2020中考 数学总复习- 二次函数的实际应用
2020河北中考 考点复习课件--8二次函数的实际应用1
熟记顶点坐标公式或配方法,注意 a 的正负及自变量 的取值范围
2.解题基本方法 (1)利用二次函数解决实际生活中的利润问题,应理清变量所表示的实 际意义,注意隐含条件的使用,同时考虑问题要周全,此类问题一般是运 用“总利润=总售价-总成本”或“总利润=每件商品所获利润×销售数量”, 建立利润与价格之间的函数关系.
(1)直接写出书店销售该科幻小说时每天的销售量 y(本)与销售单价 x(元) 之间的函数关系式及自变量的取值范围;
(2)求出每天的销售总利润 w(元)与销售单价 x(元)之间的函数关系式, 并求出当销售单价定为多少元时,当天的销售总利润最大?最大总利润为 多少元?
(3)若将每本书的利润调至不低于 5 元且不高于 10 元,则(2)中结论是否 仍然成立?若不成立,求当销售单价定为多少元时,当天的销售总利润最 大?最大总利润为多少元?
3.运用二次函数的性质求实际问题的最大值和最小值的一般方法是: (1)列出二次函数的解析式,并根据自变量的实际意义,确定取值范围; (2)利用配方法或顶点坐标公式求顶点; (3)检查顶点是否在自变量的取值范围内或检查所求最值是不是符合要 求(例如抛物线开口向上求最小值,开口向下求最大值).若在,则函数在顶 点处取得最大值或最小值;若不在,则在自变量的取值范围内,根据增减 性确定最值.
跳绳时,需要两人同频甩动绳子,当绳子甩到最高处时,其形状可近似看 作抛物线.如图是小明和小亮甩绳子到最高处时的示意图,两人拿绳子的 手之间的距离为 4 m,离地面的高度为 1 m,以小明的手所在位置为原点, 建立平面直角坐标系.
(1)当身高为 1.5 m 的小红站在绳子的正下方,且距小明拿绳子手的右 侧 1 m 处时,绳子刚好通过小红的头顶,求绳子所对应的抛物线的解析式;
2020年中考数学复习专题练:《二次函数实际应用 》(含答案)
2020年中考数学复习专题练:《二次函数实际应用》1.金松科技生态农业养殖有限公司种植和销售一种绿色羊肚菌,已知该羊肚菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该羊肚菌的销售量y(千克)与销售价格x(元/千克)的函数关系如下图所示:(1)求y与x之间的函数解析式;(2)求这一天销售羊肚菌获得的利润W的最大值;(3)若该公司按每销售一千克提取1元用于捐资助学,且保证每天的销售利润不低于3600元,问该羊肚菌销售价格该如何确定.2.某超市以20元/千克的进货价购进了一批绿色食品,如果以30元/千克销售这些绿色食品,那么每天可售出400千克.由销售经验可知,每天的销售量y(千克)与销售单价x (元)(x≥30)存在如图所示的一次函数关系.(1)试求出y与x的函数关系式;(2)设该超市销售该绿色食品每天获得利润w元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?3.为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是(直接写出结果).4.网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中2<x≤10).(1)若5<x≤10,求y与x之间的函数关系式;(2)销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?5.现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64m的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3m处达到最高,高度为1m.(1)求喷灌出的圆形区域的半径;(2)在边长为16m的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)6.某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y(元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x天该产品的销售量z(件)与x(天)满足关系式z=x+15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?7.某品牌服装公司经过市场调査,得到某种运动服的月销量y(件)是售价x(元/件)的一次函数,其售价、月销售量、月销售利润w(元)的三组对应值如下表:注:月销售利润=月销售量×(售价一进价)售价x(元/件)130 150 180月销售量y(件)210 150 60月销售利润w(元)10500 10500 6000(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)当售价是多少时,月销售利润最大?最大利润是多少元?(3)为响应号召,该公司决定每售出1件服装,就捐赠a元(a>0),商家规定该服装售价不得超过200元,月销售量仍满足上关系,若此时月销售最大利润仍可达9600元,求a的值.8.“武汉加油!中国加油!”疫情牵动万人心,每个人都在为抗击疫情而努力.某厂改造了10条口罩生产线,每条生产线每天可生产口罩500个.如果每增加一条生产线,每条生产线就会比原来少生产20个口罩.设增加x条生产线后,每条生产线每天可生产口罩y 个.(1)直接写出y与x之间的函数关系式;(2)若每天共生产口罩6000个,在投入人力物力尽可能少的情况下,应该增加几条生产线?(3)设该厂每天可以生产的口罩w个,请求出w与x的函数关系式,并求出增加多少条生产线时,每天生产的口罩数量最多,最多为多少个?9.九年级孟老师数学小组经过市场调查,得到某种运动服的月销量y(件)是售价x(元/件)的一次函数,其售价、月销售量、月销售利润w(元)的三组对应值如下表:售价x(元/件)130 150 180月销售量y(件)210 150 60月销售利润w(元)10500 10500 6000注:月销售利润=月销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②运动服的进价是元/件;当售价是元/件时,月销利润最大,最大利润是元.(2)由于某种原因,该商品进价降低了m元/件(m>0),商家规定该运动服售价不得低于150元/件,该商店在今后的售价中,月销售量与售价仍满足(1)中的函数关系式,若月销售量最大利润是12000元,求m的值.10.小明经过市场调查,整理出他妈妈商店里一种商品在第x(1≤x≤30)天的销售量的相关信息如下表:时间第x(天)1≤x≤20 20≤x≤30售价(元/件)x+30 50每天销量(件)160﹣4x已知该商品的进价为每件20元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于2400元?请直接写出结果.11.我市某乡镇在“精准扶贫”活动中销售农产品,经分析发现月销售量y(万件与月份x (月)的关系为:每件产品的利润z(元)与月份x(月)的关系如表:x 1 2 3 4 5 6 7 8 9 10 11 12 z19 18 17 16 15 14 13 12 10 10 10 10 (1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的函数关系式;(2)若月利润w(万元)=当月销售量y(万件)x当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?12.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.若每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x为正整数),每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为w元,每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?13.某超市销售一种高档蔬菜“莼菜”,其进价为16元/kg.经市场调查发现:该商品的日销售量y(kg)是售价x(元/kg)的一次函数,其售价、日销售量对应值如表:售价x(元/kg)20 30 40日销售量y(kg)80 60 40(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)x为多少时,当天的销售利润w(元)最大?最大利润为多少?(3)由于产量日渐减少,该商品进价提高了a元/kg(a>0),物价部门规定该商品售价不得超过36元/kg,该商店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是864元,求a的值.14.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子的售价不能超过进价的200%.(1)请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.(2)定价为多少时每天的利润最大?最大利润是多少?15.甲船从A处起以15km/h的速度向正北方向航行,这时乙船从A的正东方向20km的B 处起以20km/h的速度向西航行,多长时间后,两船的距离最小?最小距离是多少?16.某商场经营一种海产品,进价是每千克20元,根据市场调查发现,每日的销售量y(千克)与售价x(元/千克)是一次函数关系,如图所示:(1)求y与x的函数关系式(不求自变量取值范围);(2)某日该商场出售这种海产品获得了21000元的利润,该海产品的售价是多少?(3)若某日该商场这种海产品的销售量不少于650千克,该商场销售这种海产品获得的最大利润是多少?17.某网店专售一款电动牙刷,其成本为20元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x的函数关系式;(2)该款电动牙刷销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)近期武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,为了保证捐款后每天剩余利润不低于550元,如何确定该款电动牙刷的售单价?18.某网店专售一品牌牙膏,其成本为22元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x之间的函数关系式;(2)该品牌牙膏销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)在武汉爆发“新型冠状病毒”疫情期间,该网店店主决定从每天获得的利润中抽出100元捐赠给武汉,为了保证捐款后每天剩余的利润不低于350元,在抗“新型冠状病毒”疫情期间,市场监督管理局加大了对线上、线下商品销售的执法力度,对商品售价超过成本价的20%的商家进行处罚,请你给该网店店主提供一个合理化的销售单价范围.19.某工艺品厂生产一款工艺品,已知这款工艺品的生产成本为60元/件.经市场调研发现,这款工艺品每天的销售量y(件)与售价x(元/件)之间存在着如表所示的一次函数关系:售价x/(元/件)…70 90 …销售量y/件…3000 1000 …(1)求销售量y(件)与售价x(元/件)之间的函数关系式.(2)求每天的销售利润w(元)与售价x(元/件)之间的函数关系式.(3)如何定价才能使该工艺品厂每天获得的销售利润为40000元?20.如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m.设矩形菜园的边AB的长为xm,面积为Sm2.(I)写出S关于x的函数解析式,并求出x的取值范围;(Ⅱ)当该矩形菜园的面积为72m2时,求边AB的长;(Ⅲ)当边AB的长为多少时,该矩形菜园的面积最大?最大面积是多少?参考答案1.解:(1)①当12≤x≤20时,设y=kx+b.代(12,2000),(20,400),得解得∴y=﹣200x+4400②当20<x≤24时,y=400.综上,y=(2)①当12≤x≤20时,W=(x﹣12)y=(x﹣12)(﹣200x+4400)=﹣200(x﹣17)2+5000当x=17时,W的最大值为5000;②当20<x≤24时,W=(x﹣12)y=400x﹣4800.当x=24时,W的最大值为4800.∴最大利润为5000元.(3)①当12≤x≤20时,W=(x﹣12﹣1)y=(x﹣13)(﹣2000x+4400)=﹣200(x﹣17.5)2+4050令﹣200(x﹣17.5)2+4050=3600x 1=16,x2=19∴定价为16≤x≤19②当20<x≤24时,W=400(x﹣13)=400x﹣5200≥3600 ∴22≤x≤24.综上,销售价格确定为16≤x≤19或22≤x≤24.2.解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式是y=﹣20x+1000(30≤x≤50);(2)w=(x﹣20)y=(x﹣20)(﹣20x+1000)=﹣20x2+1400x﹣20000=﹣20(x﹣35)2+4500,故当x=35时,w取得最大值,此时w=4500,答:当销售单价为35元/千克时,每天可获得最大利润4500元.3.解:(1)设每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=kx+b,把(1500,55)与(2000,50)代入y=kx+b得,,解得:,∴每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=﹣x+70,当y≥45时,﹣x+70≥45,解得:x≤2500,∴自变量x的取值范围1000≤x≤2500;(2)根据题意得,P=(y﹣40)x=(﹣x+70﹣40)x=﹣x2+30x=﹣(x ﹣1500)2+22500,∵﹣<0,P有最大值,当x<1500时,P随x的增大而增大,∴当x=1500时,P的最大值为22500元,答:每天的最大销售利润是22500元;(3)由题意得,P=(﹣x+70﹣40+m)x=﹣x2+(30+m)x,∵对称轴为x=50(30+m),∵1000≤x≤2500,∴x 的取值范围在对称轴的左侧时P 随x 的增大而增大,50(30+m )≥2500,解得:m ≥20,∴m 的取值范围是:20≤m ≤40.故答案为:20≤m ≤40.4.解:(1)设y =kx +b ,把(5,600),(10,400)代入y =kx +b , 得解得 ∴y =﹣40x +800.(2)设每天的销售利润为w 元当2<x ≤5时,w =600(x ﹣2)=600x ﹣1200当x =5时,w max =600×5﹣1200=1800(元);当5<x ≤10时,w =(﹣40x +800)(x ﹣2)=﹣40(x ﹣11)2+3240当x =10时,w max =﹣40×1+3240=3200综上所述,当x =10时,每天的销售利润最大,最大是3200元.5.解:(1)根据题意,以水管在地面安装处为坐标原点,以该处和喷的最远的水柱落地处所在直线为x 轴,建立平面直角坐标系,则喷的最远的水柱所在的抛物线顶点为(3,1),过(0,0.64).可设该抛物线对应的函数表达式是y =a (x ﹣3) 2+1,代入(0,0.64),解得,a =﹣. 所以y =﹣ (x ﹣3) 2+1.令y =0,解得x 1=﹣2(舍),x 2=8.4 分所以,喷灌出的圆形区域的半径为8 m .(2)在边长为16 m 的正方形绿化带上按如图的位置固定安装三个该设备,如图1,喷灌出的圆形区域的半径的最小值是=,8<,这样安装不能完全覆盖;如图2,设CD=x,则BC=16﹣x,DE=8,AB=16,由勾股定理得:82+x2=(16﹣x)2+162解得:x=14∴2r==∴喷灌出的圆形区域的半径的最小值是,8<,这样安装也不能完全覆盖;<,如果喷灌区域可以完全覆盖该绿化带.则一个设备喷灌出的圆形区域的半径的最小值应为m.设水管向上调整a m,则调整后喷的最远的水柱所在的抛物线函数表达式是y=﹣(x﹣3) 2+1+a.代入(,0),解得,a=.0.64+=答:水管高度为时,喷灌区域恰好可以完全覆盖该绿化带.6.解:(1)由图象可知,此时的产量为z=25+15=40(件),设直线BC的关系为y=kx+b,∴,∴,∴y=x+10,故第25天,该商家的成本是:25+10=35(元)则第25天的利润为:(80﹣35)×40=1800(元);故答案为:35,1800;(2)①当0≤x≤20时,w=(80﹣30)(x+15)=50x+750,当20<x≤60时,w=[80﹣(x+10)](x+15)=﹣x2+55x+1050 ∴w=.②当0≤x≤20时w=(80﹣30)(x+15)=50x+750,=1750元;当x=20时,w最大当20<x≤60时,w=﹣x2+55x+1050∵﹣1<0,抛物线开口向下,对称轴为x=∴当x=27或x=28时,w=﹣272+55×27+1050=1806(元)∵1806>1750∴第27天或28天的利润最大,最大为1806元.7.解:(1)设y关于x的函数解析式为:y=kx+b(k≠0)由题意得:,解得:∴y关于x的函数解析式为y=﹣3x+600;(2)运动服的进价是:130﹣10500÷210=80(元)月销售利润w=(x﹣80)(﹣3x+600)=﹣3x2+840x﹣48000=﹣3(x﹣140)2+10800∴当售价是140元时,月销售利润最大,最大利润为10800元;(3)由题意得:w=(x﹣80﹣a)(﹣3x+600)=﹣3x2+(840+3a)x﹣48000﹣600a∴当x=140+a时,w有最大值.∵a>0,且a≤140﹣80∴140<140+a≤170<200∵商家规定该服装售价不得超过200元,此时月销售最大利润仍可达9600元,∴当x=140+a时,有,解得,a=120﹣80,或a=120+80(舍去),故a=120﹣80.8.解:(1)由题意可知该函数关系为一次函数,其解析式为:y=500﹣20x;∴y与x之间的函数关系式为y=500﹣20x(0≤x≤25,且x为整数);(2)由题意得:(10+x)(500﹣20x)=6000,整理得:x2﹣15x+50=0,解得:x1=5,x2=10,∵尽可能投入少,∴x2=10舍去.答:应该增加5条生产线.(3)w=(10+x)(500﹣20x)=﹣202+300x+5000=﹣20(x﹣7.5)2+6125,∵a=﹣20<0,开口向下,∴当x=7.5时,w最大,又∵x为整数,∴当x=7或8时,w最大,最大值为6120.答:当增加7或8条生产线时,每天生产的口罩数量最多,为6120个.9.解:(1)设y关于x的函数解析式为:y=kx+b(k≠0)由题意得:解得:∴y关于x的函数解析式为y=﹣3x+600;(2)运动服的进价是:130﹣10500÷210=80(元)月销售利润w=(x﹣80)(﹣3x+600)=﹣3x2+840x﹣48000=﹣3(x﹣140)2+10800∴当售价是140元时,月销售利润最大,最大利润为10800元.故答案为:80;140;10800;(3)由题意得:w=[x﹣(80﹣m)](﹣3x+600)=﹣3x2+(840﹣3m)x﹣48000+600m对称轴为x=140﹣∵m>0∴140﹣<140<150∵商家规定该运动服售价不得低于150元/件∴由二次函数的性质,可知当x=150时,月销售量最大利润是12000元∴﹣3×1502+(840﹣3m)×150﹣48000+600m=12000解得:m=10∴m的值为10.10.(1)当1≤x<20时,y=(160﹣4x)(x+30﹣20)=﹣4x2+120x+1600;当20≤x≤30时,y=(50﹣20)(160﹣4x)=﹣120x+4800;综上:y=(2)当1≤x<20时,y=﹣4x2+120x+1600=﹣4(x﹣15)2+2500∵a=﹣4<0∴当x=15时,y有最大值,最大值为2500元;当20≤x≤30时,y=﹣120x+4800;∵k=﹣120<0∴y随x的增大而减小∴当x=20时,y有最大值,最大值为2400元,综上可知,当x=15时,当天的销售利润最大,最大利润为2500元.(3)当1≤x<20时,令y=﹣4(x﹣15)2+2500=2400,解得:x1=10,x2=20(舍)∵a=﹣4<0∴当1≤x<20时,有10天每天销售利润不低于2400元;当20≤x≤30时,令y=﹣120x+4800=2400解得:x=20由(2)可知,2400为此时间段的最大值.综上,共有11天每天销售利润不低于2400元.11.解:(1)观察表中数据可得,当1≤x≤8时,z=﹣x+20;当9≤x≤12时,z=10.∴z与x的关系式为:z=;(2)当1≤x≤6时,w=(﹣x+20)(x+8)=﹣x2+12x+160;当7≤x≤8时,w=(﹣x+20)(﹣x+20)=x2﹣40x+400;当9≤x≤12时,w=10(﹣x+20)=﹣10x+200;∴w与x的关系式为:(3)当1≤x≤6时,w=﹣x2+12x+160=﹣(x﹣6)2+196,∴x=6时,w有最大值为196;当7≤x≤8时,w=x2﹣40x+400=(x﹣20)2,w随x增大而减小,∴x=7时,w有最大值为169;当9≤x≤12时,w=﹣10x+200,w随x增大而减小,∴x=9时,w有最大值为110;∵110<169<196,∴x=6时,w有最大值为196.12.解:(1)由题意得:y=200﹣10x∵每件售价不能高于72元∴1≤x≤12,且x为正整数;(2)由题意得:w=(60+x﹣50)(200﹣10x)=(10+x)(200﹣10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250∴当x=5时,60+x=65时,即销售单价为65元时,每个月可获得最大利润,最大月利润是2250元.13.解:(1)①依题意设y=kx+b,则有解得:∴y关于x的函数解析式为y=﹣2x+120;(2)根据题意得,w=(﹣2x+120)×(x﹣16)=﹣2x2+152x﹣1920=﹣2(x﹣38)2+968,∴当售价是38元/件时,日销售利润最大,最大利润是968元;(3)根据题意得,w=(﹣2x+120)×(x﹣16﹣a)=﹣2x2+(152+2a)x﹣1920﹣120a∵a>0,对称轴为直线x=﹣=38+>36,又∵﹣2<0,售价不得超过36元/kg,∴当x≤36时,w随x的增大而增大,∴当x=36时,w有最大值864元,∴﹣2×362+(152+2a )×36﹣1920﹣120a =864,∴解得:a =2,∴a 的值为2.14.解:(1)设每个粽子的定价为x 元时,每天的利润为800元, 根据题意得,, 解得x 1=7,x 2=5,∵售价不能超过进价的200%,∴x ≤3×200%,即x ≤6,∴x =5,∴定价为5元时,每天的利润为800元.(2)设每个粽子的定价为m 元,则每天的利润为w ,则有: w =(m ﹣3)(500﹣10×)=(m ﹣3)(500﹣100m +400)=﹣100(m ﹣3)(m ﹣9)=﹣100(m 2﹣12m +27)=﹣100[(m ﹣6)2﹣9]=﹣100(m ﹣6)2+900∵二次项系数为﹣100<0,m ≤6,∴当定价为6元时,每天的利润最大,最大的利润是900元.15.解:根据题意画出示意图如下:设x 小时后,两船相距ykm ,根据题意,得:y2=(15x)2+(20﹣20x)2=225x2+400﹣800x+400x2=(25x﹣16)2+144∴当x=时,y2有最小值144,则y的最小值为12,答:小时后,两船的距离最小,最小距离是12km.16.解:(1)设y与x之间的函数关系式为y=kx+b,将(25,950),(40,800)代入可得:解得,∴y与x之间的函数关系式为y=﹣10x+1200.(2)根据题目信息可得:(﹣10x+1200)(x﹣20)=21000,整理可得:x2﹣140x+4500=0,解得x=50或x=90.∴该海产品的售价是50元/kg或90元/kg.(3)设所获利润为W,则根据题目信息可得:W=(﹣10x+1200)(x﹣20)=﹣10(x﹣70)2+25000.∵﹣10x+1200≥650,∴x≤55.∴当x=55时,W有最大值.W的最大值为:﹣10(55﹣70)2+25000=22750(元).∴该商场销售这种海产品获得的最大利润是22750元.17.解:(1)设y与x的函数关系式为y=kx+b,将(30,100),(35,50)代入y=kx+b,得,解得,∴y与x的函数关系式为y=﹣10x+400;(2)设该款电动牙刷每天的销售利润为w 元,由题意得 w =(x ﹣20)•y=(x ﹣20)(﹣10x +400)=﹣10x 2+600x ﹣8000=﹣10(x ﹣30)2+1000,∵﹣10<0,∴当x =30时,w 有最大值,w 最大值为1000.答:该款电动牙刷销售单价定为30元时,每天销售利润最大,最大销售利润为1000 元;(3)设捐款后每天剩余利润为 z 元,由题意可得 z =﹣10x 2+600x ﹣8000﹣200=﹣10x 2+600x ﹣8200,令z =550,即﹣10x 2+600x ﹣8200=550,﹣10(x 2﹣60x +900)=﹣250,x 2﹣60x +900=25,解得x 1=25,x 2=35,画出每天剩余利润z 关于销售单价x 的函数关系图象如解图,由图象可得:当该款电动牙刷的销售单价每支不低于25元,且不高于35元时,可保证捐款后每天剩余利润不低于550 元.18.解:(1)根据题意设y =kx +b (k ≠0),将(30,100)、(35,50)代入得, 解得,∴y与x之间的关系式为y=﹣10x+400;(2)设每天的利润为W元,则W=(x﹣22)y=(x﹣22)(﹣10x+400)=﹣10x2+620x﹣8800=﹣10(x﹣31)2+810,∴销售单价定为31元时,每天最大利润为810元.(3)﹣10x2+620x﹣8800﹣100=350,解得x=25或x=37,结合图象和二次函数的特点得出25≤x≤37,又x≤22×(1+20%),综上可得25≤x≤26.4,∴按要求网店店主的销售单价范围为大于或等于25元且小于或等于26.4元.19.解:(1)设销售量y(件)与售价x(元/件)之间的函数关系式为y=kx+b,,得,即销售量y(件)与售价x(元/件)之间的函数关系式是y=﹣100x+10000;(2)由题意可得,w=(x﹣60)y=(x﹣60)(﹣100x+10000)=﹣100x2+16000x+600000,即每天的销售利润w(元)与售价x(元/件)之间的函数关系式是w=﹣100x2+16000x+600000;(3)当w=40000时,40000=﹣100x2+16000x+600000,解得,x1=x2=80,答:当定价为80元时,才能使该工艺品厂每天获得的销售利润为40000元.20.解:(Ⅰ)∵AB=CD=xm,∴BC=(30﹣2x)m,由题意得S=x(30﹣2x)=﹣2x2+30x(6≤x<15);(Ⅱ)令s=72得:﹣2x2+30x=72,解得:x=3或x=12,当x=3时,30﹣2x=24>18,∴x取12,答:AB的长为12米.(Ⅲ)∵S=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,=112.5,∴当x=7.5时,S有最大值,S最大。
2020中考数学复习二次函数的应用练习
6 . 解 :( 1 ) 设 y=kx+b 由 图 象 可 知 ,
30k b 400
k
, 解之得 :
20 ,
40k b 200
b 1000
∴y=-20x+1000 ( 30≤x≤ 50)
( 2 ) P=( x-20 ) y= ( x-20 )( -20x+1000 ) =-20x 2+1400x-20000 .
