实验5 最小生成树算法的设计与实现(报告)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验5 最小生成树算法的设计与实现
一、实验目的
1、根据算法设计需要, 掌握连通图的灵活表示方法;
2、掌握最小生成树算法,如Prim、Kruskal算法;
3、基本掌握贪心算法的一般设计方法;
4、进一步掌握集合的表示与操作算法的应用。
二、实验内容
1、认真阅读算法设计教材和数据结构教材内容, 熟习连通图的不同表示方法和最小生成树算法;
2、设计Kruskal算法实验程序。
有n个城市可以用(n-1)条路将它们连通,求最小总路程的和。
设计测试问题,修改并调试程序, 输出最小生成树的各条边, 直至正确为止。
三、Kruskal算法的原理方法
边权排序:
1 3 1
4 6 2
3 6 4
1 4 5
2 3 5
3 4 5
2 5 6
1 2 6
3 5 6
5 6 6
1. 初始化时:属于最小生成树的顶点U={}
不属于最小生成树的顶点V={1,2,3,4,5,6}
2. 根据边权排序,选出还没有连接并且权最小的边(1 3 1),属于最小生成树
的顶点U={1,3},不属于最小生成树的顶点V={2,4,5,6}
3. 根据边权排序,选出还没有连接并且权最小的边(4 6 2),属于最小生成树的顶点U={{1,3},{4,6}}(还没有合在一起,有两颗子树),不属于最小生成树的顶点V={2,5}
4. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,3,4,6}(合在一起),不属于最小生成树的顶点V={2,5}
5. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,6},,不属于最小生成树的顶点V={5}
6. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,5,6}此时,最小生成树已完成
四、实验程序的功能模块
功能模块:
bool cmp(Edge a,Edge b);//定义比较方法
int getfa(int x);//在并查集森林中找到x的祖先
int same(int x,int y);//判断祖先是否是同一个,即是否联通void merge(int x,int y); //合并子树,即联通两子树
sort(e+1,e+m+1,cmp); //对边按边权进行升序排序
详细代码:
#include
#include
#include
#include
#define MAXN_E 100000
#define MAXN_V 100000
using namespace std;
struct Edge{
int fm,to,dist; //边的起始顶点,边的到达顶点,边权}e[MAXN_E];
int fa[MAXN_V],n,m; //顶点数组,顶点总数,边总数
//定义比较,只是边权比较
bool cmp(Edge a,Edge b){
return a.dist < b.dist;
}
//查找x的祖先
int getfa(int x){//getfa是在并查集森林中找到x的祖先if(fa[x]==x) return fa[x];
else return fa[x] = getfa(fa[x]);
}
//判断祖先是否是同一个,即是否联通
int same(int x,int y){
return getfa(x)==getfa(y);
}
//合并两棵树
void merge(int x,int y){
int fax=getfa(x),fay=getfa(y);
fa[fax]=fay;
}
int main(){
int i;
cout<<"请输入顶点数目和边数目:"< cin>>n>>m;//n为点数,m为边数 //输出顶点信息 cout<<"各个顶点值依次为:"< for(i=0;i { fa[i]=i; if(i!=0) cout< } cout< cout<<"请输入边的信息(例子:1 4 5 从顶点1到顶点4的边权为5)"<< endl; for(i=1;i<=m;i++) cin>>e[i].fm>>e[i].to>>e[i].dist;//用边集数组存放边,方便排序和调用sort(e+1,e+m+1,cmp); //对边按边权进行升序排序 int rst=n,ans=0;//rst表示目前的点共存在于多少个集合中,初始情况是每个点都在不同的集合中 for(i=1;i<=m && rst>1;i++) { int x=e[i].fm,y=e[i].to; if(same(x,y)) continue;//same函数是查询两个点是否在同一集合中 else { merge(x,y);//merge函数用来将两个点合并到同一集合中 rst--;//每次将两个不同集合中的点合并,都将使rst值减1 ans+=e[i].dist;//这条边是最小生成树中的边,将答案加上边权} } cout< return 0; } 五、测试数据和相应的最小生成树 Input: 6 10 1 2 6 1 3 1 1 4 5 2 3 5 2 5 6 3 4 5 3 5 6