点线面体练习题一(可编辑修改word版)

合集下载

点、线、面、体(含答案)

点、线、面、体(含答案)

点、线、面、体
轻松入门
1.如图,观察图形,填空:包围着体的是______;面与面相交的地方形成______; 线与线相交的地方是
_______.
2.笔尖在纸上快速滑动写出了一个又一个字,这说明了_________;车轮旋转时,看起
来像一个整体的圆面,这说明了_________;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了_____________.
3.如图,三棱锥有________个面,它们相交形成了________条棱, 这些棱相交形成了
________个点.
4.如图,各图中的阴影图形绕着直线I旋转360°,各能形成怎样的立体图形?
快乐晋级
5.小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的4个图案中,符合图示滚涂出
的图案是( )
6.生活中经常看到由一些简单的平面图形组成的优美图案, 你能说出下面图中的神秘图案是由哪些平面
图形组成的吗?
7.将如图左边的图形折成一个立方体, 判断右边的四个立方体哪个是由左边的图形折成的.
8.用6根火柴能摆成含有4个三角形的图形吗?有几种方法?
拓广探索
9.小明为班级专栏设计一个图案,如图,主题是“我们喜爱合作学习”, 请你也尝试用圆、扇形、三角形、
四边形、直线等为环保专栏设计一个图案, 并标明你的主题.
我们喜爱合作学习
答案
1.面;线;点
2.点动成线;线动成面;面动成体
3.4;6;4
4.圆柱;圆锥;球
5.A 7.(1)B;(2)B;(3)B 8.提示:三棱锥。

七年级数学上册点线面体同步练习含解析新版新人教版

七年级数学上册点线面体同步练习含解析新版新人教版

点、线、面、体一. 选择题1.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④【答案】B【解析】详解::①正方体的截面是三角形时,为锐角三角形,正确;②正四面体的截面不可能是直角三角形,不正确;③正方体的截面与一组平行的对面相交,截面是等腰梯形,不正确;④若正四面体的截面是梯形,则一定是等腰梯形,正确.故选:B.2.若一个棱柱有10个顶点,则下列说法正确的是( )A.这个棱柱有4个侧面B.这个棱柱有5个侧面C.这个棱柱的底面是十边形D.这个棱柱是一个十棱柱【答案】B【解析】已知一个棱柱有10个顶点,可知它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.故选B.名师点睛:根据n棱柱,一定有2n个顶点,有n条侧棱,n个侧面进行判断即可.熟记n棱柱的特征,即棱数与侧棱、与侧面、与底面的边数之间的关系,是解决此类问题的关键.3.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A. B. C. D.【答案】A【解析】详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选:A.4.一个七棱柱的顶点的个数为( )A.7个B.9个C.14个D.15个【答案】C【详解】解:一个七棱柱共有:7×2=14个顶点.故选:C.5.一个物体的外形是长方体,其内部构造不详.用5个水平的平面纵向平均截这个物体时,得到了一组(自下而上)截面,截面形状如图所示,这个长方体的内部构造可能是()A.球体B.圆柱C.圆锥D.球体或圆锥【答案】C【解析】选项A,球体截完是圆,由小变大,再变小,A错选项B,圆柱截完都是等圆,B错.选项C,圆锥是由小变大,或者由大变小.C正确.选项D,错误.所以选C.6.用平面去截下列几何体,不能截出三角形的是().A.立方体 B.长方体 C.圆柱 D.圆锥【答案】C【解析】A、正方体的截面可能是三角形,或四边形,或五边形,或六边形,不符合题意;B、长方体沿体面对角线截几何体可以截出三角形,不符合题意;C、圆柱的截面可能是圆,长方形,符合题意;D、圆锥的截面可能是圆,三角形,不符合题意;故选:C.7.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥B.四棱柱C.三棱锥D.三棱柱【答案】A【解析】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.8.用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥B.球体C.圆柱D.以上都有可能【答案】C【详解】A.用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,A选项错误;B.用一个平面去截一个球体,得到的图形只能是圆,B选项错误;C.用一个平面去截一个圆柱,得到的图形可能是圆、椭圆、四边形,C选项正确;D.根据以上分析可得此选项错误,故选C.9.(2019·福田区侨香外国语学校初一期中)用一个平面截下列几何体,截面可能是三角形的是()①正方体②球体③圆柱④圆锥A.① B.①② C.①④ D.①③④【答案】C【详解】①正方体能截出三角形;②球体不能截出三角形;③圆柱不能截出三角形;④圆锥能截出三角形.故截面可能是三角形的有①④.故选:C.10.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱【答案】B【解析】∵九棱锥有18条棱,五棱柱有15条棱, 六棱柱有18条棱,七棱柱有21条棱,八棱柱有24条棱, ∴六棱柱的棱数与九棱锥的棱数相等.二. 填空题11.用一平面去截一个正方体,得到的截面形状中最多是_____边形.【答案】六.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.【详解】解:∵用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴最多可以截出六边形,故答案为:六.12.已知长方形的长为4cm,宽3cm,现将这个长方形绕它的一边所在直线旋转一周,则所得到的几何体的体积为_____cm3.【答案】48π或36π.【详解】解:V=π×42×3=48π,V=π×32×4=36π.故答案为:48π或36π.13.如图,一个边长为2的正方形和等腰直角三角形的一边重合,组成了一个平面图形,如果将它绕AB 所在直线按逆时针方向旋转180,得到一个几何体,则这个几何体的体积为_______.(圆锥的体积公式为:213V r h π=圆锥)【答案】32π.3【分析】观察图形可知,旋转后,上面是一个底面半径为2,高为2的圆锥,下部是一个底面半径为2,高为2的圆柱体,根据圆柱以及圆锥的体积公式即可求出它们的体积.【详解】察图形可知,旋转后,上面是一个底面半径为2,高为2的圆锥,下部是一个底面半径为2,高为2的圆柱体,则这个几何体的体积为:22132π22π22π.33⨯⨯+⨯⨯= 故答案为:32π.314.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②三棱锥;③圆柱;④圆锥 _____(写出所有正确结果的序号).【答案】①②④【详解】①当平面经过正方体的三个顶点时,所得到的截面为三角形.②当平面平行于三棱锥的任意面时,得到的截面都是三角形.③用平面截圆柱时,可以得到圆,椭圆或长方形,不能得到三角形截面.④当平面沿着母线截圆锥时,可以得到三角形截面.故答案为:①②④.15.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为.【答案】24。