定为多少元? ?此时每日销售利润是多少元?
【解析】 ( 1 )设此一次函数表达式为
y=kx+b .则
15k b 25, 解 得 k=-1 , b=40 , ? 即 一 次 函 数 表 达 式 为
2k b 20
y=-x+40 .
( 2)设每件产品的销售价应定为 x 元,所获销售利润
为 w元 w=
( x-10 )(40-x )=-x 2+50x-400=- ( x-25 )2+225.
∵抛物线过 O(0, 0),∴ a( 0-6 )2+6=0,解得 a= 1 ,
6
∴这条抛物线的函数解析式为
y=- 1 ( x-6 ) 2+6,即
6
y=- 1 x2+2x.
6
( 3)设点 A 的坐标为( m, - 1 m2+2m),
6
∴OB=m,AB=DC=-1 m2+2m,根据抛物线的轴对称, 可得:
例 2 某产品每件成本 10 元,试销阶段每件产品的销售价 x
(元) ?与产品的日销售量 y(件)之间的关系如下表:
x
123…
(元 5 0 0
)
y
221…
(件 5 0 0
2020年中考数学题型04 二次函数的实际应用题【含解析】
2020年中考数学题型04 二次函数的实际应用题一、单选题1.如图,隧道的截面由抛物线和长方形OABC 构成,长方形的长OA 是12m ,宽OC 是4m .按照图中所示的平面直角坐标系,抛物线可以用y =﹣x 2+bx +c 表示.在抛物线型拱璧上需要安装两排灯,使它们离地面16的高度相等,如果灯离地面的高度不超过8m .那么两排灯的水平距离最小是( )A .2mB .4m C.D .【答案】D 【分析】根据长方形的长OA 是12m ,宽OC 是4m ,可得顶点的横坐标和点C 的坐标,即可求出抛物线解析式,再把y =8代入解析式即可得结论.【详解】根据题意,得OA =12,OC =4.所以抛物线的顶点横坐标为6,即﹣==6,∴b =2.2b a 13b∵C (0,4),∴c =4,所以抛物线解析式为:y =﹣x 2+2x +416=﹣(x ﹣6)2+10168=﹣(x ﹣6)2+10,16解得:x 1x 2则x 1﹣x 2.所以两排灯的水平距离最小是.故选:D .【点睛】本题考查了二次函数的应用,解决本题的关键是把实际问题转化为二次函数问题解决.2.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:m 3)与旋钮的旋转角度x (单位:度)(0°<x ≤90°)近似满足函数关系y =ax 2+bx +c (a ≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为( )A .33°B .36°C .42°D .49°【答案】C 【分析】据题意和二次函数的性质,可以确定出对称x 的取值范围,从而可以解答本题.【详解】解:由图象可知,物线开口向上,该函数的对称轴x >且x <54,18542 ∴36<x <54,即对称轴位于直线x =36与直线x =54之间且靠近直线x =36,【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.3.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD 如图乙所示,DG=1米,AE=AF=x 米,在五边形EFBCG 区域上种植花卉,则大正方形花坛种植花卉的面积y 与x的函数图象大致是( )A .B .C .D .【答案】A 【详解】S △AEF =AE×AF=,S △DEG =DG×DE=×1×(3﹣x)=,S 五边形EFBCG =S 正方形ABCD ﹣S △12212x121232x -AEF ﹣S △DEG ==,则y=4×()213922x x ---21115222x x -++21115222x x -++=,∵AE<AD ,∴x<3,综上可得:(0<x <3).故选A .22230x x -++22230y x x =-++考点:动点问题的函数图象;动点型.4.某建筑物,从10m 高的窗口A ,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M 离墙1m ,离地面m ,则水流落地点B 离墙的距离OB 是( )403A .2mB .3mC .4mD .5m【答案】B 【分析】以OB 为x 轴,OA 为y 轴建立平面直角坐标系,A 点坐标为(0,10),M 点的坐标为(1,),403设出抛物线的解析式,代入解答球的函数解析式,进一步求得问题的解.【详解】解:设抛物线的解析式为y =a (x ﹣1)2+,403把点A (0,10)代入a (x ﹣1)2+,得a (0﹣1)2+=10,403403解得a =﹣,103因此抛物线解析式为y =﹣(x ﹣1)2+,103403当y =0时,解得x 1=3,x 2=﹣1(不合题意,舍去);即OB =3米.故选B .【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题.解答本题是时设抛物线的顶点式求解析式是关键.5.超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm ,底面是个直径为6cm 的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长不计重合部AD(分,两个果冻之间没有挤压至少为 )()A .B .C .D.(6cm+(6cm+(6cm+(6cm+【答案】A【分析】设:左侧抛物线的方程为:,点A 的坐标为,将点A 坐标代入上式并解得:2y ax =()3,4-,由题意得:点MG 是矩形HFEO 的中线,则点N 的纵坐标为2,将代入抛物线表达式,即可求4a 9=y 2=解.【详解】解:设左侧抛物线的方程为:,2y ax =点A 的坐标为,将点A 坐标代入上式并解得:,()3,4-4a 9=则抛物线的表达式为:,24y x 9=由题意得:点MG 是矩形HFEO 的中线,则点N 的纵坐标为2,将代入抛物线表达式得:,解得:(负值已舍去),y 2=242x 9=x =则AD 2AH 2x 6=+=+故选:A .【点睛】本题考查了二次函数的性质在实际生活中的应用首先要吃透题意,确定变量,建立函数模型,.然后求解.6.小悦乘座中国最高的摩天轮“南昌之星”,从最低点开始旋转一圈,她离地面的高度y (米)与旋转时间x (分)之间的关系可以近似地用二次函数来刻画.经测试得出部分数据如表.根据函数模型和数据,可推断出南昌之星旋转一圈的时间大约是( )x (分)…13.514.716.0…y (米)…156.25159.85158.33…A .32分B .30分C .15分D .13分【答案】B 【分析】利用二次函数的性质,由题意,最值在自变量大于14.7小于16.0之间,由此不难找到答案.【详解】最值在自变量大于14.7小于16.0之间,所以最接近摩天轮转一圈的时间的是30分钟.故选:B .【点睛】此题考查二次函数的实际运用,利用表格得出函数的性质,找出最大值解决问题.7.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x﹣k)2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定【答案】C 【分析】(1)将点A (0,2)代入求出a 的值;分别求出x =9和x =18时的函数值,再分别2(6) 2.6y a x =-+与2.43、0比较大小可得.【详解】根据题意,将点A (0,2)代入2(6) 2.6y a x =-+,得:36a +2.6=2,解得:160a ,=-∴y 与x 的关系式为 21(6) 2.660y x =--+;当x =9时,()2196 2.6 2.45 2.4360y =--+=>,∴球能过球网,当x =18时,()21186 2.60.2060y =--+=>,∴球会出界.故选C.【点睛】考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.8.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为轴建立平面直角坐标系,则此抛物x 线钢拱的函数表达式为( )A .B .C .D .226675y x =226675y x =-2131350y x =2131350y x =-【答案】B【分析】设抛物线解析式为y=ax 2,由已知可得点B 坐标为(45,-78),利用待定系数法进行求解即可.【详解】∵拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为轴建立平面直角坐标系,x ∴设抛物线解析式为y=ax 2,点B(45,-78),∴-78=452a ,解得:a=,26675-∴此抛物线钢拱的函数表达式为,226675y x =-故选B.【点睛】本题考查了二次函数的应用,熟练掌握待定系数法是解本题的关键.9.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m ,水流在离喷出口的水平距离1.25m 处达到最高,密集的水滴在水面上形成了一个半径为3m 的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面( )A .0.55米B .米C .米D .0.4米11301330【答案】B 【分析】如图,以O 为原点,建立平面直角坐标系,由题意得到对称轴为x =1.25=,A (0,0.8),54C (3,0),列方程组求得函数解析式,即可得到结论.【详解】解:如图,以O 为原点,建立平面直角坐标系,由题意得,对称轴为x =1.25=,A (0,0.8),C (3,0),54设解析式为y =ax 2+bx +c ,∴,9305240.8a b c b a c ++=⎧⎪⎪-=⎨⎪=⎪⎩解得:,8154345a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩所以解析式为:y =x 2+x +,815-4345当x =2.75时,y =,1330∴使落水形成的圆半径为2.75m ,则应把出水口的高度调节为高出水面08﹣=,13301130故选:B .【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键10.小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的( )A .点MB .点NC .点PD .点Q【答案】D 【详解】解:A 、假设这个位置在点M ,则从A 至B 这段时间,y 不随时间的变化改变,与函数图象不符,故本选项错误;B 、假设这个位置在点N ,则从A 至C 这段时间,A 点与C 点对应y 的大小应该相同,与函数图象不符,故本选项错误;C 、,假设这个位置在点P ,则由函数图象可得,从A 到C 的过程中,会有一个时刻,教练到小翔的距离等于经过30秒时教练到小翔的距离,而点P 不符合这个条件,故本选项错误;D 、经判断点Q 符合函数图象,故本选项正确;故选D .二、填空题11.某运动员对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为,由此可知该运动员此次实心球训练的成绩为____米.21251233y x x =-++【答案】10【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】当y=0时,212501233x x -++=解得,x=-2(舍去),x=10.故答案为:10.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.12.汽车刹车后行驶的距离(单位:)关于行驶的时间(单位:)的函数解析式是.汽车s m t s 2126s t t =-刹车后到停下来前进了______.m 【答案】6【分析】根据二次函数的解析式可得出汽车刹车时时间,将其代入二次函数解析式中即可得出s 的值.【详解】解:根据二次函数解析式=-6(t²-2t+1-1)=-6(t-1) ²+62126s t t =-可知,汽车的刹车时间为t=1s ,当t=1时,=12×1-6×1²=6(m)2126s t t =-故选:6【点睛】本题考查了二次函数性质的应用,理解透题意是解题的关键.13.如图,一款落地灯的灯柱AB 垂直于水平地面MN ,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C 距灯柱AB 的水平距离为0.8米,距地面的高度为2.4 米,灯罩顶端D 距灯柱AB 的水平距离为1.4米,则灯罩顶端D 距地面的高度为______米.【答案】1.95【分析】以点B为原点建立直角坐标系,则点C为抛物线的顶点,即可设顶点式y=a(x−0.8)2+2.4,点A的坐标为(0,1.6),代入可得a的值,从而求得抛物线的解析式,将点D的横坐标代入,即可求点D的纵坐标就是点D距地面的高度【详解】解:如图,以点B为原点,建立直角坐标系.由题意,点A(0,1.6),点C(0.8,2.4),则设顶点式为y=a(x−0.8)2+2.4将点A代入得,1.6=a(0−0.8)2+2.4,解得a=−1.25∴该抛物线的函数关系为y=−1.25(x−0.8)2+2.4∵点D的横坐标为1.4∴代入得,y=−1.25×(1.4−0.8)2+2.4=1.95故灯罩顶端D距地面的高度为1.95米故答案为1.95.【点睛】本题考查了二次函数的性质在实际生活中的应用.为数学建模题,借助二次函数解决实际问题.14.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=_____m时,矩形土地ABCD的面积最大.【答案】150【分析】根据题意可以用相应的代数式表示出矩形绿地的面积,利用函数的性质即可解答本题.【详解】解:设AB=xm ,则BC=(900﹣3x),12由题意可得,S=AB×BC= (900﹣3x)x=﹣(x 2﹣300x)=﹣(x﹣150)2+33750,123232∴当x=150时,S 取得最大值,此时,S=33750,∴AB=150m,故答案为150.【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质求出最值.15.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系y =﹣5x 2+20x ,在飞行过程中,当小球的行高度为15m 时,则飞行时间是_____.【答案】1s 或3s【分析】根据题意可以得到15=﹣5x 2+20x ,然后求出x 的值,即可解答本题.【详解】∵y=﹣5x 2+20x ,∴当y=15时,15=﹣5x 2+20x ,得x 1=1,x 2=3,故答案为1s 或3s .【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.16.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.【答案】25试题分析:设最大利润为w 元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案为25.考点:1.二次函数的应用;2.销售问题.17.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为.,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,y =-140x 2+10则这两盏灯的水平距离EF 是______米精确到1米.()【答案】85由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有,-140x 2+10=8即,,.x 2=80x 1=45x 2=-45所以两盏警示灯之间的水平距离为:|x 1-x 2|=|45-(-45)|=85≈18(m )18.小明制作了一张如图所示的贺卡. 贺卡的宽为,长为,左侧图片的长比宽多. 若xcm 40cm 4cm ,则右侧留言部分的最大面积为_________.1416x ……2cm【答案】320【分析】先求出右侧留言部分的长,再根据矩形的面积公式得出面积与x 的函数解析式,利用二次函数的图像与性质判断即可得出答案.【详解】根据题意可得,右侧留言部分的长为(36-x)cm∴右侧留言部分的面积()()()22363632432418324x x x x x =-=--++=--+又14≤x≤16∴当x=16时,面积最大(()21618324320=--+=2)cm 故答案为320.【点睛】本题考查的是二次函数的实际应用,比较简单,解题关键是根据题意写出面积的函数表达式.19.甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为,羽毛球飞行的水平距离(米)P s 与其距地面高度(米)之间的关系式为,如图,已知球网距原点米,乙(用h 21231232h s s =-++AB 5线段表示)扣球的最大高度为米,设乙的起跳点的横坐标为,若乙原地起跳,因球的高度高CD 94C m 于乙扣球的最大高度而导致接球失败,则的取值范围是__________.m【答案】54m <<当时,,解得;94h =2123912324S S -++=4S =±∵扣球点必须在球网右边,即,5m >∴.54m <<点睛:本题主要考查了二次函数的应用题,求范围的问题,可以选取h 等于最大高度,求自变量的值,再根据题意确定范围.20.扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报.若某一房间内A 、B 两点之间有障碍物,现将A 、B 两点放置于平面直角坐标系xOy 中(如图),已知点A ,B 的坐标分别为(0,4),(6,4),机器人沿抛物线y =ax 2﹣4ax﹣5a 运动.若机器人在运动过程中只触发一次报警,则a 的取值范围是_____.【答案】﹣<a <4547【分析】根据题意可以知道抛物线与线段AB 有一个交点,根据抛物线对称轴及其与y 轴的交点即可求解.【详解】解:由题意可知:∵点A 、B 坐标分别为(0,4),(6,4),∴线段AB 的解析式为y =4.机器人沿抛物线y =ax 2﹣4ax﹣5a 运动.抛物线对称轴方程为:x =2,机器人在运动过程中只触发一次报警,所以抛物线与线段y =4只有一个交点.所以抛物线经过点A 下方.∴﹣5a<4解得a >﹣.454=ax 2﹣4ax﹣5a,△=0即36a 2+16a =0,解得a 1=0(不符合题意,舍去),a 2=.49当抛物线恰好经过点B 时,即当x =6,y =4时,36a﹣24a﹣5a=4,解得a =47综上:a 的取值范围是﹣<a <4547【点睛】本题考查二次函数的应用,关键在于熟悉二次函数的性质,结合图形灵活运用.三、解答题21.在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售.笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元?【答案】(1)钢笔、笔记本的单价分别为10元,6元;(2)当一等奖人数为50时花费最少,最少为700元.【分析】(1)钢笔、笔记本的单价分别为x 、y 元,根据题意列方程组即可得到结论;(2)设钢笔的单价为a 元,购买数量为b 元,支付钢笔和笔记本的总金额w 元,①当30≤b≤50时,求得w=-0.1(b-35)2+722.5,于是得到700≤w≤722.5;②当50<b≤60时,求得w=8b+6(100-b )=2b+600,700<w≤720,于是得到当30≤b≤60时,w 的最小值为700元,于是得到结论.【详解】(1)设钢笔、笔记本的单价分别为、元.根据题意可得x y 23384570x y x y +=⎧⎨+=⎩解得:.106x y =⎧⎨=⎩答:钢笔、笔记本的单价分别为10元,6元.(2)设钢笔单价为元,购买数量为b 支,支付钢笔和笔记本总金额为W 元.a ①当30≤b≤50时,100.1(30)0.113a b b =--=-+w=b (-0.1b+13)+6(100-b )20.17600b b =-++20.1(35)722.5b =--+∵当时,W=720,当b=50时,W=70030b =∴当30≤b≤50时,700≤W≤722.5②当50<b≤60时,a=8,86(100)2600,W b b b =+-=+∵700720W <≤∴当30≤b≤60时,W 的最小值为700元∴当一等奖人数为50时花费最少,最少为700元.【点睛】本题考查了二次函数的应用,二元一次方程组的应用,正确的理解题意求出二次函数的解析式是解题的关键.22.某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为元/件(,且是按x 6x ≥x 0.5元的倍数上涨),当天销售利润为元.y (1)求与的函数关系式(不要求写出自变量的取值范围);y x (2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过,要想当天获得利润最大,每件文具售价为多少元?并求出最大利80%润.【答案】(1);(2)当天销售单价所在的范围为;(3)每件文具售210210800=-+-y x x 813≤≤x 价为9元时,最大利润为280元.【分析】(1)根据总利润=每件利润×销售量,列出函数关系式,(2)由(1)的关系式,即,结合二次函数的性质即可求的取值范围240y ≥x (3)由题意可知,利润不超过即为利润率=(售价-进价)÷售价,即可求得售价的范围.再结合80%二次函数的性质,即可求.【详解】解:由题意(1)26(5)1005102108000.5x y x x x -⎛⎫=--⨯=-+- ⎪⎝⎭故与的函数关系式为:y x 210210800=-+-y x x (2)要使当天利润不低于240元,则,240y ≥∴()22102108001010.5302.5240y x x x =-+-=--+=解得,128,13x x ==∵,抛物线的开口向下,100-<∴当天销售单价所在的范围为813≤≤x (3)∵每件文具利润不超过80%∴,得50.8x x -≤9x ≤∴文具的销售单价为,69x ≤≤由(1)得()22102108001010.5302.5y x x x =-+-=--+∵对称轴为10.5x =∴在对称轴的左侧,且随着的增大而增大69x ≤≤y x ∴当时,取得最大值,此时9x =()210910.5302.5280y =--+=即每件文具售价为9元时,最大利润为280元【点睛】考核知识点:二次函数的应用.把实际问题转化为函数问题解决是关键.23.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如下图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.【答案】(1)y 与x 的函数解析式为;(2)这一天销售西瓜获得利润的最大()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩值为1250元.【分析】(1)当6x≤10时,由题意设y =kx +b(k =0),利用待定系数法求得k 、b 的值即可;当≤10<x≤12时,由图象可知y =200,由此即可得答案;(2))设利润为w 元,当6≦x≤10时,w =-200+1250,根据二次函数的性质可求得最大值为2172x -()1250;当10<x≤12时,w =200x -1200,由一次函数的性质结合x 的取值范围可求得w 的最大值为1200,两者比较即可得答案.【详解】(1)当6x≤10时,由题意设y =kx +b(k =0),它的图象经过点(6,1000)与点(10,200),≤∴ ,1000620010k b k b =+⎧⎨=+⎩解得 ,2002200k b =-⎧⎨=⎩∴当6x≤10时, y =-200x+2200,≤当10<x≤12时,y =200,综上,y 与x 的函数解析式为;()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩(2)设利润为w 元,当6x≤10时,y =-200x +2200,≤w =(x -6)y =(x -6)(-200x +200)=-200+1250,2172x -()∵-200<0,6≦x≤10,当x =时,w 有最大值,此时w=1250;172当10<x≤12时,y =200,w =(x -6)y =200(x -6)=200x -1200,∴200>0,∴w=200x -1200随x 增大而增大,又∵10<x≤12,∴当x =12时,w 最大,此时w=1200,1250>1200,∴w 的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质,一次函数的性质等,弄清题意,找准各量间的关系是解题的关键.24.