高中物理模型组合27讲Word水平方向的圆盘模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型组合讲解——水平方向的圆盘模型
[模型概述]
水平方向上的“圆盘”模型大多围绕着物体与圆盘间的最大静摩擦力为中心展开的,因此最大静摩擦力的判断对物体临界状态起着关键性的作用。
[模型讲解]
例1. 如图1所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求:
图1
(1)当转盘的角速度ωμ12=
g r 时,细绳的拉力F T 1。 (2)当转盘的角速度ωμ232=g r
时,细绳的拉力F T 2。 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=
g r 。 (1)因为ωμω102= r ,所以物体所需向心力小于物体与盘间的最大摩擦力,则物 与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。 (2)因为ωμω2032=>g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得 F mg T 22= μ。 例2. 如图2所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=, A 、 B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求 图2 (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102 /) 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得: ω011111 055===F m r m g m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运动了,A 、B 就在圆盘上滑动起来。设此时角速度为ω1,绳中张力为F T ,对A 、B 受力分析: 对A 有F F m r fm T 1112 1+=ω 对B 有F F m r T fm -=22122ω 联立解得: ω112112252707= +-==F F m r m r rad s rad s fm fm /./ [模型要点] 水平方向上的圆盘转动时,物体与圆盘间分为有绳与无绳两种,对无绳情况向心力是由“圆盘”对物体的静摩擦力提供,对有绳情况考虑向心力时要注意临界问题。若F F m 需摩≤,物体做圆周运动,有绳与无绳一样;若F F m 需摩>,无绳物体将向远离圆心的方向运动;有绳拉力将起作用。 [模型演练] 如图3所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置,两轮半径R R A B =2,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A 轮边缘上。若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离 为() 图3 A. R B 4 B. R B 3 C. R B 2 D. R B 答案:C