人教版七年级上第四章几何图形初步点、线、面、体同步练习题含答案

人教版七年级上第四章几何图形初步点、线、面、体同步练习题含答案
11.线动成面
【分析】利用雨刷可看成线,扇面是面,即可求出答案.
【详解】汽车的雨刷在挡风玻璃上画出一个扇面,这说明线动成面的数学原理.
故答案为:线动成面.
【点睛】本题考查了点,线,面、体,此题较简单,解题时要灵活应用点、线、面、体之间的关系.
12.②
【分析】易得此几何体为两个底面相同且相连的圆锥的组合体,主视图是从几何体正面看到的图形.
8.由4个面围成;面与面相交形成6条线,直线有5条,曲线有1条.
【分析】由题意直接根据立体图形的基本知识结合图形进行分析即可得出答案.
【详解】解:由图可知,该几何体由4个面围成;
面与面相交形成6条线,直线有5条,曲线有1条.
【点睛】本题考查认识立体图形的知识,比较简单,注意基本知识的掌握.
9.见解析.
12.将图所示的Rt△ABC绕AB旋转一周所得的几何体的主视图是图中的________(只填序号).
参考答案:
1.C
【分析】观察截面形状可发现,长方体内部的圆自上而下由大圆逐渐变成小圆、点,符合圆锥截面的性质.
【详解】解:观察截面形状可知,这个长方体的内部构造是长方体中间有一圆锥状空洞,
故选:C.
【点睛】本题考查了截一个几何体,解答的关键是熟悉常见的几何体的截面,由截面的形状想象复杂几何体的组成.
【详解】解:Rt△ABC绕斜边AB旋转一周所得的几何体是两个底面相等相连的圆锥,圆锥的主视图是等腰三角形,所以该几何体的左视图是两个底边相等的等腰三角形相连,并且上面的等腰三角形较大,故为图②.
故答案为②.
【点睛】本题考查了空间想象能力及几何体的三视图;发挥空间想象能力,确定旋转一周所得的几何体形状是关键.
【分析】根据生活中常见的几何体的特征进行求解即可得到答案.

人教版七年级数学上册点线面体同步测试(含答案)

人教版七年级数学上册点线面体同步测试(含答案)

人教版七年级数学上册4.1.2 点线面体同步测试(含答案)一、单选题1.下列几何图形与相应语言描述相符的个数有()A.1 个B.2 个C.3 个D.4 个2.如图,用一个平面去截正方体截面形状不可能...为下图中的()A.B.C.D.3.观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是()A.B.C.D.4.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.5.用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆6.如图,有一个棱长是4cm的正方体,从它的一个顶点处挖去一个棱长是1cm的正方体后,剩下物体的表面积和原来的表面积相比较()A.变大了B.变小了C.没变D.无法确定变化7.用一个平面去截正方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形8.十个棱长为a的正方体摆放成如图的形状,这个图形的表面积是()A.36a2B.36a C.6a2D.30a29.用一个平面去截圆柱体,则截面形状不可能是()A.梯形B.正方形C.长方形D.圆10.用一个平面去截下列四个几何体,可以得到三角形截面的几何体有()A.1个B.2个C.3个D.4个二、填空题11.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是.12.一个长方形绕着它的一条边旋转一周,所形成的几何体是.13.用个平面去截下列几何体:①球体、②圆锥、③圆柱、④正三枝柱、⑤长方体,得到的截面形状可能是三角形的有(写出正确的序号).14.若三棱柱的高为6 cm,底面边长都为5 cm,则三棱柱的侧面展开图的周长为cm,面积为cm2.15.如图,正方体的棱长为a,沿着共一个顶点的三个正方形的对角线裁截掉一个几何体之后,截面△ABC的面积=.三、解答题16.如图所示为一个正方体截去两个角后的立体图形,如果照这样截取正方体的八个角,则新的几何体的棱有多少条?请说明你的理由.17.如图所示,一个长方体的长.宽.高分别是10cm,8cm,6cm,有一只蚂蚁从点A 出发沿棱爬行,每条棱不允许重复,则蚂蚁回到点 A 时,最多爬行多远?并把蚂蚁所爬行的路线用字母按顺序表示出来.18.图中的立体图形是由哪个平面图形旋转后得到?请用线连起来.19.探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?20.长和宽分别是4cm和2cm的长方体分别沿长、宽所在直线旋转一周得到两个几何体,哪个几何体的体积大?为什么?21.下图是长方体的表面展开图,将它折叠成一个长方体.(1)哪几个点与点N重合?(2)若AE=CM=12cm,LE=2cm,KL=4cm,求这个长方体的表面积和体积. 22.在一块长为7x+5y,宽为5x+3y的长方形铁片的四个角都剪去一个边长为x+y的小正方形,然后折成一个无盖的盒子,求这个盒子的表面积(用含x、y的代数式表示).23.有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)24.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?答 案1.C 2.A 3.C 4.B 5.B 6.C 7.D 8.A 9.A 10.B 11.8 12.圆柱体13.②④⑤ 14.42;90 15.√3a 216.解:∵一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,∴12+3×8=36条.故新的几何体的棱有36条17.解:由于不能重复且最后回到点 A 处,那么经过的棱数便等于经过的顶点数,当走的路线最长时必过所有顶点,则选择合理的路线时尽可能多地经过长为 10CM 的棱即可. 10×4+8×2+6×2=68(cm) ,所以最多爬行 68CM .路线举例: A →B →C →D →H →G →F →E →A . 18.解:如图.19.解:(1)方案一:π×32×4=36π(cm 3),方案二:π×22×6=24π(cm 3),∵36π>24π,∴方案一构造的圆柱的体积大;(2)方案一:π×(52)2×3=754π(cm 3), 方案二:π×(32)2×5=454π(cm 3), ∵754π>454π, ∴方案一构造的圆柱的体积大;(3)由(1)、(2),得以较长一组对边中点所在直线为轴旋转得到的圆柱的体积大.20.【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π(cm3).∵16π<32π,∴绕宽所在的直线旋转一周得到圆柱体积大.21.解:结合图形可知,折叠成一个长方体后,与字母N重合的点有2个:点F和点J;(2)若AE=CM=12cm,LE=2cm,KL=4cm,求这个长方体的表面积和体积.解:由AE=CM=12cm,KL=4cm,可得CH=CM-LK=12-4=8cm,长方体的表面积;2×(8×4+2×4+2×8)=112cm2;体积:4×8×2=64cm3.(1)解:结合图形可知,折叠成一个长方体后,与字母N重合的点有2个:点F和点J;(2)解:由AE=CM=12cm,KL=4cm,可得CH=CM-LK=12-4=8cm,长方体的表面积;2×(8×4+2×4+2×8)=112cm2;体积:4×8×2=64cm3.22.解:由题意,得(7x+5y)(5x+3y)−4(x+y)2=35x2+21xy+25xy+15y2−4(x2+2xy+y2)=35x2+46xy+15y2−4x2−8xy−4y2 =31x2+38xy+11y2.∴这个盒子的表面积为(31x2+38xy+11y2) .23.解:露在外面的表面积:5×5+4×(3×3+4×4+5×5)=25+4×(9+16+25)=225cm2.24.解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3。