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x (元)与该士特产的日销售量y (袋)之间的关系如表:x (元)152030…y (袋)252010…若日销售量y 是销售价x 的一次函数,试求:(1)日销售量y (袋)与销售价x (元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【答案】(1)y =﹣x +40;(2)要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y =kx+b 得,解得,25152020k b k b =+⎧⎨=+⎩140k b =-⎧⎨=⎩故日销售量y(袋)与销售价x(元)的函数关系式为:y =﹣x+40;(2)依题意,设利润为w 元,得w =(x﹣10)(﹣x+40)=﹣x 2+50x+400,整理得w =﹣(x﹣25)2+225,∵﹣1<0,∴当x =2时,w 取得最大值,最大值为225,故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点睛】本题考查了一次函数的应用,二次函数的应用,正确分析得出各量间的关系并熟练掌握二次函数的性质是解题的关键.25.某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店两种湘莲礼盒一个月的销售情况,A 种湘莲礼盒进价72元/盒,售价120元/盒,B ,A B 种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,种湘莲礼盒售价每降3元可多卖1盒.若种湘莲礼盒的售价和销量不变,当A B 种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?A 【答案】(1)该店平均每天销售礼盒10盒,种礼盒为20盒;(2)当种湘莲礼盒降价9元/盒时,AB A 这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【分析】(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,列二元一次方程组即可解题A xB y (2)根据题意,可设种礼盒降价元/盒,则种礼盒的销售量为:()盒,再列出关系式即A m A 103m +可.【详解】解:(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,A xB y 则有,解得(12072)(8040)1280120802800x y x y -+-=⎧⎨+=⎩1020x y =⎧⎨=⎩故该店平均每天销售礼盒10盒,种礼盒为20盒.A B (2)设A 种湘莲礼盒降价元/盒,利润为元,依题意m W 总利润(12072)108003m W m ⎛⎫=--++ ⎪⎝⎭化简得221161280(9)130733W m m m =-++=--+∵103a =-<∴当时,取得最大值为1307,9m =故当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.A【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.26.随着技术的发展,人们对各类产品的使用充满期待.某公司计划在某地区销售第一款产品,5G 5G 5G 根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第(为正整数)个销售周期x x 每台的销售价格为元,与之间满足如图所示的一次函数关系.y y x (1)求与之间的关系式;y x (2)设该产品在第个销售周期的销售数量为(万台),与的关系可用来描述.根据x p p x 1122p x =+以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【答案】(1)与之间的关系式为;(2)第个销售周期的销售收入最大,此时该y x 5007500y x =-+7产品每台的销售价格是元.4000【分析】(1)根据两点坐标即可求出一次函数的解析式;(2)根据题意令销售收入W=py ,再根据二次函数的性质即可求解.【详解】(1)设与之间的关系式为y=kx+b ,y x 把(1,7000),(5,5000)代入y=kx+b ,得,解得700050005k b k b =+⎧⎨=+⎩5007500k b =-⎧⎨=⎩∴与之间的关系式为;y x 5007500y x =-+(2)令销售收入W=py==11()(5007500)22x x +-+2250(7)16000x --+∴当x=7时,W 有最大值为16000,此时y=-500×7+7500=4000故第个销售周期的销售收入最大,此时该产品每台的销售价格是元.74000【点睛】此题主要考查一次函数与二次函数的应用,解题的关键是熟知待定系数法确定函数关系式与二次函数的图像与性质.27.某超市拟于中秋节前天里销售某品牌月饼,其进价为元/.设第天的销售价格为(元/5018kg x y ),销售量为.该超市根据以往的销售经验得出以下的销售规律:①当时,;当kg ()m kg 130x ……y=40时,与满足一次函数关系,且当时,;时,.②与的关3150x ……y x 36x =37y =44x =33y =m x 系为.550m x =+(1)当时,与的关系式为 ;3150x ……y x (2)为多少时,当天的销售利润(元)最大?最大利润为多少?x W (3)若超市希望第天到第天的日销售利润(元)随的增大而增大,则需要在当天销售价格的基3135W x 础上涨元/,求的最小值.a kg a 【答案】(1);(2)为时,当天的销售利润(元)最大,最大利润为元;1552y x =+x 32W 4410(3)3【分析】(1)依据题意利用待定系数法,易得出当时,与的关系式为:,3150x ……y x 1552y x =+(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润(元)与销售价(元/箱)之间w x 的函数关系式,再依据函数的增减性求得最大利润.(3)要使第天到第天的日销售利润(元)随的增大而增大,则对称轴,求得即可3135W x 352b a =…a 【详解】(1)依题意,当时,时,,x=3637;44y x ==y=33当时,设,3150x ……y kx b =+。
2020年中考数学复习专题之二次函数的综合应用问题
二次函数的综合应用二次函数的实际应用(1)增长率问题一月a增长率为x 二月a(1+x)增长率为x三月a(1+x)2(2)利润问题在这个模型中,利润=(售价-成本)×销量(3)面积问题矩形面积=长×宽材料总长a 矩形长x矩形宽1(a-2x)2题型一二次函数的应用—销售问题例7.某公司投资销售一种进价为每件15元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-20x+800,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设该公司每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?【思路点拨】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;【答案与解析】解:(1)由题意,得:w=(x﹣15)•y=(x﹣15)•(﹣20x+800)=﹣20x2+1100x﹣12000,即w=﹣20x2+1100x﹣12000(15≤x≤24);(2)对于函数w=﹣20x2+1100x﹣12000(15≤x≤24)的图象的对称轴是直线x=27.5又∵a=﹣20<0,抛物线开口向下.∴当15≤x≤24时,W随着x的增大而增大,∴当x=24时,W=2880,答:当销售单价定为24元时,每月可获得最大利润,最大利润是2880元.变式训练1.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x元,每天获利y元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元?【思路点拨】(1)列出y=44(40﹣x)=﹣44x+1760,根据一次函数的性质求解;(2)根据题意列出y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,结合二次函数的性质求解;【答案与解析】解:(1)y=44(40﹣x)=﹣44x+1760,∵20+2x≥44,∴x≥12,∵y随x的增大而减小,∴当x=12时,获利最大值1232;答:如果商场里这批衬衫的库存只有44件,那么衬衫的单价应12元,才能使得这批衬衫一天内售完,且获利最大1232元;(2)y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,当y=1200时,1200=﹣2(x﹣15)2+1250,∴x=10或x=20,∵当x<15时,y随x的增大而增大,当x>15时,y随x的增大而减小,当10≤x≤20时,y≥1200,答:如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降不少于10元且不超过20元.变式训练2.为建设美丽家园,某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y(元)与x(m2)的函1数关系图象如图所示,栽花所需费用y(元)与x(m2)的函数关系式为2xy=-0.01x2-20x+30000(0剟1000).2(1)求 y (元 ) 与 x(m 2) 的函数关系式;1(2)设这块1000m 2 空地的绿化总费用为W (元 ) ,请利用W 与 x 的函数关系式,求绿化总 费用 W 的最大值.【思路点拨】(1)根据函数图象利用待定系数法即可求得y 1(元)与 x (m 2)的函数关系式 (2)总费用为 W =y 1+y 2,列出函数关系式即可求解 【答案与解析】解:(1)依题意当 0≤x≤600 时,y 1=k 1x ,将点(600,18000)代入得 18000=600k 1,解得 k 1=30∴y 1=30x当 600<x≤1000 时,y 1=k 2x+b ,将点(600,18000),(1000,26000)代入得,解得∴y 1=20x+600综上,y 1(元)与 x (m 2)的函数关系式为:(2)总费用为:W =y 1+y 2∴W=整理得故绿化总费用 W 的最大值为 32500 元.变式训练 3.某公司生产的某种商品每件成本为 20 元,经过市场调研发现,这种商品在未来 40 天内的日销售量 m (件 ) 与时间 t (天 ) 的关系如下表:时间 t (天 ) 1 3 5 10 36日销售量 m94 90 86 76 24(件 )未来 40 天内,前 20 天每天的价格 y 1(元/件)与时间 t (天)的函数关系式为 y 1= t +25(1≤t ≤20 且 t 为整数),后20 天每天的价格 y 2(元/件)与时间 t (天)的函数关系式为y 2=﹣ t +40(21≤t ≤40 且 t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的 m (件 ) 与 t (天 ) 之间的表达式;(2)请预测未来 40 天中哪一天的日销售利润最大,最大日销售利润是多少?【思路点拨】(1)从表格可看出每天比前一天少销售 2 件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前 20 天和后 20 天的日利润,根据函数性质求最大值后比较得结论.【答案与解析】解:(1)经分析知:m 与 t 成一次函数关系.设 m =kt+b (k≠0),将 t =1,m =94,t =3,m =90代入,解得,∴m=﹣2t+96;(2)前 20 天日销售利润为 P 1 元,后 20 天日销售利润为 P 2 元,则 P 1=(﹣2t+96)( t+25﹣20)=﹣ (t ﹣14)2+578,∴当 t =14 时,P 1 有最大值,为 578 元.P 2=(﹣2t+96)•( t+40﹣20)=﹣t 2+8t+1920=(t ﹣44)2﹣16,∵当 21≤t≤40 时,P 2 随 t 的增大而减小,∴t=21 时,P 2 有最大值,为 513 元. ∵513<578,∴第 14 天日销售利润最大,最大利润为 578 元.题型二 二次函数的应用—面积问题例 8.如图,用 30m 长的篱笆沿墙建造一边靠墙的矩形菜园,已知墙长18m ,设矩形的宽 AB为xm.(1)用含x的代数式表示矩形的长BC;(2)设矩形的面积为y,用含x的代数式表示矩形的面积y,并求出自变量的取值范围;(3)这个矩形菜园的长和宽各为多少时,菜园的面积y最大?最大面积是多少?【思路点拨】(1)设菜园的宽AB为xm,于是得到BC为(30﹣2x)m;(2)由面积公式写出y与x的函数关系式,进而求出x的取值范围;(3)利用二次函数求最值的知识可得出菜园的最大面积.【答案与解析】解:(1)∵AB=CD=xm,∴BC=(30﹣2x)m;(2)由题意得y=x(30﹣2x)=﹣2x2+30x(6≤x<15);(3)∵S=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,∴当x=7.5时,S有最大值,S=112.5,最大此时这个矩形的长为15m、宽为7.5m.答:这个矩形的长、宽各为15m、7.5m时,菜园的面积最大,最大面积是112.5m2.变式训练1.为了节省材料,小浪底水库养殖户小李利用水库的岸堤(足够长)为一边,用总长为120米的网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)请你帮养殖户小李计算一下BC边多长时,养殖区ABCD面积最大,最大面积为多少?【思路点拨】(1)三个矩形的面值相等,可知2FG=2GE=BC,可知:2BC+8FC=120,即FC=,即可求解;(2)y=﹣x2+45x=﹣(x﹣30)2+675即可求解.【答案与解析】解:(1)∵三个矩形的面值相等,可知2FG=2GE=BC,∴BC×DF=BC×FC,∴2FC=DC,2BC+8FC=120,∴FC=,∴y与x之间的函数关系式为y=3FC×BC=x(120﹣2x),即y=﹣x2+45x,(0<x<60);(2)y=﹣x2+45x=﹣(x﹣30)2+675可知:当BC为30米是,养殖区ABCD面积最大,最大面积为675平方米.变式训练 2.如图,ABCD是一块边长为8米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在A的延长线上,DG2BE,设BE的长为x米,改造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)若改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,此时BE的长为米.(3)当x为何值时改造后的矩形苗圃AEFG的最大面积?并求出最大面积.【思路点拨】(1)根据题意可得DG=2x,再表示出AE和AG,然后利用面积可得y与x之间的函数关系式;(2)根据题意可得正方形苗圃ABCD的面积为64,进而可得矩形苗圃AEFG的面积为64,进而可得:﹣2x2+8x+64=64再解方程即可;(3)根据二次函数的性质即可得到结论.【答案与解析】解:(1)y=(8﹣x)(8+2x)=﹣2x2+8x+64,故答案为:y=﹣2x2+8x+64;(2)根据题意可得:﹣2x2+8x+64=64,解得:x1=4,x2=0(不合题意,舍去),答:BE的长为4米;故答案为:y=﹣2x2+8x+64(0<x<8);(3)解析式变形为:y=﹣2(x﹣2)2+72,所以当x=2时,y有最大值,∴当x为2时改造后的矩形苗圃AEFG的最大面积,最大面积为72平方米.变式训练3.如图,一面利用墙(墙的最大可用长度为10m),用长为24m的篱笆围成中间隔有一道篱笆的矩形花圃,设花圃的一边AB的长为x(m),面积为y(m2).(1)若y与x之间的函数表达式及自变量x的取值范围;(2)若要围成的花圃的面积为45m2,则AB的长应为多少?【思路点拨】(1)根据题意可以得到y与x的函数关系式以及x的取值范围;(2)令y=45代入(1)中的函数解析式,即可求得x的值,注意x的取值范围.【答案与解析】解:(1)由题意可得,y=x(24﹣3x)=﹣3x2+24x,∵24﹣3x≤10,3x<24,解得,x≥∴且x<8,,即y与x之间的函数表达式是y=﹣3x2+24x((2)当y=45时,45=﹣3x2+24x,解得,x1=3(舍去),x2=5,答:AB的长应为5m.题型三二次函数的应用—抛物线问题);例9.如图,已知排球场的长度O D为18米,位于球场中线处球网的高度AB为2.4米,一队员站在点O处发球,排球从点O的正上方1.6米的C点向正前方飞出,当排球运行至离点O的水平距离OE为6米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.4米时,对方距离球网0.4m的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(2)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【思路点拨】(1)根据此时抛物线顶点坐标为(6,3.4),设解析式为y=a(x﹣6)2+3.4,再将点C坐标代入即可求得;由解析式求得x=9.4时y的值,与他起跳后的最大高度为3.1米比较即可得;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C坐标代入得到用h表示a的式子,再根据球既要过球网,又不出边界即x=9时,y>2.4且x=18时,y≤0得出关于h的不等式组,解之即可得.【答案与解析】解:(1)根据题意知此时抛物线的顶点G的坐标为(6,3.4),设抛物线解析式为y=a(x﹣6)2+3.4,将点C(0,1.6)代入,得:36a+3.4=1.6,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣6)2+;由题意当x=9.5时,y=﹣(9.4﹣6)2+≈2.8<3.1,故这次她可以拦网成功;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C(0,1.6)代入,得:36a+h=1.6,即a=∴此时抛物线解析式为y=(x﹣6)2+h,,变式训练1.一位篮球运动员投篮,球沿抛物线y=-x2+运行,然后准确落入篮筐内,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.1752已知篮筐的中心距离底面的距离为3.05m.(1)求球在空中运行的最大高度为多少m?(2)如果该运动员跳投时,球出手离地面的高度为2.25m,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?【思路点拨】(1)由抛物线的顶点坐标即可得;(2)分别求出y=3.05和y=2.25时x的值即可得出答案.【答案与解析】解:(1)∵y=﹣x2+的顶点坐标为(0,),∴球在空中运行的最大高度为m;(2)当y=3.05时,﹣0.2x2+3.5=3.05,解得:x=±1.5,∵x>0,∴x=1.5;当y=2.25时,﹣0.2x2+3.5=2.25,解得:x=2.5或x=﹣2.5,由1.5+2.5=4(m),故他距离篮筐中心的水平距离是4米.变式训练2.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=-124时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点的O水平距离为7m,离地面的高度为处时,乙扣球成功,求a的值.125m的Q【思路点拨】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【答案与解析】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣解得:h=;×16+h=1,②把x=5代入y=﹣∵1.625>1.55,∴此球能过网;(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,(2)把(0,1)、(7,,)代入y=a(x﹣4)2+h,得:解得:,∴a=﹣.变式训练3.小明跳起投篮,球出手时离地面20m,球出手后在空中沿抛物线路径运动,并9在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?(3)在篮球比赛中,当进攻方球员要投篮时,防守方球员常借身高优势及较强的弹跳封杀对方,这就是平常说的盖帽.(注:盖帽应在球达到最高点前进行,否则就是“干扰球”,属犯规.)若此时,防守方球员乙前来盖帽,已知乙的最大摸球高度为3.19m,则乙在进攻方球员前多远才能盖帽成功?【思路点拨】(1)根据顶点坐标(4,4),设抛物线的解析式为:y=a(x﹣4)2+4,由球出手时离地面m,可知抛物线与y轴交点为(0,),代入可求出a的值,写出解析式;(2)先计算当x=8时,y的值是否等于3,把x=8代入得:y=,所以要想球经过(8,3),则抛物线得向上平移3﹣=个单位,即球出手时距离地面3米可使球直接命中篮筐中心;(3)将由y=3.19代入函数的解析式求得x值,进而得出答案.【答案与解析】(1)设抛物线为y=a(x﹣4)2+4,将(0,)代入,得a(0﹣4)2+4=,解得a=﹣,∴所求的解析式为y=﹣(x﹣4)2+4;(2)令x=8,得y=﹣(8﹣4)2+4=∴抛物线不过点(8,3),故不能正中篮筐中心;≠3,=∵抛物线过点(8,),∴要使抛物线过点(8,3),可将其向上平移 7/9 个单位长度,故小明需向上多跳 m 再投篮(即球出手时距离地面 3 米)方可使球正中篮筐中心.(3)由(1)求得的函数解析式,当 y =3.19 时,3.19=﹣19(x ﹣4)2+4解得:x 1=6.7(不符合实际,要想盖帽,必须在篮球下降前盖帽,否则无效),x 2=1.3∴球员乙距离甲球员距离小于 1.3 米时,即可盖帽成功.题型四 二次函数与图形面积的综合例 10.如图,抛物线 y = a(x + 1)2的顶点为 A ,与 y 轴的负半轴交于点 B ,且 OB = OA .(1)求抛物线的解析式;(2)若点 C (-3,b ) 在该抛物线上,求 S∆ABC 的值.【思路点拨】(1)由抛物线解析式确定出顶点 A 坐标,根据 OA =OB 确定出 B 坐标,将 B坐标代入解析式求出 a 的值,即可确定出解析式;(2)将 C 坐标代入抛物线解析式求出 b 的值,确定出 C 坐标,过 C 作 CD 垂直于 x 轴,三角形 ABC 面积=梯形 OBCD 面积﹣三角形 ACD 面积﹣三角形 AOB 面积,求出即可.【答案与解析】解:(1)由题意得:A (﹣1,0),B (0,﹣1),将 x =0,y =﹣1 代入抛物线解析式得:a =﹣1,则抛物线解析式为 y =﹣(x+1)2=﹣x 2﹣2x ﹣1;(2)过 C 作 CD⊥x 轴,将 C (﹣3,b )代入抛物线解析式得:b =﹣4,即 C (﹣3,﹣4),则 △S ABC =S 梯形 OBCD △﹣S ACD △﹣S A OB ×3×(4+1)﹣ ×4×2﹣ ×1×1=3.变式训练1.如图,已知二次函数图象的顶点为(1,-3),并经过点C(2,0).