅱ段保护时动作时间分 析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I 1
I I 1 2
I-I
nB
I 2
IJ
I I 1 2
nTA 2
I 2
I1 I2 nTA1 nTA 2
* *
nTA 2 nT nTA1
变压器T变比
(二)变压器差动保护的不平衡电流
1.由变压器励磁涌流所产生的不平衡电流 正常情况下,变压器励磁电流为额定电流的 (2%~5%),由此产生的不平衡电流很小。 当空载投入变压器或外部故障切除后电压恢复
瓦斯保护 接线原理 图
变压器纵差动 保护装置
零序电流保护 过负荷保护. 过励磁保护 以及其它保护
变压器的纵差动保护
(一)变压器纵差动保护的基本原理
(二)变压器差动保护的不平衡电流
(一)变压器纵差动保护的基本原理
正常运行或外部短路时,应使 流入差动继电器的不平衡电流为零。
nTA1
I 1
* *
在上图中,有三个差动继电器1KD· 2KD· 3KD,在元件 固定连接时,它们的保护范围分别是母线Ⅰ· 母线Ⅱ和整 个双母线。经过分析可知:正常运行及外部短路时,三个 差动继电器中都流过不平衡电流,合理选择动作电流,保 证保护可靠地不误动;当母线Ⅰ发生短路时,1KD和3KD 动作,跳1QF· 2QF和5QF;当母线Ⅱ发生短路时,2KD和 3KD动作,跳3QF· 4QF和5QF。这样,可以保证非故障母 线继续运行。
Thank you!
时,则会产生很电流通常称为励磁涌流。
二.发电机保护
发动机是电力系统中至关重要的电气设备 ,其安全运行对电力系统的正常工作和电能 质量起着决定性的作用,同时发电机本身价
格昂贵,所以,应给发电机装设性能优良的
继电保护,以反应发电机定子和转子的各种
故障和不正常运行状态。
发动机的常见不正常运行状态有:过负荷;外部短路 引起的过电流及负序过电流或过负荷;励磁回路过负荷;过电 压;逆功率等。相应地也应该装设各种继电保护装置反应这些 状态,如各种过电流保护.负序过电流保护等。
而我们需要了解掌握的几种保护方式有:发电机纵差 动保护.发动机匝间短路的横差动保护。 上课详细介绍
发动机的常见故障有:定子绕组的相间短路.接地短路 及匝间短路.转子绕组的一点.两点接地短路;失磁等。相应的 welcome to use these PowerPoint templates, New 保护有:反应相间短路的纵差动保护.反应单相接地故障的接 Content design, 10 years experience 地保护.匝间短路保护.励磁回路一点接地保护.励磁回路两点 接地保护以及失磁保护等。
输电线路的继电保护
电力变压器保护 发电机保护 母线保护
一. 电力变压器保护
• 变压器常见的电气故障
• 油箱内的各种短路故障
相间短路 接地短路 绕组匝间短路
• 油箱外的各种短路故障
引出线的相间短路 引出线的接地短路 绝缘套管相间短路 绝缘套管接地短路
• 变压器的常用保护
瓦斯保护. 纵差动保护 电流速断保护. 过电流保护 阻抗保护
三.母线保护
• 微机母线保护设有母线差动保 护、母联充电保护、母联过流保护 、母联断路器失灵和盲区保护、断 路器失灵保护、母联断路器非全相 保护、复合电压闭锁功能、运行方 式识别功能等功能。 下面介绍双母线固定连接的差 动保护。

双母线同时运行时, 元件固定连接的电 流差动保护单相原 理接线图(交流回 路接线图)
相关文档
最新文档