【人教版数学(2024年)七年级上册同步练习题】 6.1.2点线面体(含答案)

【人教版数学(2024年)七年级上册同步练习题】 6.1.2点线面体(含答案)

【人教版数学(2024年)七年级上册同步练习】6.1.2点线面体一、填空题1.夜晚的流星划过天空时留下一道明亮的光线,由此说明了的数学事实.2.汽车的雨刷把玻璃上的雨水刷干净,是运用了的原理.二、单选题3.在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这说明了()A.点动成线B.线动成面C.面动成体D.两点确定一条直线4.如图,尉迟恭单鞭救主图罐是南宁博物馆的镇馆之宝,下列平面图形绕轴旋转一周能形成这个瓷罐形状的是()A.B.C.D.5.下图左边的几何体可由()图形绕虚线旋转而成.A.B.C.D.6.如图所示的平面图形绕直线I旋转一周,可以得到的立体图形是()A.B.C.D.7.如图所示的花瓶中,的表面,可以看作由所给的平面图形绕虚线旋转一周形成的.A.B.C.D.三、解答题8.如图所示,有一个长为4cm、宽为3cm的长方形.(1)若分别绕它们的相邻两边所在的直线旋转一周,会得到不同的几何体,请你画出这两个几何体.(2)在你画出的这两个几何体中,哪个体积大?答案解析部分1.【答案】点动成线【知识点】点、线、面、体及之间的联系2.【答案】线动成面【知识点】点、线、面、体及之间的联系3.【答案】A【知识点】点、线、面、体及之间的联系4.【答案】C【知识点】点、线、面、体及之间的联系5.【答案】A【知识点】立体图形的初步认识;点、线、面、体及之间的联系6.【答案】C【知识点】点、线、面、体及之间的联系7.【答案】B【知识点】点、线、面、体及之间的联系8.【答案】【解答】解:(1)如图所示:(2)绕4cm长的边旋转一周所得圆柱的体积=π×33×4=36π;绕3cm长的边旋转一周所得圆柱的体积=π×42×3=48π.答:第二个圆柱体的体积大.【知识点】点、线、面、体及之间的联系【人教版数学(2024年)七年级上册同步练习】6.1.2点线面体一、填空题1.夜晚的流星划过天空时留下一道明亮的光线,由此说明了的数学事实.2.汽车的雨刷把玻璃上的雨水刷干净,是运用了的原理.二、单选题3.在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这说明了()A.点动成线B.线动成面C.面动成体D.两点确定一条直线4.如图,尉迟恭单鞭救主图罐是南宁博物馆的镇馆之宝,下列平面图形绕轴旋转一周能形成这个瓷罐形状的是()A.B.C.D.5.下图左边的几何体可由()图形绕虚线旋转而成.A.B.C.D.6.如图所示的平面图形绕直线I旋转一周,可以得到的立体图形是()A.B.C.D.7.如图所示的花瓶中,的表面,可以看作由所给的平面图形绕虚线旋转一周形成的.A.B.C.D.三、解答题8.如图所示,有一个长为4cm、宽为3cm的长方形.(1)若分别绕它们的相邻两边所在的直线旋转一周,会得到不同的几何体,请你画出这两个几何体.(2)在你画出的这两个几何体中,哪个体积大?答案解析部分1.【答案】点动成线【知识点】点、线、面、体及之间的联系2.【答案】线动成面【知识点】点、线、面、体及之间的联系3.【答案】A【知识点】点、线、面、体及之间的联系4.【答案】C【知识点】点、线、面、体及之间的联系5.【答案】A【知识点】立体图形的初步认识;点、线、面、体及之间的联系6.【答案】C【知识点】点、线、面、体及之间的联系7.【答案】B【知识点】点、线、面、体及之间的联系8.【答案】【解答】解:(1)如图所示:(2)绕4cm长的边旋转一周所得圆柱的体积=π×33×4=36π;绕3cm长的边旋转一周所得圆柱的体积=π×42×3=48π.答:第二个圆柱体的体积大.【知识点】点、线、面、体及之间的联系【人教版数学(2024年)七年级上册同步练习】6.1.2点线面体一、填空题1.夜晚的流星划过天空时留下一道明亮的光线,由此说明了的数学事实.2.汽车的雨刷把玻璃上的雨水刷干净,是运用了的原理.二、单选题3.在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这说明了()A.点动成线B.线动成面C.面动成体D.两点确定一条直线4.如图,尉迟恭单鞭救主图罐是南宁博物馆的镇馆之宝,下列平面图形绕轴旋转一周能形成这个瓷罐形状的是()A.B.C.D.5.下图左边的几何体可由()图形绕虚线旋转而成.A.B.C.D.6.如图所示的平面图形绕直线I旋转一周,可以得到的立体图形是()A.B.C.D.7.如图所示的花瓶中,的表面,可以看作由所给的平面图形绕虚线旋转一周形成的.A.B.C.D.三、解答题8.如图所示,有一个长为4cm、宽为3cm的长方形.(1)若分别绕它们的相邻两边所在的直线旋转一周,会得到不同的几何体,请你画出这两个几何体.(2)在你画出的这两个几何体中,哪个体积大?答案解析部分1.【答案】点动成线【知识点】点、线、面、体及之间的联系2.【答案】线动成面【知识点】点、线、面、体及之间的联系3.【答案】A【知识点】点、线、面、体及之间的联系4.【答案】C【知识点】点、线、面、体及之间的联系5.【答案】A【知识点】立体图形的初步认识;点、线、面、体及之间的联系6.【答案】C【知识点】点、线、面、体及之间的联系7.【答案】B【知识点】点、线、面、体及之间的联系8.【答案】【解答】解:(1)如图所示:(2)绕4cm长的边旋转一周所得圆柱的体积=π×33×4=36π;绕3cm长的边旋转一周所得圆柱的体积=π×42×3=48π.答:第二个圆柱体的体积大.【知识点】点、线、面、体及之间的联系。