(1)求该二次函数的解析式;(2)直线y=3x与该二次函数的图象交于点B(非原点),求点B的坐标和∆AOB的面积;【思路点拨】(1)设抛物线的解析式为y=a(x﹣1)2﹣3,由待定系数法就可以求出结论;(2)由抛物线的解析式与一次函数的解析式构成方程组,求出其解即可求出B的坐标,进而可以求出直线AB的解析式,就可以求出AB与x轴的交点坐标,就可以求出△AOB的面积;【答案与解析】解:(1)抛物线的解析式为y=a(x﹣1)2﹣3,由题意,得0=a(2﹣1)2﹣3,解得:a=3,∴二次函数的解析式为:y=3(x﹣1)2﹣3;(2)由题意,得,解得:.∵交点不是原点,∴B(3,9).如图2,设直线AB的解析式为y=kx+b,由题意,得,△+S,△+S△+S解得:,∴y=6x﹣9.当y=0时,y=1.5.∴E(1.5,0),∴OE=1.5,△∴SAOB=SA OE BOE=+,=9.答:B(3,9),△AOB的面积为9;变式训练2.如图,抛物线y=x2+x-2与x轴交于A、B两点,与y轴交于点C.(1)求点A,点B和点C的坐标;(2)在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;(3)若点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.【思路点拨】(1)利用待定系数法即可解决问题.(2)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.(3)过点M作MN⊥x轴与点N,设点M(x,x2+x﹣2),则AN=x+2,0N=﹣x,0B=1,0C=2,MN=﹣(x2+x﹣2)=﹣x2﹣x+2,根据S四边形ABCM△=SAOM OCM BOC构建二次函数,利用二次函数的性质即可解决问题.【答案与解析】解:(1)由y=0,得x2+x﹣2=0解得x=﹣2x=l,∴A(﹣2,0),B(l,0),由x=0,得y=﹣2,∴C(0,﹣2).(2)连接AC与对称轴的交点即为点P.△+S + =设直线 AC 为 y =kx+b ,则﹣2k+b =0,b =﹣2:得 k =﹣l ,y =﹣x ﹣2.对称轴为 x =﹣ ,当 x =﹣ 时,y =_(﹣ )﹣2=﹣ ,∴P(﹣ ,﹣ ).(3)过点 M 作 MN⊥x 轴与点 N ,设点 M (x ,x 2+x ﹣2),则 AN =x+2,0N =﹣x ,0B =1,0C =2,MN =﹣(x 2+x ﹣2)=﹣x 2﹣x+2,S四边形 ABCM△=S AOM OCM △S BOC (x+2)(﹣x 2﹣x+2)+ (2﹣x 2﹣x+2)(﹣x )+ ×1× 2=﹣x 2﹣2x+3=﹣(x+1)2+4.∵﹣1<0,∴当 x =_l 时,S 四边形 ABCM 的最大值为 4.变式训练 3.如图,二次函数 y = ax 2 + b x 的图象经过点 A(2,4) 与 B(6,0) .(1)求 a , b 的值;(2)点 C 是该二次函数图象上 A , B 两点之间的一动点,横坐标为 x (2 < x < 6) ,写出四边形 OACB 的面积 S 关于点 C 的横坐标 x 的函数表达式,并求 S 的最大值.△=△=△=△+S△+S【思路点拨】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【答案与解析】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂线,垂足为D(2,0),连接CD、CB,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,SOADOD•AD=×2×4=4;SACDAD•CE=×4×(x﹣2)=2x﹣4;SBCDBD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=SOAD ACD BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.。
中考数学总复习《二次函数的实际应用与几何问题》练习题-附带答案
中考数学总复习《二次函数的实际应用与几何问题》练习题-附带答案一、单选题(共12题;共24分)1.已知抛物线y=ax2+bx+c的图象如图所示,则|a+b+c|+|a﹣b+c|+|2a+b|=()A.2a+3 b B.2c﹣b C.2a﹣b D.b-2c 2.如图,用20m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积为()m2A.45B.50C.60D.65 3.如图,坐标系的原点为O,点P是第一象限内抛物线y=14x2﹣1上的任意一点,PA⊥x轴于点A.则OP﹣PA值为()A.1B.2C.3D.4 4.如图所示,将一根长2m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系5.如图,AC为矩形ABCD的对角线,已知AD=3,CD=4.点P沿折线C−A−D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.6.如图所示,⊥DEF中⊥DEF=90°,⊥D=30°,DF=16,B是斜边DF上一动点,过B 作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,⊥ABD的面积为y,则y与x 之间的函数图象大致为()A.(B.C.D.(7.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为()A .75m 2B .752m 2C .48m 2D .2252m 28.如图,点A 是二次函数y = √3 x 2图象上的一点,且位于第一象限,点B 是直线y=﹣ √32x 上一点,点B′与点B 关于原点对称,连接AB ,AB′,若⊥ABB′为等边三角形,则点A 的坐标是( )A .( 13 , 19√3 ) B .( 23 , 49√3 )C .(1, √3 )D .( 43 , 169√3 ) 9.在平面直角坐标系中抛物线y=﹣(x ﹣2)2+1的顶点是点P ,对称轴与x 轴相交于点Q ,以点P 为圆心,PQ 长为半径画⊥P ,那么下列判断正确的是( ) A .x 轴与⊥P 相离 B .x 轴与⊥P 相切 C .y 轴与⊥P 相切D .y 轴与⊥P 相交10.如图,已知边长为4的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,作EF ⊥AE 交⊥BCD 的外角平分线于F ,设BE =x ,⊥ECF 的面积为y ,下列图象中能表示y 与x 的函数关系的图象大致是( )A .B .C .D .11.如图,一边靠墙(墙有足够长),其它三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )A .18m 2B .12 m 2C .16 m 2D .22 m 212.如图,抛物线y=ax 2+2ax-3a(a>0)与x 轴交于A ,B 顶点为点D ,把抛物线在x 轴下方部分关于点B 作中心对称,顶点对应D’,点A 对应点C ,连接DD’,CD’,DC ,当⊥CDD’是直角三角形时a 的值为( )A .12 , √32B .13 , √32 C .13 , √33 D .12二、填空题(共6题;共7分)13.如图,已知抛物线 y =(x −2)2−1 与 x 轴交于A 、C 两点,与 y 轴交于点B ,在抛物线的对称轴上找一点Q ,使⊥ABQ 成为等腰三角形,则Q 点的坐标是 。
2020中考总复习-二次函数的实际应用
2020中考总复习-二次函数的实际应用1.铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?2.某水产基地种植某种食用海藻,从三月一日起的30周内,它的市场价格与上市时间的关系用图①线段表示;它的平均亩产量与时间的关系用图①线段表示;它的每亩平均成本与上市时间的关系用图①抛物线表示.(1)写出图①、图①所表示的函数关系式;(2)若市场价×亩产量-亩平均成本= 每亩总利润,问哪一周上市的海藻利润最大?最大利润是多少?3.在高尔夫球训练中,运动员在距球洞10m 处击球,其飞行路线满足抛物线2155b y x x =-+,其图象如图所示,其中球飞行高度为()ym ,球飞行的水平距离为()x m ,球落地时距球洞的水平距离为2m .(1)求b 的值;(2)若运动员再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球的飞行路线应满足怎样的抛物线,求抛物线的解析式;(3)若球洞4m 处有一横放的1.2m 高的球网,球的飞行路线仍满足抛物线2155b y x x =-+,要使球越过球网,又不越过球洞(刚好进洞),求b 的取值范围.4.扬州某风景区门票价格如图所示,有甲、乙两个旅行团队,计划在端午节期间到该景点游玩,两团队游客人数之和为100人,若乙团队人数不超过40人,甲团队人数不超过80人,设甲团队人数为x 人,如果甲、乙两团队分别购买门票,两团队门票款之和为y 元.(1)直接写出y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)计算甲、乙两团队联合购票比分别购票最多可节约多少钱?(3)该景区每年11月、12月为淡季,景区决定在这两个月实行门票打五折的优惠(打折期间不售团体票),以吸引大量游客,提高景区收入;景区经过调研发现,随着接待游客数的增加,景区的运营成本也随之增加,景区运营成本Q (万元)与两个月游客总人数t (万人)之间满足函数关系式:218004Q t =+;两个月游客总人数t (万人)满足:150200t ≤≤,且淡季每天游客数基本相同;为了获得最大利润,景区决定通过网络预约购票的方式控制淡季每天游客数,请问景区的决定是否正确?并说明理由.(利润=门票收入-景区运营成本)5.我市某乡镇在“精准扶贫”活动中销售农产品,经分析发现月销售量y (万件与月份x (月)的关系为:()()816,20712,x x x y x x x ⎧+≤≤⎪=⎨-+≤≤⎪⎩为整数为整数每件产品的利润z (元)与月份x (月)的关系如下表:()1请你根据表格直接写出每件产品利润z (元) 与月份x (月)的函数关系式;()2若月利润w (万元) =当月销售量y (万件)x 当月每件产品的利润z(元),求月利润w (万元)与月份x (月)的关系式; ()3当x 为何值时,月利润w 有最大值,最大值为多少?6.某商场销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)满足10400y x =-+,设销售这种商品每天的利润为W (元).(1)求W 与x 之间的函数关系式;(2)在保证销售量尽可能大的前提下,该商场每天还想获得2000元的利润,应将销售单价定为多少元?(3)当每天销售量不少于50件,且销售单价至少为32元时,该商场每天获得的最大利润是多少?7.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;8.把一根长为120cm的铁丝剪成两段,并把每一段铁丝围成一个正方形.若设围成的一个正方形的边长为xcm.650cm,则剪出的两段铁丝长分别是多少?(1)要使这两个正方形的面积的和等于2(2)剪出的两段铁丝长分别是多少cm时,这两个正方形的面积和最小?最小值是多少?9.中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.10.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件8元,出厂价为每件10元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3410元,那么政府为他承担的总差价最少为多少元?11.小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,y与x的几组对应值如下表所示:(①)求y关于x的函数解析式(不要求写x的取值范围);(①)问:小球的飞行高度能否达到22m?请说明理由.12.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为多少?13.如图:梯形ABCD中,AD①BC,①ABC=90°,AD=9,BC=12,AB=6,在线段BC上任取一点P,连接DP,作射线PE①DP,PE与直线AB交于点E.(1)试确定当CP=3时,点E的位置;(2)若设CP=x ,BE=y ,试写出y 关于自变量x 的函数关系式.14.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并确定自变量x 的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)15.如图①,在等边ABC ∆中,6AB =,动点P 从点A 出发,沿AB 边以每秒1个单位的速度向终点B 运动,同时动点Q 从点B 出发,以每秒2个单位的速度沿着B C A →→方向运动.连结PQ ,设点P 运动的时间t 秒.(1)用含t 的代数式表示线段QC 的长.(2)当PQ AC ⊥时,求t 的值.(3)若BPQ ∆的面积为S ,求S 与t 之间的函数关系式.(4)如图①,当点Q 在C 、A 之间时,连结PC ,ABC ∆被分割成APQ ∆、PCQ ∆、PBC ∆,当其中的某两个三角形面积相等时,直接写出t 的值.16.如图,在平面直角坐标系中,四边形OABC 为菱形,点C 的坐标为(8,0),①AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线l 与菱形OABC 的两边分别交于点M 、N (点M 在点N 的上方).(1)求A 、B 两点的坐标;(2)设①OMN 的面积为S ,直线l 运动时间为t 秒(0≤t ≤12),求S 与t 的函数表达式;(3)在(2)的条件下,t为何值时,S最大?并求出S的最大值.17.某市精准扶贫工作已经进入攻坚阶段,贫困的张大爷在某单位的帮扶下,把一片坡地改造后种植了大樱桃.今年正式上市销售,在销售30天中,第一天卖出20千克,为了扩大销量,在一段时间内采取降价措施,每天比前一天多卖出4千克.当售价不变时,销售量也不发生变化.已知种植销售大樱桃的成本为18元/千克,设第x天的销售价y元/千克,y与x函数关系如下表:表一表二(1)求y与x函数解析式;(2)求销售大樱桃第几天时,当天的利润最大?最大利润是多少?(3)销售大樱桃的30天中,当天利润不低于950元的共有多少天?18.已知Rt①OAB,①OAB=90o,①ABO=30o,斜边OB=4,将Rt①OAB绕点O顺时针旋转60o,如图1,连接BC.(1)ΔOBC的形状是;(2)如图1,连接AC,作OP①AC,垂足为P,求OP的长度;(3)如图2,点M、N同时从点O出发,在①OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C 路径匀速运动,当两点相遇时运动停止.已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒.设运动时间为x秒,①OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?(结果可保留根号) .19.如图所示,已知边长为4的正方形钢板有一个角锈蚀,其中AF=2,BF=1,为了合理利用这块钢板.将在五边形EABCD内截取一个矩形块MDNP,使点P在AB上,且要求面积最大,求钢板的最大利用率.参考答案1.(1)y =10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.2.(1)11315y x =-+;220903y x =+;(2)第563周上市的海藻利润最大,最大利润是29119元. 3.(1)8b =;(2)20.128(5) 3.2y x =--+;(3)710b ≤≤4.(1)当6080x ≤≤时,()1301501002015000y x x x =+-=-+;(2)1800元;(3)利润随人数的增大而减小,故景区的决定是正确的5.(1)()()20,18,10,912,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数;(2)()()()221216016,4040078,10200912,x x x x w x x x x x x x ⎧-++≤≤⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)6x =时,w 有最大值为1966.(1)W =2105004000x x -+-;(2)当20x =时,既能保证销售量大,又可以每天获得2000元的利润;(3)当3235x ≤≤时,该商场每天获得的最大利润是1760元7.(1)12(2)当x=11时,y 最小=88平方米8.(1)这根铁丝剪成两段后的长度分别是20cm ,100cm ;(2)剪成两段均为60cm 的长度时面积之和最小,最小面积和为2450cm9.(1) x=12;(2)苗圃园的面积最大为112.5平方米,最小为88平方米;(3) 6≤x≤10.10.(1)600元;(2)单价定为29元,每月获得最大利润4410元;(3)500元11.(①) y =﹣5x 2+20x ;(①)小球的飞行高度不能达到22m ,理由见解析.12.饲养室的最大面积为75平方米13.(1)点E 与点B 重合;(2)当点P 在BF 上:21(1536)6y x x =--+;当点P 在CF 上:21(1536)6y x x =-+ 14.(1)21070010000w x x =-+-(20≤x≤32);(2)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元;(3)3600.15.(1)当0≤t≤3时,62QC t =-,当3<t≤6时,26QC t =-;(2)245t =;(3)2S =+,26)S t =-;(4)92t =或16.(1)A (4,),B (12,;(2)①0≤t ≤4时,S t 2;①当4<t ≤8时,S =;①当8<t ≤12时,S t 2;(3)当t =8时,S 最大= 17.(1)1382y x =-+(120x ≤≤,x 为正整数),28y =(2130x ≤≤,x 为正整数);(2)销售大樱桃第18天时,当天的利润最大,最大利润为968元;(3)共有16天的利润不低于950元.18.(1)等边三角形;(2) ;(3) 83x = 时,y 有最大值,y =最大 19.80%。
2020届中考数学专题复习二次函数_二次函数解决实际问题专题训练及参考答案
二次函数--二次函数解决实际问题1. 如图,用长8m 的铝合金条制成矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A.6425m2B.43m2C.83m2 D.4m2 2. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米3. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要每间隔0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m ,如图所示,则防护栏不锈钢支柱的总长度至少为( )A.50mB.100mC.160mD.200m4. 河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=-125x2,当水面离桥拱顶的高度DO 是4m 时,这时水面宽度AB 为( )A.-20mB.10mC.20mD.-10m5. 某幢建筑物,从10米高的窗口A 用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图),如果抛物线的最高点M 离墙1米,离地面403米,则水流下落点B 离墙距离OB 是( )A.2米B.3米C.4米D.5米6. 如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A.3cm2B.323cm2C.923cm2D.2723cm2 7. 若某商品的利润y(元)与售价x(元)之间的函数关系式是y =-x2+8x +9,且售价x 的范围是1≤x≤3,则最大利润是( )A.16元B.21元C.24元D.25元8. 一件工艺品进价为100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.3600元9. 如图,隧道的截面是抛物线,可以用y =-116x2+4表示,该隧道内设双行道,限高为3m ,那么每条行道宽是( )A.不大于4mB.恰好4mC.不小于4mD.大于4m ,小于8m10. 如图所示,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m 长的篱笆围成中间有一道篱笆的养鸡场,设它的长为xm ,要使鸡场的面积最大,鸡场的长为 m.11. 比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系式y =-29x2+89x +109,则羽毛球飞出的水平距离为 米.12. 如图,有一抛物线形的立交拱桥,这个拱桥的最大高度为16m ,跨度为40m ,现把它的图形放在坐标系中.若在离跨度中心M 点5m 处垂直竖立一根铁柱支撑拱顶,这根铁柱应取 m.13. 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y(单位:米2),当x = 米时菜园的面积最大.14. 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形,则这两个正方形面积之和的最小值是__________cm2.15. 已知某人卖盒饭的盒数x(盒)与所获利润y(元)满足关系式:y =-x2+1200x -357600,则卖出盒饭数量为________盒时,获得最大利润为________元.16. 某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天销售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为____________元时,该服装店平均每天的销售利润最大17. 杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y =-35x2+3x +1的一部分,如图所示.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.18. 一种进价为每件40元的T 恤,若销售单价为60元,则每周可卖出300件,可提高利润,欲对该T 恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出10件.请确定该T 恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价为多少元时,每周的销售利润最大?19. 如图,某足球运动员站在点O 练习射门,将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y =at2+5t +c ,已知足球飞行0.8s 时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?20. 如图,隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m.按照图中所示的直角坐标系,抛物线可以用y =-16x2+bx +c 表示,且抛物线时的点C 到墙面OB 的水平距离为3m ,到地面OA 的距离为172m.(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?参考答案:1—9 CACCB CCAA10. 2511. 512. 1513. 1514. 25215. 600 240016. 2217. 解:(1)y =-35x2+3x +1=-35(x -52)2+194,∵-35<0,∴函数的最大值是194.答:演员弹跳的最大高度是194米; (2)当x =4时,y =-35×42+3×4+1=3.4=BC ,所以这次表演成功. 18. 解:由题意,得y =(x -40)[300-10(x -60)],即y =-10x2+1300x -36000(60≤x≤90).配方,得y =-10(x -65)2+6250.∵-10<0,∴当x =65时,y 有最大值6250,因此,当该T 恤销售单价为65元时,每周的销售利润最大.19. 解:(1)由题意得:函数y =at2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴⎩⎪⎨⎪⎧ 0.5=c 3.5=0.82a -5×0.8+c ,解得:⎩⎪⎨⎪⎧ a =-2516c =12,∴抛物线的解析式为:y =-2516t2+5t +12,∴当t =85时,y 最大=4.5;(2)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =-2516×2.82+5×2.8+12=2.25<2.44,∴他能将球直接射入球门.20. 解:(1)根据题意得B(0,4),C(3,172),把B(0,4),C(3,172)代入y =-16x2+bx +c 得⎩⎪⎨⎪⎧ c =4-16×32+3b +c =172,解得⎩⎪⎨⎪⎧ b =2c =4,所以抛物线解析式为y =-16x2+2x +4,则y =-16(x -6)2+10,所以D(6,10),所以拱顶D 到地面OA 的距离为10m ;(2)由题意得货运汽车最外侧于地面OA 的交点为(2,0)或(10,0),当x =2或x =10时,y =223>6,所以这辆货车能安全通过;(3)令y =0,则-16(x -6)2+10=8,解得x1=6+23,x2=6-23,则x1-x2=43,所以两排灯的水平距离最小是43m.。