《点线面》练习

《点线面》练习

《点线面》练习一、选择题1、正垂面与侧垂面相交,其交线是()。

A、一般位置线B、水平线C、侧垂线D、正垂线2、已知A点坐标为(10、5、20);B点在A点左方5,上方10,前方15,则B点的坐标为()。

A、(15,30,35)B、(30,20,15)C、(15,20,30)D、(10,20,5)3、下列关于一般位置平面上说法错误的是 ( )。

A、平面存在一条正平线B、存在一点到三个投影面距移相等C、同一点两个投影重合D、平面存在一条侧垂线4、若空间某点的两个投影在不同的投影轴上,则第三个投影必在()。

A、原点B、第三条投影轴上C、H投影面上D、某一投影面上5、如图,已知直线AB的V,H面投影,AB线是()A、正平线B、水平线C、一般位置线D、侧平线6、建筑工程图中球体标注正确的是()。

A、R200B、Φ200C、SR200D、SΦ2007、.直线AB的V投影平行于OX轴,下列直线中符合该投影特征的为( )A.水平线B.正平线C.侧平线D.铅垂线8、如果一条直线有两个投影倾斜于投影轴,则此直线在空间。

A.一定是一般位置直线 B可能是投影面平行线C.可能是投影面垂直线D.上述三者都有可能9、已知点A坐标为(O,Z,X),则该点离H面的距离为。

A.OB.ZC.XD.X+Z10、铅垂线与正平线之间的关系是。

A.相交B.垂直C.异面D.相交或交叉11、已知点M(20,10,10),点N(10,15,10),则点N在M的。

A.右后B.左前C.右上D.右前7、若点A的坐标为(10,5,10) ,点B的坐标为(10,5,5),则关于A、B两点下列说法正确的是()。

A、在H面上将出现重影且A点可见B、在V面上将出现重影且B点可见C、在W面上将出现重影且A点可见D、在H面上将出现重影且B点可见二、判断题1、平面的三面投影中至少有一面投影为线框()2、必要时,图样轮廓线可作为尺寸线。

()3、若平面P通过一条正垂线,则P平面必定是正垂面。

2020年中考数学人教版专题复习点线面体练习试题

2020年中考数学人教版专题复习点线面体练习试题

2020年中考数学人教版专题复习:点、线、面、体练习题一、选择题)1. 下列说法不正确的是(长方体与正方体都有六个面A.圆锥的底面是圆B.C. 棱柱的上、下底面是两个完全相同的图形D. 三棱柱有三个面、三条棱个立体图形中,从左边看是长方形的有()个.2. 如图所示的4 D. 3 A. 0B. 1 C. 2圆柱体圆锥体半球体长方体)哪一个能得到如右图所示的立体图形下列各选项中的图形绕直线l旋转一周,(.3lllll DCAB). 4下面四个图形中,是三棱柱的平面展开图的是(BDC A5. 下列各图中不是正方体展开图的是()ABCD下左图是由若干个小正方体所搭成的几何体及从上面看这个几何体所看到的图形,. 6.)那么从左边看这个几何体时,所看到的几何图形是(从上面看C BA D现在每方格内都填上相应的一个数学玩具的包装盒是正方体,其表面展开图如下.*7.、A0”,则填在数字.已知将这个表面展开图沿虚线折成正方体后,相对面上的两数之和为“)B、C内的三个数依次是(,1-2,0 D. 2 C 1,0,-2 . ,-10A. ,-2,B. 0,12C0B-1A 则. 如图所示的是由几个相同的小正方体搭成的几何体从不同方向看所得到的图形,*8 )个搭成这个几何体的小正方体的个数是(7. . C 6 D 4A. B. 5从左面看从正面看从上面看二、填空题条直面与面相交成____________________. 9 如图所示的立体图形,是由个面组成的,线.10. 当车上的雨刷擦过满是雨水的车窗后,将得到一部分明亮的车窗,这里包含的数.__________学知识是下面是某个立体图形从三个不同的方向观察所得到的平面图形,则该物体的名称11.是__________.从上面看从正面看从左面看,则每条侧棱长为个顶点,所有的侧棱长的和是120cm12. 一个棱柱共有12 __________.下图是由一些大小相同的小正方体组成的简单几何体从正面、左面、上面看得. **13 __________块.到的图形,则组成这个几何体的小正方体的块数是从上面看从正面看从左面看、A、6,根据下图中该正方体、一个正方体的每个面分别标有数字1、2、34、5. **14 C三种状态所显示的数字,可推出“?”处的数字是__________.B、513531?24CAB三、解答题15. 根据下图回答问题:①②③④⑤⑥(1)请说出①~⑥中几何体的名称,并简要叙述它们的一些特征.(2)将①~⑥中的几何体分类.个正方体组成的立体图形,分别从正面、左面、上面观察这9如图所示是一个由. 16.个立体图形,各能得到什么平面图形?请画出来.17. 现有一个长为5cm,宽为4cm的长方形,如果绕它的一边所在的直线旋转一周,得到的圆柱体的体积是多少?(结果不取近似值)18. 下列图形都是几何体的展开图,你能说出这些几何体的名称吗?①②③④⑤⑥19. 把正方体的6个面分别涂上6种不同的颜色,并画上朵数不同的花,表面上的颜色与花的朵数如下表所示:颜色红黄蓝白紫绿花的62 4351 朵数现将上述大小相同、颜色和花朵完全一样的4个正方体拼成一个水平放置的长方体.如图所示,那么长方体的下底面共有多少朵花?黄紫红蓝红黄白白红20. 如图所示,小明把一棱长为3的正方体魔方每个面正中心的一个正方形向里挖空(相当于挖去了6个小正方体),请问他所得到的几何体的表面积是多少?试题答案一、选择题1. D 解析:三棱柱有5个面,9条棱.2. C3. B4. A5. D6. B7. A 解析:折成正方体后,面A与0相对,面B与2相对,面C与-1相对,所以填在A、B、C内的三个数依次是0,-2,1.8. B 解析:由从上面看所得的图形确定底层有3个小正方体,由从前面看和从左面看所得的图形可确定第二层;第三层各有1个小正方体,故共有5个小正方体.二、填空题9. 4,4 解析:这个立体图形的上下两个底面是半圆、侧面由一个长方形和一个曲面组成,面和面相交所成的线有直线,也有曲线,其中直线有4条.10. 线动成面11. 三棱柱解析:这是一个倒放在水平面上的三棱柱.12. 20cm 解析:因为棱柱有12个顶点,可知该棱柱为六棱柱,其侧棱有6条.13. 10或11,如图所示:或14. 6 解析:与1相邻的四个面分别为4、5、2、3,则1的对面为6,再由B可知3的对面为4,由A可知5的对面为2,可推出“?”处的数字为6.三、解答题15. 解:(1)①圆柱的特征:两底面是圆;②圆锥的特征:一个底面是圆,另一“底面”缩小成一个点;③正方体的特征:所有面都是正方形;④长方体的特征:各面都是长方形(可能有两个面是正方形);⑤六棱柱的特征:两底面是六边形,侧面都是长方形(也可能是正方形);⑥球的特征:表面是一个曲面,不能展开成平面图形.(2)可分为柱体①③④⑤,锥体②,球⑥.解:如图所示:. 16.从正面看从左面看从上面看23;以短边为轴旋转cm80π解:以长边为轴旋转所得圆柱体的体积是π×4=×517.23.πcm×4=100所得圆柱体的体积是π×518. 解:①是正方体,②是长方体,③是圆锥,④是圆柱,⑤是五棱柱,⑥是三棱柱.19. 解:观察图形可知,黄的对面是紫,红的对面是绿,蓝的对面是白,所以长方体的下底面共有花朵:5+2+6+4=17(朵).提示:解答本题的关键是根据图形摆放出现的颜色,确定出上底面中黄、紫、红、蓝的对面(下底面)的颜色.确定方法:观察左数第四个正方体,在同一顶点处的三个面分别是蓝、黄、红,结合左数第一个和第三个正方体,黄、白相邻,红、白相邻,蓝必然和白相对;结合第二个正方体,红、紫相邻,在第四个正方体中黄必然和紫相对;则红和绿相对.20. 解:3×3×6+6×4=78.所以所得到的几何体的表面积是78.提示:得到的几何体的外部表面积等于正方体表面积减去一个小正方体的表面积,内部表面积等于六个小正方体的五个面积的面积和.也可以看作是一个大正方体的表面积与六个小正方体的四个侧面面积的和.。

点、线、面练习题(含答案)

点、线、面练习题(含答案)

点、线、面、体
1.围成圆柱的面有( )
A.1个
B.2个
C.3个
D.4个
2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )
A.点动成线
B.线动成面
C.面动成体
D.以上答案都不对
3.结合生活实际,可以帮我们更快地掌握新知识.
(1)飞机穿过云朵后留下痕迹表明;
(2)用棉线“切”豆腐表明;
(3)旋转壹元硬币时看到“小球”表明.
4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.
5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?
点、线、面、体
1.C
2.B
3.(1)点动成线(2)线动成面(3)面动成体
4.解:如图所示.
5.解:此立体图形是由3个面围成的,它们是2个平面和1个曲面.。

人教版七年级上册试卷《点、线、面、体》习题1.docx

人教版七年级上册试卷《点、线、面、体》习题1.docx

& 鑫达捷致力于精品文档精心制作仅供参考&
《点、线、面、体》习题
1.体是由( )围成的,面和面相交于( ),线和线相交于( ).
2.点动成( ),线动成( ),面动成( ).
3.将直角三角板绕最长直角边所在的直线旋转一周,可得到的几何体是( ).
4.将一个半圆形纸片绕直径所在直线旋转一周,可得到的几何体是( )
5.将一长方形纸片绕一边所在的直线旋转一周,可得到的几何体是( ).
6.飞机飞行表演在空中留下漂亮的“彩带”用数学知识解释为( ).用一条拉直的细线切一块豆腐这是( ).
7.在同一平面中,两条直线相交有( )个交点.
8.下列几何体没有曲面的是( ).
A.圆锥
B.圆柱
C.球
D.棱柱
9.人在雪地上走,他的脚印形成一条_______,这说明了______的数学原理.
10.刷墙工人用棍刷刷墙说明了________________的原理.
11.用直角三角形绕着它的一直角边旋转一周,得到一个新的几何体,说明_______________的原理.
12.给我们以点动成线的原理是( ).
A.洗车挡风玻璃上转运的雨刷
B.转动的电扇
C.表演型飞机后面喷出的彩烟
D.转动的自行车辐条
13.如图,小明用纸板折成了一个正方体的盒子,里面装了一瓶墨水,他把这个盒子与其他形状和大小完全一样,但图案有区别的三个空盒子混放在一起,共A、B、C、D四个盒子.在这四个盒子中,请你分析判断,墨水瓶应该在哪个盒子中?为什么?
初中数学试卷
桑水出品
鑫达捷。

点、线、面、体同步练习题

点、线、面、体同步练习题

第四章几何图形初步4.1.2点、线、面、体一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是A.B.C.D.【答案】D【解析】绕直线l旋转一周,可以得到圆台,故选D.2.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是A.B.C.D.【答案】A【解析】A、上面小下面大,侧面是曲面,故A正确;3.汽车的雨刷把玻璃上的雨水刷干净属于__________的实际应用.A.点动成线B.线动成面C.面动成体D.以上答案都不对【答案】B【解析】汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故选B.4.一个直角三角形绕其直角边旋转一周得到的几何体可能是A.B.C.D.【答案】D【解析】以直角三角形的一条直角边所在直线为对称轴旋转一周,得到一个圆锥,故选D.学科@#网5.生活中我们见到的自行车的辐条运动形成的几何图形可解释为A.点动成线B.线动成面C.面动成体D.以上答案都不对【答案】B【解析】生活中我们见到的自行车的辐条运动形成的几何图形可解释为:线动成面,故选B.二、填空题:请将答案填在题中横线上.6.雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了__________.【答案】面动成体【解析】一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了面动成体,故答案为:面动成体.7.将一个半圆绕它的直径所在的直线旋转一周得到的几何体是__________.【答案】球【解析】将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故答案为:球.8.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为__________cm3.(结果保留π)【答案】27πcm39.笔尖在纸上快速滑动写出英文字母C,这说明了__________.【答案】点动成线【解析】笔尖在纸上快速滑动写出英文字母C,这说明了点动成线;故答案为:点动成线.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.【解析】如图所示,A旋转后得出图形c,B旋转后得出图形d,C旋转后得出图形a,D旋转后得出图形e,E旋转后得出图形b.11.现将一个长为4厘米,宽为3厘米的长方形,分别绕它的相邻两边所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?通过计算你发现了什么?(π取3.14)学#@科网人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是()A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④ 二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=12∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF 是∠AOE 的平分线,所以∠AOE =2∠EOF =2(90°-α)=180°-2α.所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α.所以∠BOE =2∠COF .(2)∠BOE =2∠COF 仍成立.理由:设∠AOC =β,则∠AOE =90°-β,又因为OF 是∠AOE 的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