中考数学总复习《二次函数的实际应用与几何问题》练习题及答案
中考数学总复习《二次函数的实际应用与几何问题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则图中阴影部分的面积为()A.πB.2πC.3πD.4π2.如图,已知抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,以AB为直径的⊙P经过该抛物线的顶点C,直线l⊙x轴,交该抛物线于M、N两点,交⊙P与E、F两点,若EF=2√3,则MN的长为()A.2√6B.4√2C.5D.63.如图,已知⊙ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2B.b<﹣2C.b≥﹣2D.b>﹣24.如图,在⊙ABC中,⊙C=90°,AC=BC=3cm.动点P从点A出发,以√2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC →CB方向运动到点B.设⊙APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.5.长方形的周长为24cm,其中一边为x(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=(12﹣x2)C.y=(12﹣x)•x D.y=2(12﹣x)6.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门。
已知计划中的建筑材料可建围墙(不包括门)的总长度为50m。
设饲养室长为x(m),占地面积为y(m²),则y关于x的函数表达式是()A.y=-x²+50x B.y= −12x²+24xC.y= −12x2+25x D.y= −12x2+26x7.如图,四边形ABCD中,AB=AD,CE⊙BD,CE= 12BD.若⊙ABD的周长为20cm,则⊙BCD的面积S(cm2)与AB的长x(cm)之间的函数关系式可以是()2−10x+100B.S=2x2−40x+200A.S=14xC.S=x2−20x+100D.S=x2+20x+1008.如图,四边形ABCD的两条对角线互相垂直,AC+BD=12,则四边形ABCD的面积最大值是()A.12B.18C.24D.369.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若⊙ABC与⊙ABD的面积比为1:4,则k值为()A.1B.12C.43D.4510.半径是3的圆,如果半径增加2x,那么面积S和x之间的函数关系式是()A.S=2π(x+3)2B.S=9π+xC.S=4πx2+12x+9D.S=4πx2+12πx+9π11.设抛物线y=ax2+bx+c(ab≠0)的顶点为M ,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1 () A.y=−3(x−1)2+1B.y=2(x−0.5)(x+1.5)C.y=13x 2−43x+1D.y=(a2+1)x2−4x+2(a为任意常数)12.已知坐标平面上有两个二次函数y=a(x+1)(x−7),y=b(x+1)(x−15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x−15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠().A.向左平移4单位B.向右平移4单位C.向左平移8单位D.向右平移8单位二、填空题13.如图,点A(0,1),平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=14x2(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE⊙AC,交y2于点E,则DE =.14.用一根长为24cm的绳子围成一个矩形,则围成矩形的最大面积是cm2.15.如图,在平面直角坐标系中,菱形OABC的边长为2,⊙AOC=60°,点D为AB边上的一点,经过O,A,D三点的抛物线与x轴的正半轴交于点E,连结AE交BC于点F,当DF⊙AB时,CE的长为。
初中考数学总复习《函数》 二次函数的实际应用
得
20k b 20 30k b 0
解
k b
2 60
∴y关于x的函数关系式是y=-2x+60;
第3题图
(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?
(2)设该品种苹果每天的销售利润为W , 则W=(-2x+60)(x-10)=-2x2+80x-600 =-2(x-20)2+200, ∵-2<0, ∴当x=20时,W最大=200(元). 答:销售价定为20元/千克时,每天的销售利润最大,最大利润是200元.
对接中考 改变解题思路→①根据表格选取数据求销量与销售单价之间的关系;②根据二次
函数增减性求最值.
3. 某商店销售一种商品,该商品进价是40元/件,经市场调查发现:该商品的周销
售量y(件)是售价x(元/件)的一次函数,其售价、周销售量的三组对应值如下表所
示:
售价x(元/件) 周销售量y(件)
60 70 80 100 80 60
注:周销售利润=周销售量×(售价-进价)
(1)求y与x的函数关系式;(不要求写出自变量的取值范围)
解:(1)设y与x的函数关系式为y=kx+b,将(60,100),(70,80)分别代入,
得
100 60k b 80 70k b
解得
k 2 b 220
∴y关于x的函数解析式为y=-2x+220;
3. (2015玉林、防城港24题9分)某超市对进货价为10元/千克的某品种苹果的销售情
况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如
图.
(1)求y关于x的函数关系式(不要求写出x的取值范围); (1)设y关于x的函数关系式是y=kx+b(k≠0),
把点(20,20)、(30,0)代入y=kx+b,
2020年中考数学复习:二次函数在实际生活中的应用 专项练习题(含答案解析)
2020年中考数学复习:二次函数在实际生活中的应用 专项练习题1.(2019·山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米,(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则次抛物线型钢拱的函数表达式为( )A.y =26675x 2B.y =26675-x 2C.y =131350x 2D.y =131350-x 2第9题图 【答案】B【解析】设二次函数表达式为y =ax 2,由题可知,点A 坐标为(-45,-78),代入表达式可得:-78=a(-45)2,解得a =26675-,∴二次函数表达式为y =26675-x 2,故选B. 2.(2019·嘉兴)某农作物的生长率p 与温度t (℃)有如下关系:如图1,当10≤t ≤25时可近似用函数p =t ﹣刻画;当25≤t ≤37时可近似用函数p =﹣(t ﹣h )2+0.4刻画.(1)求h 的值.(2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系:①请运用已学的知识,求m 关于p 的函数表达式; ②请用含t 的代数式表示m .(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t (℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【解题过程】(1)把(25,0.3)的坐标代入21()0.4160p t h =--+,得h =29或h =21. ∵h >25,∴h =29.(2)①由表格可知m 是p 的一次函数,∴m=100p-20.②当1025t ≤≤时,p=11505t -,∴m=11100()20505t --=2t-40. 当2537t ≤≤时,21(29)0.4160p t =--+.∴m=21100[(29)0.4)]20160t --+-=25(29)208t --+(3)(I )当2025t ≤≤时,由(20,200),(25,300),得20200w t =- ∴增加利润为600m+[200×30-w (30-m )]= 2406004000t t --. ∴当t=25时,增加利润的最大值为6000元. (II )当2537t ≤≤时,300w =. 增加利润为600m+[200×30-w (30-m )]= 25900()(29)150008t ⨯-⨯-+=21125(29)150002t --+ ∴当t=29时,增加利润的最大值为15000元.综上所述,当t=29时,提前上市20天,增加利润的最大值为15000元.3.(2019山东省青岛市,22,10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图象如图所示. (1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【解题过程】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+, 将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b =+⎧⎨=+⎩,解得:2160k b =-⎧⎨=⎩,故函数的表达式为:2160y x =-+;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,故当55x <时,w 随x 的增大而增大,而3050x 剟, ∴当50x =时,w 由最大值,此时,1200w =,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元; (3)由题意得:(30)(2160)800x x --+…, 解得:70x …,∴每天的销售量216020y x =-+…, ∴每天的销售量最少应为20件.4.(2019·武汉)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w (元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1) ① 求y 关于x 的函数解析式(不要求写出自变量的取值范围)② 该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(2) 由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值【解题过程】(1)设y 与x 的函数关系式为y =kx +b ,依题意有,501006080k b k b +=⎧⎨+=⎩,解得,k =-2,b =200,y与x 的函数关系式是y =-2x +200;(2)将售价50,周销售量100,周销售利润1000,带入周销售利润=周销售量×(售价-进价)得到,1000=100×(50-进价),即进价为40元/件;周销售利润w =(x -40)y =(x -40)(-2x +200)=-2(x -70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元,故答案为40,70,1800;(3)依题意有,w =(-2x +200)(x -40-m )=-2x 2+(2m +280)x -8000-200m =221401260180022m x m m +⎛⎫--+-+ ⎪⎝⎭∵m >0,∴对称轴140=702m x +>, ∵-2<0,∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x =65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m =5.5.(2019·黄冈)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y (万元)与产量x (吨)之间的关系如图所示(0≤x ≤100),已知草莓的产销投人总成本p (万元)与产量x (吨)之间满足P =x +1. (1)直接写出草莓销售单价y (万元)与产量x (吨)之间的函数关系式; (2)求该合作社所获利润w (万元)与产量x (吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w '不低于55万元,产量至少要达到多少吨?【解题过程】6 (2019·衢州市)某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为80间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数(间)与每间标准房的价格x (元)的数据如下表:(1)根据所给数据在坐标系中描出相应的点,并画出图象。
2023年中考数学总复习第三章《函数》第六节 二次函数的实际应用
2023年中考数学总复习第三章《函数》第六节二次函数的实际应用一、选择题1.[2020·邢台模拟]把一个足球垂直于水平地面向上踢,该足球距离地面的高度h(米)与所经过的时间t (秒)之间的关系为h=10t-t 2(0≤t≤14).若存在两个不同的t 的值,使足球离地面的高度均为a (米),则a 的取值范围是()A.0≤a≤42B.0≤a<50C.42≤a<50D.42≤a≤502.[2020·长沙]“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”p 与加工煎炸时间(t 单位:分钟)近似满足的函数关系为:p=at 2+bt+c (a≠0,a,b,c 是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A. 3.50分钟B. 4.05分钟C. 3.75分钟D. 4.25分钟(第2题图)(第3题图)3.[2020·石家庄裕华区一模]从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3s 时,速度为0;④当t=1.5s 时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④二、填空题4.[人九上课本P52,T8改编]某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为_______元.三、解答题5.[人九上课本P52,T5高仿]如图,西游乐园景区内有一块矩形油菜花田地(单位:m ),现在其中修建一条观花道(阴影所示),供游人赏花,设改造后观花道的面积为y m 2.(1)求y 与x 的函数关系式;(2)若改造后观花道的面积为13m 2,求x 的值;(3)若要求0.6≤x≤1,求改造后油菜花地所占面积的最大值.(第5题图)6.[2020·遵化二模]随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫站的距离为x(单位:km ),乘坐地铁的时间y 1(单位:min )是关于x 的一次函数,其关系如下表:(1)求y1关于x 的函数解析式;(2)李华骑单车的时间y 2(单位:min)也受x 的影响,其关系可以用y 2=x 2-11x+78来描述.求李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需的时间最短,并求出最短时间.地铁站A B C D E x/km 79111213y 1/min1620242628。
中考数学总复习《二次函数的实际应用》专项测试卷带答案
中考数学总复习《二次函数的实际应用》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.如图1,质量为m的小球从某高处由静止开始下落到竖直放置的轻弹簧上并压缩弹簧(已知自然状态下,弹簧的初始长度为12cm).从小球刚接触弹簧到将弹簧压缩至最短的过程中(不计空气阻力,弹簧在整个过程中始终发生弹性形变),得到小球的速度v( cm/s)和弹簧被压缩的长度Δl(cm)之间的关系图象如图2所示.根据图象,下列说法正确的是( )A.小球从刚接触弹簧就开始减速B.当弹簧被压缩至最短时,小球的速度最大C.当小球的速度最大时,弹簧的长度为2 cmD.当小球下落至最低点时,弹簧的长度为6 cm2.在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点)处.小球在空中所经过的路线是抛物线y=-x2+bx的一部分.则抛物线最高点A(3,32的坐标是.3.(2024·自贡中考)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE=6.6 m,OE=1.4 m,OB=6 m,OC=5 m,OD=3 m,班长买来可切断的围栏16 m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是m2.4.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=-5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t 秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是;当2≤t≤3时,w的取值范围是.5.(2024·广东中考)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外,若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.6.端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽的进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.【B层·能力提升】7.(2024·黔南一模)如图1是某公园喷水头喷出的水柱.如图2是其示意图,点O处有一个喷水头,距离喷水头8 m的M处有一棵高度是2.3 m的树,距离这棵树10 m 的N处有一面高2.2 m的围墙(点O,M,N在同一直线上).建立如图2所示的平面直角坐标系.已知浇灌时,喷水头喷出的水柱的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a<0).某次喷水浇灌时,测得x与y的几组数据如表:x02610121416y00.882.162.802.882.802.56(1)根据上述数据,求这些数据满足的函数关系式.(2)判断喷水头喷出的水柱能否越过这棵树,并请说明理由.(3)在另一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y与水平距离x近似满足函数关系y=-0.04x2+bx.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出b的取值范围.8.(2024·无锡模拟)某服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y (百件)与时间(t 为整数,单位:天)的函数关系为:y 1=-15t 2+6t ,网上商店的日销售量(百件)与时间(t 为整数,单位:天)的部分对应值如图所示.(1)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(2)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大?并求出此时的最大值.9.(2024·扬州模拟)如图,某跳水运动员在10米跳台上进行跳水训练,水面边缘点E 的坐标为(-1,-10),运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为(34,916),正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式,并求出入水处点B的坐标.(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为4米,问该运动员此次跳水会不会失误?通过计算说明理由.10.(2024·泰州一模)制作简易水流装置设计方案如图,CD是进水通道,AB是出水通道,OE是圆柱形容器的底面直径,从CD将圆柱形容器注满水,内部安装调节器,水流从B处流出且呈抛物线形.以点O为坐标原点,EO所在直线为x轴,OA所在直线为y轴建立平面直角坐标系xOy,水流最终落到x轴上的点M处.示意图已知AB∥x轴,AB=5 cm,OM=15 cm,点B为水流抛物线的顶点,点A,B,O,E,M在同一平面内,水流所在抛物线的函数表达式为y=ax2+bx+15(a≠0)任务一求水流抛物线的函数表达式;任务二现有一个底面半径为3 cm,高为11 cm的圆柱形水杯,将该水杯底面圆的圆心恰好在M处,水流是否能流到圆柱形水杯内?请通过计算说明理由.(圆柱形水杯的厚度忽略不计)任务三还是任务二的水杯,水杯的底面圆的圆心P在x轴上运动,为了使水流能流到圆柱形水杯内,直接写出OP长的取值范围.请根据活动过程完成任务一、任务二和任务三.【C层·素养挑战】11.(2024·吉林中考)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x的值为-2时,输出y的值为1;输入x的值为2时,输出y的值为3;输入x的值为3时,输出y的值为6.(1)直接写出k,a,b的值.(2)小明在平面直角坐标系中画出了关于x的函数图象,如图(2).Ⅰ.当y随x的增大而增大时,求x的取值范围.Ⅱ.若关于x的方程ax2+bx+3-t=0(t为实数),在0<x<4时无解,求t的取值范围.Ⅲ.若在函数图象上有点P,Q(P与Q不重合).P的横坐标为m,Q的横坐标为-m+1.小明对P,Q之间(含P,Q两点)的图象进行研究,当图象对应函数的最大值与最小值均不随m的变化而变化时,直接写出m的取值范围.参考答案【A层·基础过关】1.(2024·遵义红花岗一模)如图1,质量为m的小球从某高处由静止开始下落到竖直放置的轻弹簧上并压缩弹簧(已知自然状态下,弹簧的初始长度为12cm).从小球刚接触弹簧到将弹簧压缩至最短的过程中(不计空气阻力,弹簧在整个过程中始终发生弹性形变),得到小球的速度v( cm/s)和弹簧被压缩的长度Δl(cm)之间的关系图象如图2所示.