人教版初中数学七年级上册《4.1.2 点、线、面、体》同步练习卷(含答案解析

人教版初中数学七年级上册《4.1.2 点、线、面、体》同步练习卷(含答案解析

人教新版七年级上学期《4.1.2 点、线、面、体》同步练习卷一.选择题(共8小题)1.如图中的图形绕虚线旋转一周,可得到的组合体是()A.B.C.D.2.一个直角三角形绕其直角边旋转一周得到的几何体可能是()A.B.C.D.3.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.4.下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹5.将图中的三角形绕直线l旋转一周后得到的几何体是()A.B.C.D.6.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是()A.①②③④B.①②③C.②③④D.①③④7.生活中我们见到的自行车的辐条运动形成的几何图形可解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对8.用钢笔写字是一个生活中的实例,用数学原理分析,它所属于的现象是()A.点动成线B.线动成面C.线线相交D.面面相交二.填空题(共4小题)9.如图,一个边长为2的正方形和等腰直角三角形的一边重合,组成了一个平面图形,如果将它绕AB所在直线按逆时针方向旋转180°,得到一个几何体,=h)则这个几何体的体积为.(圆锥的体积公式为:V圆锥10.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.11.将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为cm3.12.写出下面给出的平面图形以虚线为轴旋转一周得到的立体图形名称.由图(1)可得到的立体图形的名称是;由图(2)可得到的立体图形的名称是;由图(3)可得到的立体图形的名称是.三.解答题(共7小题)13.如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)14.如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:(1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)(2)如图(2),绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)15.如图所示,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板绕三角形的边所在的直线旋转一周,能得到种大小不同的几何体?(2)分别计算绕三角形直角边所在的直线旋转一周,得到的几何体的体积?(圆锥的体积=πr2h,其中π取3)16.如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,请你把有对应关系的平面图形与立体图形连接起来.17.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.18.第一行的图形绕虚线转一周,能形成第二行的某个几何体,按要求填空.图1旋转形成,图2旋转形成,图3旋转形成,图4旋转形成,图5旋转形成,图6旋转形成.19.如图,把一长方形在直线m上翻滚,请在图中作出A点所经过的路径.人教新版七年级上学期《4.1.2 点、线、面、体》同步练习卷参考答案与试题解析一.选择题(共8小题)1.如图中的图形绕虚线旋转一周,可得到的组合体是()A.B.C.D.【分析】根据面动成体的原理:下面的长方形旋转一周后是一个圆柱,上面的直角三角形旋转一周后是一个圆锥,所以应是圆锥和圆柱的组合体.【解答】解:∵下面的长方形旋转一周后是一个圆柱,上面的直角三角形旋转一周后是一个圆锥,∴根据以上分析应是圆锥和圆柱的组合体.故选:B.【点评】此题主要考查了平面图形与立体图形的联系,可把较复杂的图形进行分解旋转,然后再组合,学生应注意培养空间想象能力.2.一个直角三角形绕其直角边旋转一周得到的几何体可能是()A.B.C.D.【分析】根据面动成体,可得答案.【解答】解:以直角三角形的一条直角边所在直线为对称轴旋转一周,得到一个圆锥,故选:D.【点评】本题考查了点、线、面、体,点动成线,线动成面,面动成体:以直角三角形的一条直角边所在直线为对称轴旋转一周得到圆锥.3.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到,故选:A.【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.4.下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹【分析】根据点动成线,线动成面,面动成体对各选项分析判断后利用排除法求解.【解答】解:A、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项错误;B、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项错误;C、天空划过一道流星是“点动成线”,故本选项错误;D、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项正确.故选:D.【点评】本题考查了点、线、面、体的知识,主要是考查学生立体图形的空间想象能力及分析问题,解决问题的能力.5.将图中的三角形绕直线l旋转一周后得到的几何体是()A.B.C.D.【分析】根据面动成体,可得答案.【解答】解:三角形旋转得两个同底的圆锥,故选:B.【点评】本题考查了点线面体,利用面动成体是解题关键.6.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是()A.①②③④B.①②③C.②③④D.①③④【分析】根据点动成线,可以判断①;根据线动成面,可以判断②;根据面动成体,可以判断③;根据平移的性质,可以判断④.【解答】解:①一点在平面内运动的过程中,能形成一条线段是正确的;②一条线段在平面内运动的过程中,能形成一个平行四边形是正确的;③一个三角形在空间内运动的过程中,能形成一个三棱柱是正确的;④一个圆形在空间内平移的过程中,能形成一个圆柱,原来的说法错误.故选:B.【点评】此题考查了点、线、面、体,关键是掌握平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.7.生活中我们见到的自行车的辐条运动形成的几何图形可解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对【分析】根据从运动的观点来看点动成线,线动成面,面动成体可得答案.【解答】解:生活中我们见到的自行车的辐条运动形成的几何图形可解释为:线动成面,故选:B.【点评】此题主要考查了点、线、面、体,关键是掌握四者之间的关系.8.用钢笔写字是一个生活中的实例,用数学原理分析,它所属于的现象是()A.点动成线B.线动成面C.线线相交D.面面相交【分析】根据点动成线,线动成面,面动成体进行解答.【解答】解:用钢笔写字是点动成线,故选:A.【点评】此题主要考查了点线面体,题目比较简单.二.填空题(共4小题)9.如图,一个边长为2的正方形和等腰直角三角形的一边重合,组成了一个平面图形,如果将它绕AB所在直线按逆时针方向旋转180°,得到一个几何体,=h)则这个几何体的体积为π.(圆锥的体积公式为:V圆锥【分析】将该平面图形绕AB所在直线按逆时针方向旋转180°,得到一个由半个圆锥和半个圆柱组成的几何体,依据圆锥的体积公式和圆柱的体积公式进行计算即可.【解答】解:将该平面图形绕AB所在直线按逆时针方向旋转180°,得到一个由半个圆锥和半个圆柱组成的几何体,这个几何体的体积=(π×22×2+π×22×2)=π,故答案为:π.【点评】本题主要考查了几何体的体积,解决问题的关键是掌握圆锥的体积公式和圆柱的体积公式.10.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为10.【分析】n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,依此可得等量关系:n条直线最多可将平面分成56个部分,列出方程求解即可.【解答】解:依题意有n(n+1)+1=56,解得n1=﹣11(不合题意舍去),n2=10.答:n的值为10.故答案为:10.【点评】考查了点、线、面、体,规律性问题及一元二次方程的应用;得到分成的最多平面数的规律是解决本题的难点.11.将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为16π或32πcm3.【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π(cm3).故它们的体积分别为16πcm3或32πcm3.故答案为:16π或32π.【点评】本题考查圆柱体的体积的求法,注意分情况讨论,难度适中.12.写出下面给出的平面图形以虚线为轴旋转一周得到的立体图形名称.由图(1)可得到的立体图形的名称是圆柱;由图(2)可得到的立体图形的名称是圆锥;由图(3)可得到的立体图形的名称是球.【分析】根据点动成线,线动成面,面动成体,即可解答.【解答】解:由图(1)可得到的立体图形的名称是圆柱;由图(2)可得到的立体图形的名称是圆锥;由图(3)可得到的立体图形的名称是球;故答案为:圆柱,圆锥,球.【点评】此题主要考查立体图形中的旋转体,也就是把一个图形绕一条直线旋转得到的图形,要掌握基本的图形特征,才能正确判定.三.解答题(共7小题)13.如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)【分析】绕长旋转得到的圆柱的底面半径为4cm,高为6cm,从而计算体积即可;绕宽旋转得到的圆柱底面半径为6cm,高为4cm,从而计算体积进行比较即可.【解答】解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.因此绕短边旋转得到的圆柱体积大.【点评】本题考查了点、线、面、体的知识,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键,另外要掌握圆柱的体积计算公式.14.如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:(1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)(2)如图(2),绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)【分析】(1)根据矩形绕一条边旋转得到圆柱,根据圆柱的体积公式,可得答案;(2)根据矩形绕一条边旋转得到圆柱,根据圆柱的体积公式,可得答案.【解答】解:(1)得到的是底面半径是7cm,高是3cm的圆柱,V=3.14×72×3=461.58(cm3),答:得到的几何体的体积是461.58cm3;(2)得到的是底面半径是3cm,高是7cm的圆柱,V=3.14×32×7=197.82(cm3),答:得到的几何体的体积是197.82cm3.【点评】本题考查了点、线、面、体,矩形绕一边旋转是圆柱,圆柱的体积公式:πr2h.15.如图所示,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板绕三角形的边所在的直线旋转一周,能得到3种大小不同的几何体?(2)分别计算绕三角形直角边所在的直线旋转一周,得到的几何体的体积?(圆锥的体积=πr2h,其中π取3)【分析】(1)将直角三角形纸板ABC绕三角形的三条边所在的直线旋转一周,能得到3种大小不同的几何体.(2)如果以AB所在的直线旋转一周得到的圆锥的底面半径是8厘米,高是4厘米;如果以BC所在的直线旋转一周得到的圆锥的底面半径是4厘米,高是8厘米,根据圆锥的体积公式:v=πr2h,把数据代入公式解答.【解答】解:(1)将直角三角形纸板ABC绕三角形的三条边所在的直线旋转一周,能得到3种大小不同的几何体.(2)以AB为轴:×3×82×4=×3×64×4=256(立方厘米);以BC为轴:×3×42×8=×3×16×8=128(立方厘米).答:以AB为轴得到的圆锥的体积是256立方厘米,以BC为轴得到的圆锥的体积是128立方厘米.故答案为:3.【点评】此题考查了点、线、面、体,关键是理解掌握圆锥的特征,以及圆锥体积公式的灵活运用.16.如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,请你把有对应关系的平面图形与立体图形连接起来.【分析】根据“面动成体”的原理,结合图形特征进行旋转,判断出旋转后的立体图形即可.【解答】解:连线如下:【点评】本题考查了图形的旋转,注意培养自己的空间想象能力.17.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.【分析】根据图形,结合想象,即可选出答案.【解答】解:如图所示,A旋转后得出图形c,B旋转后得出图形d,C旋转后得出图形a,D旋转后得出图形e,E旋转后得出图形b.【点评】本题考查了点、线、面、体等知识点的应用,主要考查学生的理解能力、空间想象能力和观察能力.18.第一行的图形绕虚线转一周,能形成第二行的某个几何体,按要求填空.图1旋转形成d,图2旋转形成a,图3旋转形成c,图4旋转形成f,图5旋转形成b,图6旋转形成e.【分析】根据旋转的特点和各几何图形的特性判断即可.【解答】解:图1旋转形成d,图2旋转形成a,图3旋转形成c,图4旋转形成f,图5旋转形成b,图6旋转形成e.【点评】本题考查了平面图形与立体图形的联系,难度不大,学生应注意培养空间想象能力.19.如图,把一长方形在直线m上翻滚,请在图中作出A点所经过的路径.【分析】由题意可知,A点所经过的路径是先以长方形的长为半径,旋转90°,再以长方形的对角线为半径,旋转90°所对应的弧长.【解答】解:如图所示.【点评】本题考查了点动成线,画图时注意半径的确定.。