根据图象,下列说法正确的是(D)A.小球从刚接触弹簧就开始减速B.当弹簧被压缩至最短时,小球的速度最大C.当小球的速度最大时,弹簧的长度为2 cmD.当小球下落至最低点时,弹簧的长度为6 cm2.(2024·青海中考改编)在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点A(3,32)处.小球在空中所经过的路线是抛物线y=-x2+bx的一部分.则抛物线最高点的坐标是(74,4916).3.(2024·自贡中考)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE= 6.6 m,OE=1.4 m,OB=6 m,OC=5 m,OD=3 m,班长买来可切断的围栏16 m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是46.4m2.4.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=-5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t 秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是0≤w≤5;当2≤t≤3时,w的取值范围是5≤w≤20.5.(2024·广东中考)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外,若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.【解析】设该果商定价x万元时每天的“利润”为w万元w=(x-2)[100+50(5-x)]=-50(x-4.5)2+312.5∵-50<0∴w随x的增大而减小∴当x=4.5时,w有最大值,最大值为312.5万元.答:该果商定价为4.5万元时才能使每天的“利润”或“销售收入”最大,其最大值为312.5万元.6.端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽的进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.【解析】(1)设每盒猪肉粽的进价为x元,每盒豆沙粽的进价为y元由题意得{x-y=10x+2y=100,解得{x=40 y=30∴每盒猪肉粽的进价为40元,每盒豆沙粽的进价为30元;(2)w=(a-40)[100-2(a-50)]=-2(a-70)2+1 800,∵-2<0,∴当a=70时,w有最大值,最大值为1 800元.∴该商家每天销售猪肉粽获得的最大利润为1 800元.【B层·能力提升】7.(2024·黔南一模)如图1是某公园喷水头喷出的水柱.如图2是其示意图,点O处有一个喷水头,距离喷水头8 m的M处有一棵高度是2.3 m的树,距离这棵树10 m 的N处有一面高2.2 m的围墙(点O,M,N在同一直线上).建立如图2所示的平面直角坐标系.已知浇灌时,喷水头喷出的水柱的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a<0).某次喷水浇灌时,测得x与y的几组数据如表:x02610121416y00.882.162.802.882.802.56(1)根据上述数据,求这些数据满足的函数关系式.(2)判断喷水头喷出的水柱能否越过这棵树,并请说明理由.(3)在另一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y与水平距离x近似满足函数关系y=-0.04x2+bx.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出b的取值范围.【解析】(1)由题意,根据抛物线过原点,设抛物线解析式为y =ax 2+bx 把x =2,y =0.88和x =6,y =2.16代入y =ax 2+bx 得:{4a +2b =0.8836a +6b =2.16解得{a =-0.02b =0.48∴抛物线解析式为y =-0.02x 2+0.48x. (2)由题意,当x =8时,y =-0.02×82+0.48×8=2.56. ∵2.56>2.3∴喷水头喷出的水柱能越过这棵树. (3)∵喷水头喷出的水柱能够越过这棵树 ∴当x =8时,y >2.3 即-0.04×82+8b >2.3 ∴b >243400∵喷水头喷出的水柱不会浇到墙外 ∴当x =18时,y <2.2 即-0.04×182+18b <2.2,∴b <379450抛物线对称轴为x =-b2×(-0.04)=b2×0.04∵喷水头喷出的水柱能够越过这棵树,且不会浇到墙外 ∴对称轴所在直线在围墙与喷水头中点的左侧. ∴b 2×0.04<182=9,∴b <1825.∴243400<b <1825.8.(2024·无锡模拟)某服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y (百件)与时间(t 为整数,单位:天)的函数关系为:y 1=-15t 2+6t ,网上商店的日销售量(百件)与时间(t 为整数,单位:天)的部分对应值如图所示.(1)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(2)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大?并求出此时的最大值. 【解析】(1)当0≤t ≤10时,设y 2=kt ∵(10,40)在其图像上,∴10k =40,∴k =4 ∴y 2与t 的函数关系式为y 2=4t ; 当10≤t ≤30时,设y 2=mt +n 将(10,40),(30,60)代入得{10m +n =4030m +n =60,解得{m =1n =30∴y 2与t 的函数关系式为y 2=t +30综上所述,y 2与t 的函数关系式为y 2={4t (0≤t ≤10且为整数)t +30(10<t ≤30且为整数);(2)依题意得y =y 1+y 2,当0≤t ≤10时,y =-15t 2+6t +4t =-15t 2+10t =-15(t -25)2+125,∴t =10时,y最大=80;当10<t ≤30时,y =-15t 2+6t +t +30=-15t 2+7t +30=-15(t -352)2+3654∵t 为整数,∴t =17或18时,y 最大=91.2∵91.2>80,∴当t =17或18时,日销售总量y 达到最大,最大值为91.2百件.9.(2024·扬州模拟)如图,某跳水运动员在10米跳台上进行跳水训练,水面边缘点E 的坐标为(-1,-10),运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为(34,916),正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式,并求出入水处点B 的坐标. (2)若运动员在空中调整好入水姿势时,恰好距点E 的水平距离为4米,问该运动员此次跳水会不会失误?通过计算说明理由. 【解析】∵运动员在空中最高处A 点的坐标为(34,916),∴A 点为抛物线的顶点,∴设该抛物线的解析式为y =a (x -34)2+916∵该抛物线经过点(0,0),∴916a =-916∴a =-1∴抛物线的解析式为y =-(x -34)2+916=-x 2+32x. ∵跳水运动员在10米跳台上进行跳水训练 ∴令y =-10,则-x 2+32x =-10∴x =4或x =-52,∴B (4,-10);(2)该运动员此次跳水不会失误,理由:∵运动员在空中调整好入水姿势时,恰好距点E 的水平距离为4米,点E 的坐标为(-1,-10),∴运动员在空中调整好入水姿势时的点的横坐标为3当x=3时,y=-32+3×32=-92∴运动员距水面高度为10-92=5.5(米)∵5.5>5,∴该运动员此次跳水不会失误.10.(2024·泰州一模)制作简易水流装置设计方案如图,CD是进水通道,AB是出水通道,OE是圆柱形容器的底面直径,从CD将圆柱形容器注满水,内部安装调节器,水流从B处流出且呈抛物线形.以点O为坐标原点,EO所在直线为x轴,OA所在直线为y轴建立平面直角坐标系xOy,水流最终落到x轴上的点M处.示意图已知AB∥x轴,AB=5 cm,OM=15 cm,点B为水流抛物线的顶点,点A,B,O,E,M在同一平面内,水流所在抛物线的函数表达式为y=ax2+bx+15(a≠0)任务一求水流抛物线的函数表达式;任务二现有一个底面半径为3 cm,高为11 cm的圆柱形水杯,将该水杯底面圆的圆心恰好在M处,水流是否能流到圆柱形水杯内?请通过计算说明理由.(圆柱形水杯的厚度忽略不计)任务还是任务二的水杯,水杯的底面圆的圆心P在x轴上运动,为了使水流能流到圆柱形水杯内,直接写出OP长的取值范围.三请根据活动过程完成任务一、任务二和任务三.【解析】任务一:∵AB∥x轴,AB=5 cm,点B为水流抛物线的顶点,∴抛物线的对称轴为x=5.∴-b=5.∴b=-10a.2a把点M(15,0)代入抛物线y=ax2+bx+15得:15a+b+1=0把b=-10a代入15a+b+1=0 得:15a-10a+1=0,解得a=-1,∴b=25x2+2x+15.∴水流抛物线的函数表达式为y=-15任务二:圆柱形水杯最左端到点O的距离是15-3=12,当x=12时×122+2×12+15=10.2,∵11>10.2y=-15∴水流不能流到圆柱形水杯内.任务三:2+3√5<OP<8+3√5.【C层·素养挑战】11.(2024·吉林中考)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x的值为-2时,输出y的值为1;输入x的值为2时,输出y的值为3;输入x的值为3时,输出y的值为6.(1)直接写出k,a,b的值.(2)小明在平面直角坐标系中画出了关于x的函数图象,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程ax 2+bx +3-t =0(t 为实数),在0<x <4时无解,求t 的取值范围. Ⅲ.若在函数图象上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为-m +1.小明对P ,Q 之间(含P ,Q 两点)的图象进行研究,当图象对应函数的最大值与最小值均不随m 的变化而变化时,直接写出m 的取值范围. 【解析】(1)∵x =-2<0 ∴将x =-2,y =1代入y =kx +3 得-2k +3=1,解得k =1. ∵x =2>0,x =3>0∴将x =2,y =3,x =3,y =6代入 y =ax 2+bx +3得{4a +2b +3=39a +3b +3=6,解得{a =1b =-2. (2)Ⅰ.∵k =1,a =1,b =-2∴一次函数解析式为y =x +3,二次函数解析式为y =x 2-2x +3. 当x >0时,y =x 2-2x +3,对称轴为直线x =1,开口向上 ∴当x ≥1时,y 随x 的增大而增大; 当x ≤0时,y =x +3,k =1>0∴当x ≤0时,y 随x 的增大而增大. 综上,x 的取值范围为x ≤0或x ≥1.Ⅱ.∵ax 2+bx +3-t =0∴ax 2+bx +3=t 在0<x <4时无解∴问题转化为抛物线y =x 2-2x +3与直线y =t 在0<x <4时无交点.∵对于y=x2-2x+3,当x=1时,y=2∴顶点为(1,2),如图:∴当t=2时,抛物线y=x2-2x+3与直线y=t在0<x<4时正好有一个交点;当t<2时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点.当x=4时,y=16-8+3=11∴当t≥11时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点∴当t<2或t≥11时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点即当t<2或t≥11时,关于x的方程ax2+bx+3-t=0(t为实数),在0<x<4时无解.Ⅲ.∵x P=m,x Q=-m+1∴m+(-m+1)2=1 2∴点P,Q关于直线x=12对称.当x=1时,y最小值=1-2+3=2,当x=0时,y最大值=3.∵图象对应函数的最大值与最小值均不随m的变化而变化,而当x=2时,y=3,当x=-1时,y=2∴①当m>12时,如图:由题意得{-1≤-m+1≤01≤m≤2∴1≤m≤2;时,如图:②当m<12由题意得{-1≤m≤01≤-m+1≤2∴-1≤m≤0.综上,-1≤m≤0或1≤m≤2.。
2020中考数学专项解析:二次函数应用题
【文库独家】二次函数应用题1、(•衢州)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x 棵橘子树,果园橘子总个数为y 个,则果园里增种 10 棵橘子树,橘子总个数最多. 考点: 二次函数的应用. 分析: 根据题意设多种x 棵树,就可求出每棵树的产量,然后求出总产量y 与x 之间的关系式,进而求出x=﹣时,y 最大.解答: 解:假设果园增种x 棵橙子树,那么果园共有(x+100)棵橙子树,∵每多种一棵树,平均每棵树就会少结5个橙子, ∴这时平均每棵树就会少结5x 个橙子, 则平均每棵树结(600﹣5x )个橙子. ∵果园橙子的总产量为y , ∴则y=(x+100)(600﹣5x )=﹣5x 2+100x+60000,∴当x=﹣=﹣=10(棵)时,橘子总个数最多.故答案为:10. 点评: 此题主要考查了二次函数的应用,准确分析题意,列出y 与x 之间的二次函数关系式是解题关键. 2、(山西,18,3分)如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9m ,AB=36m ,D ,E 为桥拱底部的两点,且DE∥AB,点E 到直线AB 的距离为7m ,则DE 的长为_____m.【答案】48【解析】以C 为原点建立平面直角坐标系,如右上图,依题意,得B (18,-9),设抛物线方程为:2y ax =,将B 点坐标代入,得a =-136,所以,抛物线方程为:2136y x =-,E 点纵坐标为y =-16,代入抛物线方程,-16=2136x -,解得:x =24,所以,DE 的长为48m 。
3、(鞍山)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x (元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?考点:二次函数的应用.分析:(1)利用待定系数法求得y与x之间的一次函数关系式;(2)根据“利润=(售价﹣成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.解答:解:(1)由题意,可设y=kx+b,把(5,30000),(6,20000)代入得:,解得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.点评:本题主要考查利用函数模型(二次函数与一次函数)解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识.4、(•咸宁)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元,那么政府为他承担的总差价最少为多少元?考点:二次函数的应用.分析:(1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.解答:解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600,即政府这个月为他承担的总差价为600元.(2)依题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000.(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.点评:本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.5、(四川南充,18,8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?解析:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0).由所给函数图象得……………1′1305015030k b k b +=⎧⎨+=⎩……………2′解得1180k b =-⎧⎨=⎩ ……………3′∴函数关系式为y =-x +180. ……………4′ (2)W =(x -100) y =(x -100)( -x +180) ……………5′=-x 2+280x -18000 ……………6′ =-(x -140) 2+1600 ……………7′ 当售价定为140元, W 最大=1600.∴售价定为140元/件时,每天最大利润W =1600元 ……………8′ 6、(•滨州)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm ,高为20cm .请通过计算说明,当底面的宽x 为何值时,抽屉的体积y 最大?最大为多少?(材质及其厚度等暂忽略不计).元/件)7、(年潍坊市)为了改善市民的生活环境,我是在某河滨空地处修建一个如图所示的休闲文化广场.在Rt △ABC 内修建矩形水池DEFG ,使顶点E D 、在斜边AB 上,G F 、分别在直角边AC BC 、上;又分别以AC BC AB 、、为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中米324=AB ,︒=∠60BAC .设x EF =米,y DE =米.(1)求y 与x 之间的函数解析式;(2)当x 为何值时,矩形DEFG 的面积最大?最大面积是多少?(3)求两弯新月(图中阴影部分)的面积,并求当x 为何值时,矩形DEFG 的面积等于两弯新月面积的31?答案:(1)在Rt △ABC 中,由题意得AC=312米,BC=36米,∠ABC=30°, 所以,330tan ,33360tan x EFBE x x DG AD =︒===︒=又AD+DE+BE=AB, 所以,334324333324x x x y -=--=(0<x <8). (2)矩形DEFG 的面积.3108)9(334324334)334324(22+--=+-=-==x x x x x xy S 所以当x=9时,矩形DEFG 的面积最大,最大面积为3108平方米.(3)记AC 为直径的半圆\、BC 为直径的半圆、AB 为直径的半圆面积分别为S 1、S 2、S3,两弯新月面积为S ,则,81,81,81232221AB S BC S AC S πππ===由AC 2+BC 2=AB 2可知S 1+S 2=S 3,∴S 1+S 2-S=S 3-S △ABC ,故S=S △ABC所以两弯新月的面积S=32163631221=⨯⨯(平方米) 由3216313108)9(334⨯=+--x , 即27)9(2=-x ,解得339±=x ,符合题意,所以当339±=x 米时,矩形DEFG 的面积等于两弯新月面积的31.考点:考查了解直角三角形,二次函数最值求法以及一元二次方程的解法。
2020年中考数学一轮专项复习15 二次函数的实际应用(含答案)
2020年中考数学一轮复习——二次函数的实际应用一、选择题1.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是( )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m2.如图,一边靠墙(墙有足够长),其他三边用20米长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是平方米.( )A.40B.50C.60D.以上都不对3.某企业生产季节性产品,当产品无利润时,企业自动停产,经过调研,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+12n-11,则企业停产的月份为( )A.1月和11月B.1月、11月和12月;C.1月D.1月至11月4.(2019·临沂)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快; ③小球抛出3秒时速度为0; ④小球的高度h =30 m 时,t =1.5 s . 其中正确的是( )A .①④B .①②C .②③④D .②③ 二、填空题5.飞机着陆后滑行的距离y (单位:m )关于滑行时间t(单位:s )的函数解析式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是 m .6.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m ,水面下降2 m ,水面宽度增加 m .7.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为 元时,该服装店平均每天的销售利润最大.8.(温州一模)为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80 m 的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD 的面积最大值是 m 2.三、解答题9.(2019·黔东南州)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元) 15 20 30 …y(袋) 25 20 10 …若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?10.(2019·通辽)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.参考答案一、选择题1.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m2.如图,一边靠墙(墙有足够长),其他三边用20米长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是平方米.( B )A.40B.50C.60D.以上都不对3.某企业生产季节性产品,当产品无利润时,企业自动停产,经过调研,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+12n-11,则企业停产的月份为( B )A.1月和11月B.1月、11月和12月C.1月D.1月至11月4.(2019·临沂)从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球运动时间t(单位:s )之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m ; ②小球抛出3秒后,速度越来越快; ③小球抛出3秒时速度为0; ④小球的高度h =30 m 时,t =1.5 s . 其中正确的是( D )A .①④B .①②C .②③④D .②③ 二、填空题5.飞机着陆后滑行的距离y (单位:m )关于滑行时间t(单位:s )的函数解析式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是 24 m .6.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m ,水面下降2 m ,水面宽度增加 (42-4) m .7.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22元时,该服装店平均每天的销售利润最大.8.(温州一模)为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80 m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是300m2.三、解答题9.(2019·黔东南州)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元) 15 20 30 …y(袋) 25 20 10 …若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?解:(1)依题意,根据表格的数据,设日销售量y (袋)与销售价x (元)的函数关系式为y =k x +b 得⎩⎪⎨⎪⎧25=15k +b ,20=20k +b , 解得⎩⎪⎨⎪⎧k =-1,b =40, 故日销售量y (袋)与销售价x (元)的函数关系式为:y =-x +40;(2)依题意,设利润为w 元,得w =(x -10)(-x +40)=-x 2+50x -400,整理得w =-(x -25)2+225,∵-1<0,∴当x =25时,w 取得最大值,最大值为225,故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.10.(2019·通辽)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a (0<a ≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.解:(1)根据题意得,y =250-10(x -25)=-10x +500(30≤x ≤38); (2)设每天扣除捐赠后可获得利润为w 元.w =(x -20-a )(-10x +500)=-10x 2+(10a +700)x -500a -10000(30≤x ≤38),对称轴为x=35+12a,且0<a≤6,则30<35+12a≤38,则当x=35+12a时,w取得最大值,∴(35+12a-20-a)[-10(35+12a)+500]=1960∴a1=2,a2=58(不合题意,舍去),∴a=2.。
2020年中考数学一轮复习专项练习:《二次函数实际应用》(含答案)
2020年中考数学一轮复习专项练习:《二次函数实际应用》一.选择题1.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A.33°B.36°C.42°D.49°2.从地面竖直向上先后抛出两个小球,小球的高度h(米)与运动时间t(秒)之间的函数关系式为h=﹣(t﹣3)2+40,若后抛出的小球经过2.5秒比先抛出的小球高米,则抛出两个小球的间隔时间是()A.1秒B.1.5秒C.2秒D.2.5秒3.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠和喷头的水平距离x(米)的函数解析式是y=x2+6x(0≤x≤4),那么水珠的高度达到最大时,水珠与喷头的水平距离是()A.1米B.2米C.5米D.6米4.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是()A.2m B.4m C.4m D.4m5.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()A.1 m B.2 m C.3 m D.6 m6.小明乘坐摩天轮转一圈,他距离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经侧试得部分数据如下表:x/分… 2.66 3.23 3.46 …y/米…69.16 69.62 68.46 …下列选项中,最接近摩天轮转一圈的时间的是()A.7分B.6.5分C.6分D.5.5分7.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.8.羽毛球运动是一项非常受人喜欢的体育运动.某运动员在进行羽毛球训练时,羽毛球飞行的高度h(m)与发球后球飞行的时间t(s)满足关系式h=﹣t2+2t+1.5,则该运动员发球后1s时,羽毛球飞行的高度为()A.1.5m B.2m C.2.5m D.3m9.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,经过调查发现,销售单价每降低5元,每天可多售出10件,下列说法错误的是()A.销售单价降低15元时,每天获得利润最大B.每天的最大利润为1250元C.若销售单价降低10元,每天的利润为1200元D.若每天的利润为1050元,则销售单价一定降低了5元10.某地网红秋千在推出后吸引了大量游客前来,其秋千高度h(单位:m)与时间t(单位:s)之间的关系可以近似地用二次函数刻画,其图象如图所示,已知秋千在静止时的高度为0.6m.根据图象,当推出秋千3s后,秋千的高度为()A.10m B.15m C.16m D.18m11.一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈.如图所示,建立平面直角坐标系,已知篮圈中心到地面的距离为3.05m,该运动员身高1.9m,在这次跳投中,球在头顶上方0.25m处出手球出手时,他跳离地面的高度是()A.0.1m B.0.2m C.0.3m D.0.4m12.有一个矩形苗圃园,其中一边靠墙,另外边用长为20m的篱笆围成.已知墙长为15m,若平行于墙的一边长不小于8m,则这个苗圃园面积的最大值和最小值分别为()A.48m2,37.5m2B.50m2,32m2C.50m2,37.5m2D.48m2,32m2二.填空题13.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为x(x>0),六月份的营业额为y万元,那么y关于x的函数解式是.14.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m 达到警戒水位时,水面CD的宽是10m.如果水位以0.25m/h的速度上涨,那么达到警戒水位后,再过h水位达到桥拱最高点O.15.如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度AB=8m,然后用一根长为4m的小竹竿CD竖直的接触地面和门的内壁,并测得AC=2m,则门高OE为.16.一个小球从水平面开始竖直向上发射,小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示.若小球在发射后第2s与第6s时的高度相等,则小球从发射到回到水平面共需时间(s).17.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2,在飞机着陆滑行中,最后2s滑行的距离是m.18.军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的关系满足.经过秒时间,炮弹落到地上爆炸了.19.如图,一个横截面为抛物线形的隧道部宽12米、高6米.车辆双向通行,若规定车辆必须在中心线两侧、距离道路边缘2米的范围内行驶,并保持车辆顶部与隧道有不少于米的空隙,则通过隧道车辆的高度限制应为米.20.如图,B船位于A船正东25km处,现在A,B两船同时出发,A船以6km/的速度朝正北方向行驶,B船以8km/h的速度朝正西方向行驶,则两船相距最近是km.三.解答题21.每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送花,感恩母亲,祝福母亲.今年节日前夕,某花店采购了一批康乃馨,经分析上一年的销售情况,发现这种康乃馨每天的销售量y(支)是销售单价x(元)的一次函数,已知销售单价为7元/支时,销售量为16支;销售单价为8元/支时,销售量为14支.(1)求这种康乃馨每天的销售量y(支)关于销售单价x(元/支)的一次函数解析式;(2)若按去年方式销售,已知今年这种康乃馨的进价是每支5元,商家若想每天获得42元的利润,销售单价要定为多少元?(3)在(2)的条件下,当销售单价x为何值时,花店销售这种康乃馨每天获得的利润最大?并求出获得的最大利润.22.周师傅家的猕猴桃成熟上市后,她记录了10天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系为y=﹣x+16,日销售量p(千克)与时间第x天(x为整数)的部分对应值如表所示:时间第x天 1 3 5 7 10日销量p(千克)320 360 400 440 500(1)从你学过的函数中,选择合适的函数类型刻画p随x的变化规律,请直接写出p 与x的函数关系式及自变量x的取值范围;(2)在这10天中,哪一天销售额达到最大?最大销售额是多少元?(3)周师傅决定每销售1千克桃就捐款a(a>1)元,且希望每天的销售额不低于1500元以维持各项开支,求a的最大值.23.金松科技生态农业养殖有限公司种植和销售一种绿色羊肚菌,已知该羊肚菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该羊肚菌的销售量y(千克)与销售价格x(元/千克)的函数关系如下图所示:(1)求y与x之间的函数解析式;(2)求这一天销售羊肚菌获得的利润W的最大值;(3)若该公司按每销售一千克提取1元用于捐资助学,且保证每天的销售利润不低于3600元,问该羊肚菌销售价格该如何确定.参考答案一.选择题1.解:由图象可知,物线开口向上,该函数的对称轴x>且x<54,∴36<x<54,即对称轴位于直线x=36与直线x=54之间且靠近直线x=36,故选:C.2.解:2.5秒时,后球的高度为:h2=﹣(2.5﹣3)2+40=,则此时,前球的高度为h1=﹣=,令﹣(t﹣3)2+40=,整理得(t﹣3)2=1,∴t1=4,t2=2(舍),△t=4﹣2.5=1.5.故选:B.3.解:方法一:根据题意,得y=x2+6x(0≤x≤4),=﹣(x﹣2)2+6所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.方法二:因为对称轴x==2,所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.故选:B.4.解:根据题意,得OA=12,OC=4.所以抛物线的顶点横坐标为6,即﹣==6,∴b=2,∵C(0,4),∴c=4,所以抛物线解析式为:y=﹣x2+2x+4=﹣(x﹣6)2+10当y=8时,8=﹣(x﹣6)2+10,解得x1=6+2,x2=6﹣2.则x 1﹣x2=4.所以两排灯的水平距离最小是4.故选:D.5.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,2×3﹣4=2,所以水面下降2.5m,水面宽度增加2米.故选:B.6.解:最值在自变量大于2.66小于3.23之间,所以最接近摩天轮转一圈的时间的是6分钟.故选:C.7.解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a﹣x).根据三角形面积公式则有:y=ax﹣x2,以上是二次函数的表达式,图象是一条抛物线,故选B.8.解:∵h=﹣t2+2t+1.5,∴t=1时,h=﹣1+2+1.5=2.5m,故选:C.9.解:设每天获得利润为y元.根据题意,得y=(40﹣x)(20+2x)=﹣2x2+60x+800=﹣2(x﹣15)2+1250.因为﹣2>0,当x=15时,y有最大值为1250,所以销售单价降低15元时,每天获得利润最大,每天的最大利润为1250元.所以A、B选项正确,不符合题意;当x=10时,y=1200,所以销售单价降低10元,每天的利润为1200元.所以C选项正确,不符合题意;利用筛选法D选项符合题意.故选:D.10.解:观察图象可知:当推出秋千3s后,秋千的高度为15m.故选:B.11.解:∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.设球出手时,他跳离地面的高度为hm,因为y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.9+0.25=(h+2.15)m,∴h+2.15=﹣0.2×(﹣2.5)2+3.5,∴h=0.1(m).故选:A.12.解:设平行于墙的一边长为xm,苗圃园面积为Sm2,则S=x×(20﹣x)=﹣(x2﹣20x)=﹣(x﹣10)2+50 (8≤x≤15)∵﹣<0∴S有最大值,x=10>8时,S最大=50∵墙长为15m∴当x=15时,S最小S最小=15××(20﹣15)=37.5∴这个苗圃园面积的最大值和最小值分别为50m2,37.5m2.故选:C.二.填空题(共8小题)13.解:根据题意,得y=200(1+x)2=200x2+400x+200.故答案为y=200x2+400x+200.14.解:解:设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,设点B(10,n),点D(5,n+3),由题意:,解得,∴y=﹣x2,当x=5时,y=﹣1,故t==5(h),答:再过5小时水位达到桥拱最高点O.故答案为:5.15.解:由题意得,抛物线过点A(﹣4,0)、B(4,0)、D(﹣2,4),设y=a(x+4)(x﹣4),把D(﹣2,4)代入y=a(x+4)(x﹣4),得4=a(﹣2+4)(﹣2﹣4),解得a=﹣,∴y=﹣(x+4)(x﹣4).令x=0得y=,即(0,),∴OE=∴门的高度约为m.故答案为:.16.解:由题意可知:小球在发射后第2s与第6s时的高度相等,则函数h=at2+bt的对称轴t==4,故小球从发射到回到水平面共需时间8秒,故答案是:8.17.解:当y取得最大值时,飞机停下来,则y=60t﹣1.5t2=﹣1.5(t﹣20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当t=18时,y=594,所以600﹣594=6(米)故答案是:6.18.解:依题意,关系式化为:y=﹣(x﹣25)2+125.令y=0,解得:x=50秒.故答案为50.19.解:建立如图所示的平面直角坐标系,根据题意得:A(0,6),B(6,0),设抛物线解析式为y=ax2+6,把B(6,0)代入,得a=﹣,所以抛物线的解析式为y=﹣x2+6,当x=4时,y=,﹣=3.所以通过隧道车辆的高度限制应为3米.故答案为3.20.解:设t时两船相距为ykm,则AA1=6tkm,AB′=25﹣8t,由题意可知y===10,故当t﹣2=0时,即t=2时两船相距最近,y=10×=15(km),答:两船出发2小时后相距最近,最近距离是15km.故答案为:15.三.解答题(共3小题)21.解:(1)设每天的销售量y(支)是销售单价x(元)的一次函数为y=kx+b,∵销售单价为7元/支时,销售量为16支;销售单价为8元/支时,销售量为14支.∴解得所以y与x的函数解析式为y=﹣2x+30.答:这种康乃馨每天的销售量y(支)关于销售单价x(元/支)的一次函数解析式为y =﹣2x+30.(2)设商家若想每天获得42元的利润,销售单价要定为x元,根据题意,得(x﹣5)(﹣2x+30)=42整理,得x2﹣20x+96=0解得x1=8,x2=12.答:商家若想每天获得42元的利润,销售单价要定为8元或12元.(3)设花店销售这种康乃馨每天获得的利润为w元,根据题意,得w=(x﹣5)(﹣2x+30)=﹣2x2+40x﹣150=﹣2(x﹣10)2+50∵﹣2>0,当x=10时,w有最大值,最大值为50.答:当销售单价10元时,花店销售这种康乃馨每天获得的利润最大,最大利润为50元.22.解:(1)由表格规律可知:p与x的函数关系是一次函数,设其解析式为p=kx+b,把(1,320)和(3,360)代入可得:,解得:∴p=20x+300(1≤x≤10,且x为整数);(2)设销售额为W元,则W=py=(20x+300)(﹣x+16)=﹣20x2+20x+4800=﹣20(x﹣0.5)2+4805,∵x是整数,1≤x≤10,∴当x=1时,W有最大值为4800.综上,在这10天中,第1天销售额达最大,最大销售额为4800元.(3)销售额为W=p(y﹣a)=(20x+300)(﹣x+16﹣a)=﹣20x2+20(1﹣a)x+4800﹣300a,对称轴为x=,∵a>1,∴<0,又抛物线的开口向下,∴在1≤x≤10范围内W随x的增大而减小,故在x=10时取得最小值=﹣20×102+20(1﹣a)×10+4800﹣300a=3000﹣500a,令3000﹣500a≥1500,解得a≤3.故a的最大值为3.23.解:(1)①当12≤x≤20时,设y=kx+b.代(12,2000),(20,400),得解得∴y=﹣200x+4400②当20<x≤24时,y=400.综上,y=(2)①当12≤x≤20时,W=(x﹣12)y=(x﹣12)(﹣200x+4400)=﹣200(x﹣17)2+5000当x=17时,W的最大值为5000;②当20<x≤24时,W=(x﹣12)y=400x﹣4800.当x=24时,W的最大值为4800.∴最大利润为5000元.(3)①当12≤x≤20时,W=(x﹣12﹣1)y=(x﹣13)(﹣2000x+4400)=﹣200(x﹣17.5)2+4050令﹣200(x﹣17.5)2+4050=3600x1=16,x2=19∴定价为16≤x≤19②当20<x≤24时,W=400(x﹣13)=400x﹣5200≥3600∴22≤x≤24.综上,销售价格确定为16≤x≤19或22≤x≤24.。
中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)
中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)知识点总结1.利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题。
解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量的取值范围。
2.几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论。
3.构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题。
练习题1、(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案2【分析】分别计算三个方案的菜园面积进行比较即可.【解答】解:方案1:设AD=x米,则AB=(8﹣2x)米,则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,当x=2时,此时菜园最大面积为8米2;方案2:解法一:如图,过点B作BH⊥AC于H,则BH≤AB=4,∵S△ABC=•AC•BH,∴当BH=4时,△ABC的面积最大为×4×4=8;解法二:过点A作AD⊥BC于D,设CD=x,AD=y,则x2+y2=16,∴S=•BC•AD=•2x•y=xy,∵(x﹣y)2=x2+y2﹣2xy≥0,∴16﹣2xy≥0,∴xy≤8,∴当且仅当x=y=2时,菜园最大面积=8米2;方案3:半圆的半径=米,∴此时菜园最大面积==米2>8米2;故选:C . 2、(2022•襄阳)在北京冬奥会自由式滑雪大跳台比赛中,我国选手谷爱凌的精彩表现让人叹为观止,已知谷爱凌从2m 高的跳台滑出后的运动路线是一条抛物线,设她与跳台边缘的水平距离为xm ,与跳台底部所在水平面的竖直高度为ym ,y 与x 的函数关系式为y =2213212++−x x (0≤x ≤20.5),当她与跳台边缘的水平距离为 m 时,竖直高度达到最大值.【分析】把抛物线解析式化为顶点式,由函数的性质求解即可.【解答】解:y =x 2+x +2=﹣(x ﹣8)2+4,∵﹣<0, ∴当x =8时,y 有最大值,最大值为4,∴当她与跳台边缘的水平距离为8m 时,竖直高度达到最大值.故答案为:8.3、(2022•黔西南州)如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是y =﹣121x 2+32x +35,则铅球推出的水平距离OA 的长是 m .【分析】根据题目中的函数解析式和图象可知,OA 的长就是抛物线与x 轴正半轴的交点的横坐标的值,然后令y =0求出相应的x 的值,即可得到OA 的长.【解答】解:∵y =﹣x 2+x +,∴当y=0时,0=﹣x2+x+,解得x1=﹣2,x2=10,∴OA=10m,故答案为:10.4、(2022•南通)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t为s时,小球达到最高点.【分析】把二次函数解析式化为顶点式,即可得出结论.【解答】解:h=﹣5t2+20t=﹣5(t﹣2)2+20,∵﹣5<0,∴当t=2时,h有最大值,最大值为20,故答案为:2.5、(2022•聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).【分析】利用待定系数法求一次函数解析式,然后根据“利润=单价商品利润×销售量”列出二次函数关系式,从而根据二次函数的性质分析其最值.【解答】解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.6、(2022•广安)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降米,水面宽8米.【分析】根据已知建立直角坐标系,进而求出二次函数解析式,再根据通过把x=4代入抛物线解析式得出y,即可得出答案.【解答】解:以水面所在的直线AB为x轴,以过拱顶C且垂直于AB的直线为y轴建立平面直角坐标系,O为原点,由题意可得:AO=OB=3米,C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,把A点坐标(﹣3,0)代入抛物线解析式得,9a+2=0,解得:a=﹣,所以抛物线解析式为y=﹣x2+2,当x=4时,y=﹣×16+2=﹣,∴水面下降米,故答案为:.7、(2022•新疆)如图,用一段长为16m的篱笆围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为m2.【分析】设与墙垂直的一边长为xm,然后根据矩形面积列出函数关系式,从而利用二次函数的性质分析其最值.【解答】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(16﹣2x)m,∴矩形围栏的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x﹣4)2+32,∵﹣2<0,∴当x=4时,矩形有最大面积为32m2,故答案为:32.8、(2022•甘肃)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t (单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=s.【分析】把一般式化为顶点式,即可得到答案.【解答】解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,故答案为:2.9、(2022•连云港)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为 3.05m,则他距篮筐中心的水平距离OH是m.【分析】根据所建坐标系,水平距离OH就是y=3.05时离他最远的距离.【解答】解:当y=3.05时,3.05=﹣0.2x2+x+2.25,x2﹣5x+4=0,(x﹣1)(x﹣4)=0,解得:x1=1,x2=4,故他距篮筐中心的水平距离OH是4m.故答案为:4.10、(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O 点3m.那么喷头高m时,水柱落点距O点4m.【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.。
2020中考数学总复习 第三章 函数 3.6二次函数的应用