北师大版七年级数学上册《1.1点、线、面、体》同步测试题及答案

北师大版七年级数学上册《1.1点、线、面、体》同步测试题及答案

北师大版七年级数学上册《1.1点、线、面、体》同步测试题及答案【基础达标练】课时训练夯实基础知识点点、线、面、体1.几何图形都是由点、线、面、体组成,点动成线,线动成面,面动成体.下列生活现象中,可以反映“面动成体”的是( )A.打开折扇B.流星划过夜空C.旋转门旋转D.汽车雨刷转动2.(2024·贵州期末)如图,图中三角形绕虚线旋转一周,能围成的几何体是( )3.如图,将长方形绕着它的一边所在的直线a旋转一周,可以得到的立体图形是 ( )4.(2024·广州质检)飞机表演“飞机拉线”时,我们用数学的知识可解释为点动成线.用数学知识解释下列现象:(1)自行车的辐条运动可解释为;(2)一只蚂蚁爬行的路线可解释为;(3)一个圆面沿着它的一条直径旋转一周成球可解释为.5.(2024·深圳期中)如图,某银行大堂的旋转门内部由三块宽为2 m、高为3 m的玻璃隔板组成.(1)将此旋转门旋转一周,能形成的几何体是,这能说明的事实是(选择正确的一项填入).A.点动成线B.线动成面C.面动成体(2)求该旋转门旋转一周形成的几何体的体积.(边框及衔接处忽略不计,结果保留π)【综合能力练】巩固提升迁移运用6.(2024·贵阳期末)“力箭一号”(ZK-1A)运载火箭在酒泉卫星发射中心采用“一箭六星”的方式,成功将六颗卫星送入预定轨道,首次飞行任务取得圆满成功.把卫星看成点,则卫星在预定轨道飞行留下的痕迹体现了( )A.点动成线B.线动成面C.面动成体D.面面相交成线7.如图所示的立体图形是由哪个平面图形绕轴旋转一周得到的 ( )8.(2024·黔南州质检)下列选项的立体图形,不能由一个平面图形经过旋转得到的是( )9.(2024·安顺质检)圆柱是由长方形绕着它的一边旋转一周所得到的,下列四个平面图形绕着直线旋转一周可以得到如图的是 ( )10.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,这说明①点动成线;②线动成面;③面动成体.(请填入正确答案的序号).11.(素养提升题)(2024·毕节七星关区期末)如图是一张长方形纸片,长方形的长为6 cm,宽为4 cm,若将此长方形纸片绕它的一边所在直线旋转一周,得到一个几何体.(1)这个几何体的名称是,这个现象用数学知识解释为;(2)求得到的这个几何体的体积.(结果保留π)参考答案【基础达标练】课时训练夯实基础知识点点、线、面、体1.几何图形都是由点、线、面、体组成,点动成线,线动成面,面动成体.下列生活现象中,可以反映“面动成体”的是(C)A.打开折扇B.流星划过夜空C.旋转门旋转D.汽车雨刷转动2.(2024·贵州期末)如图,图中三角形绕虚线旋转一周,能围成的几何体是(D)3.如图,将长方形绕着它的一边所在的直线a旋转一周,可以得到的立体图形是 (A)4.(2024·广州质检)飞机表演“飞机拉线”时,我们用数学的知识可解释为点动成线.用数学知识解释下列现象:(1)自行车的辐条运动可解释为线动成面;(2)一只蚂蚁爬行的路线可解释为点动成线;(3)一个圆面沿着它的一条直径旋转一周成球可解释为面动成体.5.(2024·深圳期中)如图,某银行大堂的旋转门内部由三块宽为2 m、高为3 m的玻璃隔板组成.(1)将此旋转门旋转一周,能形成的几何体是,这能说明的事实是(选择正确的一项填入).A.点动成线B.线动成面C.面动成体(2)求该旋转门旋转一周形成的几何体的体积.(边框及衔接处忽略不计,结果保留π)【解析】(1)因为旋转门的形状是长方形所以旋转门旋转一周,能形成的几何体是圆柱,这能说明的事实是面动成体.答案:圆柱C(2)该旋转门旋转一周形成的几何体是圆柱体积为:π×22×3=12π(m3).【综合能力练】巩固提升迁移运用6.(2024·贵阳期末)“力箭一号”(ZK-1A)运载火箭在酒泉卫星发射中心采用“一箭六星”的方式,成功将六颗卫星送入预定轨道,首次飞行任务取得圆满成功.把卫星看成点,则卫星在预定轨道飞行留下的痕迹体现了(A)A.点动成线B.线动成面C.面动成体D.面面相交成线7.如图所示的立体图形是由哪个平面图形绕轴旋转一周得到的 (A)8.(2024·黔南州质检)下列选项的立体图形,不能由一个平面图形经过旋转得到的是(D)9.(2024·安顺质检)圆柱是由长方形绕着它的一边旋转一周所得到的,下列四个平面图形绕着直线旋转一周可以得到如图的是 (A)10.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,这说明②①点动成线;②线动成面;③面动成体.(请填入正确答案的序号).11.(素养提升题)(2024·毕节七星关区期末)如图是一张长方形纸片,长方形的长为6 cm,宽为4 cm,若将此长方形纸片绕它的一边所在直线旋转一周,得到一个几何体.(1)这个几何体的名称是,这个现象用数学知识解释为;(2)求得到的这个几何体的体积.(结果保留π)【解析】(1)此长方形纸片绕它的一边所在直线旋转一周得到的几何体是圆柱;这个现象用数学知识解释为面动成体;答案:圆柱面动成体(2)情况①绕长方形的长所在直线旋转一周:V=π×42×6=96π(cm3);情况②绕长方形的宽所在直线旋转一周:V=π×62×4=144π(cm3);故形成的几何体的体积是96π cm3或144π cm3.。

(完整版)点线面体练习题一

(完整版)点线面体练习题一

(完整版)点线⾯体练习题⼀
《点、线、⾯、体》基础练习1
1.常见的⼏何体有、、、、、、等.2.体是由组成的,⾯有和之分.
3.球是由⼀个组成的,由两个⾯组成的有,由三个⾯组成的有由四个⾯组成的有.
4.笔尖在纸上快速滑动写了⼀个⼜⼀个英⽂字母,这说明了;车轮旋转时,看起来像⼀个完整的圆⾯,这说明了;直⾓三⾓形绕它的直⾓边旋转⼀周,形成⼀个圆锥体,这说明了.
5.如下图,第⼀⾏的图形绕虚线旋转⼀周,便形成第⼆⾏的某个⼏何体,请你⽤线连起来.
6.按组成⾯的平和曲划分,与圆锥为同⼀类的⼏何体是()
A.棱锥B.棱柱C.圆柱D.长⽅体
参考答案
1.长⽅体正⽅体圆柱圆锥球棱柱棱锥
2.⾯平⾯曲⾯
3.曲⾯圆锥圆柱三棱锥
4.点动成线线动成⾯⾯动成体
5.(1)连b;(2)连d;(3)连c;(4)连e;(5)连f.
6.C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《点、线、面、体》基础练习1
1.常见的几何体有、、、、、、等.
2.体是由组成的,面有和之分.
3.球是由一个组成的,由两个面组成的有,由三个面组成的有由四个面组成的有.
4.笔尖在纸上快速滑动写了一个又一个英文字母,这说明了;车轮旋转时,看起来像一个完整的圆面,这说明了;直角三角形绕它的直角边旋转一周,形成一个圆锥体,这说明了.
5.如下图,第一行的图形绕虚线旋转一周,便形成第二行的某个几何体,请你用线连起来.
6.按组成面的平和曲划分,与圆锥为同一类的几何体是()
A.棱锥B.棱柱C.圆柱D.长方体
参考答案
1.长方体正方体圆柱圆锥球棱柱棱锥
2.面平面曲面
3.曲面圆锥圆柱三棱锥
4.点动成线线动成面面动成体
5.(1)连b;(2)连d;(3)连c;(4)连e;(5)连f.
6.C。

相关文档
最新文档