2020中考数学总复习第三章函数3.6二次函数的应用课标解读1.能运用二次函数的图象和性质解决有关数学问题及实际问题;知识梳理知识点一二次函数与几何图形的综合1.二次函数的综合应用常涉及待定系数法求解析式,与特殊三角形、相似三角形、四边形的相关探究,在解题过程中注意方程思想和分类讨论思想的应用.知识点二建立二次函数模型解决实际生活问题1.分析问题中的数量关系,找到其中的变量,设出变量,表示出两个变量之间的关系(函数),利用函数的图象和性质求解,从而解决实际问题;注意:(1)在实际问题中自变量的取值范围要注意实际意义,在求最值时要注意顶点是否在取值范围内,若不在应根据函数的增减性进行分析求解;(2)建立平面直角坐标系时,遵从“避繁就简”的原则,力求计算简便.基础训练1.某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2018年市政府已投资5亿元人民币,若每年投资的增长率相同,预计2020年的投资将达到y亿元人民币,设每年投资的增长率为x ,则可得CA. B. C.D.2.某商品现在的售价为每件60元,每星期可卖出300件市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x 的关系式为BA. B.C. D.3.一枚炮弹射出x秒后的高度为y米,且y与x 之间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是DA. 第B. 第C. 第D. 第4.如图1,的顶点在抛物线上,将绕点O 顺时针旋转,得到,边CD与该抛物线交于点P,则点P 的坐标为CA.B.C.D.图15.如图2,在中,,,,点P从点A沿AC向点C以的速度运动,同时点Q从点C沿CB向点B 以的速度运动点Q运动到点B 停止,在运动过程中,四边形PABQ 的面积的最小值为215cm6. 如图3,有一座抛物线型拱桥,正常水位时水面宽AB=6m ,当水位上升1m 时,水面宽CD=,按如图所示的坐标系则对应的抛物线的解析式是 21y 3x =-7.科研人员在测试一枚火箭向上竖直升空时获得火箭的高度h(m)与时间t(s)的关系数据如下:时间t/s 1 5 10 15 2025 火箭高度h/m155635101011351010635(1) 请你确定h关于t 的函数解析式;(2) 请你求出该火箭能达到的最大高度及相应的时间. 解:(1)由表格中数据规律猜想是二次函数,设解得,经验证表格中其它三对值均满足,故h 关于t 的函数解析式.(2),顶点(15,1135),图象开口向下,故火箭在15s 时达到最大高度1135米.8.如图4,隧道的截面由抛物线和长方形构成.长方形的长是8m ,宽是2m,抛物线可以用表示,为了安全起见,货车顶部隧 道顶部至少要有0.5m 的安全距离.(1) 一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?(2) 如果该隧道内设双向车道,那么这辆货运卡车是否可以通过? 解:(1)当x=1时,y=3.75,图2图33.75+2=5.75>4+0.5, 故该卡车能通过隧道. (2) 当x=2时,y=3,3+2=5>4+0.5,故该卡车能通过隧道.能力提升1.如图5,在等腰中,,,点P 从点B 出发,以的速度沿BC 方向运动到点C 停止同时,点Q 从点B 出发,以的速度沿方向运动到点C 停止若的面积为,运动时间为,则能表示y 与x 之间函数关系的图象是( D ).A.B.C. D.2. 如图6,正方形ABCD 边长为8,M ,N 分别是边BC ,CD 上的两个动点,且,则AN 的最小值是( C )A. 8B.C. 10D.3.校运动会上,一名男生推铅球,铅球行进高度单位:与水平距离单位:之间的关系是则他此次推铅球的成绩是 C.A. 12B. 9C. 10D. 114.某司机驾车行驶在公路上,突然发现正前方有一行人,他迅速采取紧急刹车制动已知,汽车刹车后行驶距离与行驶时间之间的函数关系式为,则这个行人至少在 20 米以外,司机刹车后才不会撞到行人. 5.如图7,抛物线的顶点为,与y 轴交于点若平移该抛物线使其顶点P 沿直线移动到点,点A 的对应点为,则抛物线上PA 段扫过的区域阴影部分的面积为 24 .6.对某条路线的长度进行n 次测量,得到n 个结果如果用x 作为这条线路长度的近似值,当图5图6图7x=12nx x x n+++L 时22212)()()n x x x x x x -+-++-L (最小, x 所取的这个值是我们常用的统计量:平均数7. 为宣传2022年北京张家口冬季奥运会,小王在网上销售一种成本为20元件的本届冬季奥运会宣传文化衫,销售过程中的其他各种费用不再含文化衫成本总计百元,有关销售量百件与销售价格元件的相关信息如下:销售量百件销售价格元件求销售这种文化衫的纯利润百元与销售价格元件的函数关系式;销售价格定为多少元件时,获得的利润最大?最大利润是多少? 解:当时,;当时,;当时,,,抛物线开口向下,w 随x 的增大而增大,当x=40时w 取得最大值百元;当时,,,随x 的增大而增大,当时,百元,答:销售价格定为40元件时,获得的利润最大,最大利润是40百元. 8.已知,在以O 为原点的直角坐标系中,抛物线的顶点为A ,且经过点,与x 轴分别交于C 、D 两点.求直线OB 以及该抛物线相应的函数表达式;如图8,点M 是抛物线上的一个动点,且在直线OB 的下方,过点M 作x 轴的平行线与直线OB 交于点N ,求四边形A MON 的最大值; 如图9,过点A 的直线交x 轴于点E ,且轴,点P 是抛物线上A 、D 之间的一个动点,直线PC 、PD 与AE 分别交于F 、G 两点当点P 运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.解:设直线OB 解析式为,由题意可得,解得,直线OB 解析式为,抛物线顶点坐标为,可设抛物线解析式为,抛物线经过, ,解得, 抛物线为; 设,,则N 的横坐标为,纵坐标为,轴,,得,=,.理由如下:如图9,过点P 作轴交x 轴于Q , 在中,令可得,解得或,,,设,则,,, , ∽,,,同理∽得,,,当点P 运动时,为定值8.中考真题1.(2019 襄阳)如图10,在直角坐标系中,直线y =﹣x+3与x轴,y轴分别交于点B,点C,对称轴为x=1的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)y =﹣x+3,令x=0,则y=3,令y=0,图10则x=6,故点B、C的坐标分别为(6,0)、(0,3),抛物线的对称轴为x=1,则点A(﹣4,0),则抛物线的表达式为:y=a(x﹣6)(x+4)=a(x2﹣2x﹣24),即﹣24a=3,解得:a =﹣,故抛物线的表达式为:y =﹣x2+x+3…①;(2)过点P作y轴的平行线交BC于点G,作PH⊥BC于点H,将点B、C坐标代入一次函数表达式并解得:直线BC的表达式为:y =﹣x+3,则∠HPG=∠CBA=α,tan∠CAB===tanα,则cosα=,设点P(x,﹣x2+x+3),则点G(x,﹣x+3),则PH=PG cosα=(﹣x2+x+3+x﹣3)=﹣x2+x,∵<0,故PH有最小值,此时x=3,则点P(3,);(3)①当点Q在x轴上方时,则点Q,A,B为顶点的三角形与△ABC全等,此时点Q与点C关于函数对称轴对称,则点Q(2,3);②当点Q在x轴下方时,Q,A,B为顶点的三角形与△ABC相似,则∠ACB=∠Q′AB,当∠ABC=∠ABQ′时,直线BC表达式的k值为﹣,则直线BQ′表达式的k值为,设直线BQ′表达式为:y=x+b,将点B的坐标代入上式并解得:直线BQ′的表达式为:y=x﹣3…②,联立①②并解得:x=6或﹣8(舍去6),故点Q(Q′)坐标为(﹣8,﹣7)(舍去);当∠ABC=∠ABQ′时,同理可得:直线BQ′的表达式为:y=x﹣…③,联立①③并解得:x=6或﹣10(舍去6),故点Q(Q′)坐标为(﹣10,﹣12),由点的对称性,另外一个点Q的坐标为(12,﹣12);综上,点Q的坐标为:(2,3)或(12,﹣12)或(﹣10,﹣12).2.(2019 黄冈)如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△PAM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.解:(1)设函数解析式为y=ax2+bx+c,将点A(﹣2,2),C(0,2),D(2,0)代入解析式可得,∴,∴y=﹣﹣x+2;(2)∵△PAM≌△PBM,∴PA=PB,MA=MB,∴点P为AB的垂直平分线与抛物线的交点,∵AB=2,∴点P的纵坐标是1,∴1=﹣﹣x+2,∴x=﹣1+或x=﹣1﹣,∴P(﹣1﹣,1)或P(﹣1+,1);(3)CM=t﹣2,MG=CM=2t﹣4,MD=4﹣(BC+CM)=4﹣(2+t﹣2)=4﹣t,MF=MD=4﹣t,∴BF=4﹣4+t=t,∴S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t﹣)2+;当t=时,S最大值为;(4)设点Q(m,0),直线BC的解析式y=﹣x+2,直线AQ的解析式y=﹣(x+2)+2,∴K(0,),H(,),∴OK2=,OH2=+,HK2=+,①当OK=OH时,=+,∴m2﹣4m﹣8=0,∴m=2+2或m=2﹣2;②当OH=HK时,+=+,∴m2﹣8=0,∴m=2或m=﹣2;③当OK=HK时,=+,不成立;综上所述:Q(2+2,0)或Q(2﹣2,0)或Q(2,0)或Q(﹣2,0);3.(2019 鄂州)如图12,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F 的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若△AOC与△BMN相似,请直接写出t的值;②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.图12解:(1))∵点A、B关于直线x=1对称,AB=4,∴A(﹣1,0),B(3,0),代入y=﹣x2+bx+c 中,得:,解得,∴抛物线的解析式为y=﹣x2+2x+3,∴C点坐标为(0,3);(2)设直线BC的解析式为y=mx+n,则有:,解得,∴直线BC的解析式为y=﹣x+3,∵点E、F关于直线x=1对称,又E到对称轴的距离为1,∴EF=2,∴F点的横坐标为2,将x=2代入y=﹣x+3中,得:y=﹣2+3=1,∴F(2,1);(3)①如下图,MN=﹣4t2+4t+3,MB=3﹣2t,△AOC与△BMN 相似,则,即:,解得:t =或﹣或3或1(舍去、﹣、3),故:t=1;②∵M(2t,0),MN⊥x轴,∴Q(2t,3﹣2t),∵△BOQ为等腰三角形,∴分三种情况讨论,第一种,当OQ=BQ时,∵QM⊥OB∴OM=MB∴2t=3﹣2t∴t=;第二种,当BO=BQ时,在Rt△BMQ中∵∠OBQ=45°,∴BQ=,∴BO=,即3=,∴t=;第三种,当OQ=OB时,则点Q、C重合,此时t=0而t>0,故不符合题意综上述,当t=或秒时,△BOQ为等腰三角形.4.(2019 荆州)如图13,在平面直角坐标系中,平行四边形OABC的顶点A,C的坐标分别为(6,0),(4,3),经过B,C两点的抛物线与x轴的一个交点D的坐标为(1,0).(1)求该抛物线的解析式;(2)若∠AOC的平分线交BC于点E,交抛物线的对称轴于点F,点P是x轴上一动点,当PE+PF的值最小时,求点P的坐标;(3)在(2)的条件下,过点A作OE的垂线交BC于点H,点M,N分别为抛物线及其对称轴上的动点,是否存在这样的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.图13解:(1OABC中,A(6,0),C(4,3)∴BC=OA=6,BC∥x轴∴即B(10,3)设抛物线y=ax2+bx+c经过点B、C、D(1,0)∴解得:∴抛物线解析式为y=﹣x2+x﹣(2)如图1,作点E关于x轴的对称点E',连接E'F交x轴于点P∵C(4,3)∴OC=∵BC∥OA∴∠OEC=∠AOE∵OE平分∠AOC∴∠AOE=∠COE∴∠OEC=∠COE∴CE=OC=5∴,即E(9,3)∴直线OE解析式为y=x∵直线OE交抛物线对称轴于点F,对称轴为直线:x=﹣7∴F(7,)∵点E与点E'关于x轴对称,点P在x轴上∴E'(9,﹣3),PE=PE'∴当点F、P、E'在同一直线上时,PE+PF=PE'+PF=FE'最小设直线E'F解析式为y=kx+h∴解得:∴直线E'F:y=﹣x+21当﹣x+21=0时,解得:x=∴当PE+PF的值最小时,点P坐标为(,0).(3)存在满足条件的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形.设AH与OE相交于点G(t,t),如图2∵AH⊥OE于点G,A(6,0)∴∠AGO=90°∴AG2+OG2=OA2∴(6﹣t)2+(t)2+t2+(t)2=62∴解得:t1=0(舍去),t2=∴G(,)设直线AG解析式为y=dx+e∴解得:∴直线AG:y=﹣3x+18当y=3时,﹣3x+18=3,解得:x=5∴H(5,3)∴HE=9﹣5=4,点H、E关于直线x=7对称①当HE为以点M,N,H,E为顶点的平行四边形的边时,如图2 则HE∥MN,MN=HE=4∵点N在抛物线对称轴:直线x=7上∴=7+4或7﹣4,即=11或3当x=3时,=﹣×9+×9﹣=∴M(3,)或(11,)②当HE为以点M,N,H,E为顶点的平行四边形的对角线时,如图3则HE、MN互相平分∵直线x=7平分HE,点F在直线x=7上∴点M在直线x=7上,即M为抛物线顶点∴=﹣×49+×7﹣=4∴M(7,4)综上所述,点M坐标为(3,)、(11,)或(7,4).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020中考总复习-二次函数的实际应用1.铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?2.某水产基地种植某种食用海藻,从三月一日起的30周内,它的市场价格与上市时间的关系用图①线段表示;它的平均亩产量与时间的关系用图②线段表示;它的每亩平均成本与上市时间的关系用图③抛物线表示.(1)写出图①、图②所表示的函数关系式;(2)若市场价×亩产量-亩平均成本= 每亩总利润,问哪一周上市的海藻利润最大?最大利润是多少?3.在高尔夫球训练中,运动员在距球洞10m 处击球,其飞行路线满足抛物线2155b y x x =-+,其图象如图所示,其中球飞行高度为()ym ,球飞行的水平距离为()x m ,球落地时距球洞的水平距离为2m .(1)求b 的值;(2)若运动员再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球的飞行路线应满足怎样的抛物线,求抛物线的解析式;(3)若球洞4m 处有一横放的1.2m 高的球网,球的飞行路线仍满足抛物线2155b y x x =-+,要使球越过球网,又不越过球洞(刚好进洞),求b 的取值范围.4.扬州某风景区门票价格如图所示,有甲、乙两个旅行团队,计划在端午节期间到该景点游玩,两团队游客人数之和为100人,若乙团队人数不超过40人,甲团队人数不超过80人,设甲团队人数为x 人,如果甲、乙两团队分别购买门票,两团队门票款之和为y 元.(1)直接写出y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)计算甲、乙两团队联合购票比分别购票最多可节约多少钱?(3)该景区每年11月、12月为淡季,景区决定在这两个月实行门票打五折的优惠(打折期间不售团体票),以吸引大量游客,提高景区收入;景区经过调研发现,随着接待游客数的增加,景区的运营成本也随之增加,景区运营成本Q (万元)与两个月游客总人数t (万人)之间满足函数关系式:218004Q t =+;两个月游客总人数t (万人)满足:150200t ≤≤,且淡季每天游客数基本相同;为了获得最大利润,景区决定通过网络预约购票的方式控制淡季每天游客数,请问景区的决定是否正确?并说明理由.(利润=门票收入-景区运营成本)5.我市某乡镇在“精准扶贫”活动中销售农产品,经分析发现月销售量y (万件与月份x (月)的关系为:()()816,20712,x x x y x x x ⎧+≤≤⎪=⎨-+≤≤⎪⎩为整数为整数每件产品的利润z (元)与月份x (月)的关系如下表:()1请你根据表格直接写出每件产品利润z (元) 与月份x (月)的函数关系式;()2若月利润w (万元) =当月销售量y (万件)x 当月每件产品的利润z(元),求月利润w (万元)与月份x (月)的关系式; ()3当x 为何值时,月利润w 有最大值,最大值为多少?6.某商场销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)满足10400y x =-+,设销售这种商品每天的利润为W (元).(1)求W 与x 之间的函数关系式;(2)在保证销售量尽可能大的前提下,该商场每天还想获得2000元的利润,应将销售单价定为多少元?(3)当每天销售量不少于50件,且销售单价至少为32元时,该商场每天获得的最大利润是多少?7.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;8.把一根长为120cm的铁丝剪成两段,并把每一段铁丝围成一个正方形.若设围成的一个正方形的边长为xcm.(1)要使这两个正方形的面积的和等于2650cm,则剪出的两段铁丝长分别是多少?(2)剪出的两段铁丝长分别是多少cm时,这两个正方形的面积和最小?最小值是多少?9.中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.10.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件8元,出厂价为每件10元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3410元,那么政府为他承担的总差价最少为多少元?11.小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,y与x的几组对应值如下表所示:(Ⅰ)求y关于x的函数解析式(不要求写x的取值范围);(Ⅱ)问:小球的飞行高度能否达到22m?请说明理由.12.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为多少?13.如图:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.(1)试确定当CP=3时,点E的位置;(2)若设CP=x ,BE=y ,试写出y 关于自变量x 的函数关系式.14.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并确定自变量x 的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)15.如图①,在等边ABC ∆中,6AB =,动点P 从点A 出发,沿AB 边以每秒1个单位的速度向终点B 运动,同时动点Q 从点B 出发,以每秒2个单位的速度沿着B C A →→方向运动.连结PQ ,设点P 运动的时间t 秒.(1)用含t 的代数式表示线段QC 的长.(2)当PQ AC ⊥时,求t 的值.(3)若BPQ ∆的面积为S ,求S 与t 之间的函数关系式.(4)如图②,当点Q 在C 、A 之间时,连结PC ,ABC ∆被分割成APQ ∆、PCQ ∆、PBC ∆,当其中的某两个三角形面积相等时,直接写出t 的值.16.如图,在平面直角坐标系中,四边形OABC 为菱形,点C 的坐标为(8,0),∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线l 与菱形OABC 的两边分别交于点M 、N (点M 在点N 的上方).(1)求A 、B 两点的坐标;(2)设△OMN 的面积为S ,直线l 运动时间为t 秒(0≤t ≤12),求S 与t 的函数表达式;(3)在(2)的条件下,t为何值时,S最大?并求出S的最大值.17.某市精准扶贫工作已经进入攻坚阶段,贫困的张大爷在某单位的帮扶下,把一片坡地改造后种植了大樱桃.今年正式上市销售,在销售30天中,第一天卖出20千克,为了扩大销量,在一段时间内采取降价措施,每天比前一天多卖出4千克.当售价不变时,销售量也不发生变化.已知种植销售大樱桃的成本为18元/千克,设第x天的销售价y元/千克,y与x函数关系如下表:表一表二(1)求y与函数解析式;(2)求销售大樱桃第几天时,当天的利润最大?最大利润是多少?(3)销售大樱桃的30天中,当天利润不低于950元的共有多少天?18.已知Rt△OAB,∠OAB=90o,∠ABO=30o,斜边OB=4,将Rt△OAB绕点O顺时针旋转60o,如图1,连接BC.(1)ΔOBC的形状是;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M、N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O →B→C路径匀速运动,当两点相遇时运动停止.已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒.设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?(结果可保留根号) .19.如图所示,已知边长为4的正方形钢板有一个角锈蚀,其中AF=2,BF=1,为了合理利用这块钢板.将在五边形EABCD内截取一个矩形块MDNP,使点P在AB上,且要求面积最大,求钢板的最大利用率.参考答案1.(1)y =10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.2.(1)11315y x =-+;220903y x =+;(2)第563周上市的海藻利润最大,最大利润是29119元. 3.(1)8b =;(2)20.128(5) 3.2y x =--+;(3)710b ≤≤4.(1)当6080x ≤≤时,()1301501002015000y x x x =+-=-+;(2)1800元;(3)利润随人数的增大而减小,故景区的决定是正确的5.(1)()()20,18,10,912,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数;(2)()()()221216016,4040078,10200912,x x x x w x x x x x x x ⎧-++≤≤⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)6x =时,w 有最大值为1966.(1)W =2105004000x x -+-;(2)当20x 时,既能保证销售量大,又可以每天获得2000元的利润;(3)当3235x ≤≤时,该商场每天获得的最大利润是1760元7.(1)12(2)当x=11时,y 最小=88平方米8.(1)这根铁丝剪成两段后的长度分别是20cm ,100cm ;(2)剪成两段均为60cm 的长度时面积之和最小,最小面积和为2450cm9.(1) x=12;(2)苗圃园的面积最大为112.5平方米,最小为88平方米;(3) 6≤x ≤10.10.(1)600元;(2)单价定为29元,每月获得最大利润4410元;(3)500元11.(Ⅰ) y =﹣5x 2+20x ;(Ⅱ)小球的飞行高度不能达到22m ,理由见解析.12.饲养室的最大面积为75平方米13.(1)点E 与点B 重合;(2)当点P 在BF 上:21(1536)6y x x =--+;当点P 在CF 上:21(1536)6y x x =-+ 14.(1)21070010000w x x =-+-(20≤x ≤32);(2)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元;(3)3600.15.(1)当0≤t ≤3时,62QC t =-,当3<t ≤6时,26QC t =-;(2)245t =;(3)2S =+,26)S t =-;(4)92t =或16.(1)A (4,),B (12,;(2)①0≤t ≤4时,S t 2;②当4<t ≤8时,S =t ;③当8<t ≤12时,S 2;(3)当t =8时,S 最大= 17.(1)1382y x =-+(120x ≤≤,x 为正整数),28y =(2130x ≤≤,x 为正整数);(2)销售大樱桃第18天时,当天的利润最大,最大利润为968元;(3)共有16天的利润不低于950元.18.(1)等边三角形;(2) ;(3) 83x = 时,y 有最大值,y =最大19.80%。