北师大版八年级下直角三角形导学案
北师大版数学八年级下册1.2《直角三角形》教案
北师大版数学八年级下册1.2《直角三角形》教案一. 教材分析北师大版数学八年级下册1.2《直角三角形》是学生在学习了锐角三角形和钝角三角形的基础上,进一步研究直角三角形的特点和性质。
本节课的主要内容有直角三角形的定义、特性以及直角三角形的判定。
通过本节课的学习,学生能进一步理解三角形的分类,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了锐角三角形和钝角三角形的相关知识,对三角形有了初步的认识。
但部分学生对三角形分类的理解还不够深入,对直角三角形的判定方法可能还存在疑惑。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.知识与技能:使学生掌握直角三角形的定义、特性及判定方法,能够运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间观念和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:直角三角形的定义、特性及判定方法。
2.难点:直角三角形的判定方法的灵活运用。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、合作交流,提高学生的学习兴趣和参与度。
六. 教学准备1.教师准备:教材、PPT、直角三角形模型、实物图片等。
2.学生准备:课本、笔记本、文具等。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的直角三角形图片,如:直角尺、房屋设计图等,引导学生关注直角三角形在生活中的应用。
提问:“你们知道这些图片中的图形是什么三角形吗?”让学生回答,从而引出本节课的主题——直角三角形。
2.呈现(10分钟)教师通过PPT展示直角三角形的定义和特性,让学生初步了解直角三角形。
接着,通过PPT展示直角三角形的判定方法,引导学生思考如何判断一个三角形是否为直角三角形。
3.操练(10分钟)学生分组进行合作学习,每组选取一个三角形图形,判断它是否为直角三角形,并说明理由。
北师大版数学八年级下册:1.2 直角三角形 教案1
直角三角形【教学目标】1.掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
2.巩固利用添辅助线证明有关几何问题的方法。
3.通过图形的变换,引导学生发现并提出新问题,进行类比联想,促学生的思维向多层次多方位发散。
培养学生的创新精神和创造能力。
4.从生活的实际问题出发,引发学生学习数学的兴趣。
从而培养学生发现问题和解决问题能力。
【教学重点】直角三角形斜边上的中线性质定理的应用。
直角三角形斜边上的中线性质定理的证明思想方法。
【教学方法】观察、比较、合作、交流、探索。
【教学过程】一、引入:如果你是设计师:(提出问题)2008年将建造一个地铁站,设计师设想把地铁站的出口建造在离附近的三个公交站点45路、13路、23路的距离相等的位置。
而这三个公交站点的位置正好构成一个直角三角形。
如果你是设计师你会把地铁站的出口建造在哪里?请同学们分小组在模型上找出那个点,并说出它的位置。
请同学们测量一下这个点到这三个顶点的距离是否符合要求。
通过以上实验请猜想一下,直角三角形斜边上的中线和斜边的长度之间有什么关系?二、新授:提出命题:直角三角形斜边上的中线等于斜边的一半证明命题:(教师引导,学生讨论,共同完成证明过程)应用定理:已知:如图,在△ABC中,∠B=∠C,AD是∠BAC的平分线,E、F分别AB.AC的中点。
求证:DE=DFFEDC BAE D C B A 分析:可证两条线段分别是两直角三角形的斜边上的中线,再证两斜边相等即可证得。
练习变式:1. 已知:在△ABC 中,BD .CE 分别是边AC .AB 上的高,F 是BC 的中点。
求证:FD=FE 练习引申:(1)若连接DE ,能得出什么结论?(2)若O 是DE 的中点,则MO 与DE 存在什么结论吗?上题两个直角三角形共用一条斜边,两个直角三角形位于斜边的同侧。
如果共用一条斜边,两个直角三角形位于斜边的两侧我们又会有哪些结论?2.已知:∠ABC=∠ADC=90º,E 是AC 中点。
北师大版八年级数学下册教案1.1 第4课时 等边三角形的判定及含30°角的直角三角形的性质附教学反思
第4课时等边三角形的判定及含30°角的直角三角形的性质1.学习并掌握等边三角形的判定方法,能够运用等边三角形的性质和判定解决问题;(重点、难点) 2.理解并掌握含30°角直角三角形的性质,能灵活运用其解决有关问题.(难点)一、情境导入观察下面图形:师:等腰三角形中有一种特殊的三角形,你知道是什么三角形吗?生:等边三角形.师:对,等边三角形具有和谐的对称美.今天我们来学习等边三角形,引出课题.二、合作探究探究点一:等边三角形的判定【类型一】三边都相等的三角形是等边三角形已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,试说明△ABC是等边三角形.解析:把已知的关系式化为两个完全平方的和等于0的形式求解.解:移项得a2+c2-2ab-2bc+2b2=0,∴a2+b2-2ab+c2-2bc+b2=0,∴(a-b)2+(b-c)2=0,∴a-b=0且b-c=0,即a=b且b=c,∴a=b=c.故△ABC是等边三角形.方法总结:(1)几个非负数的和为零,那么每一个非负数都等于零;(2)有两边相等的三角形是等腰三角形,三边都相等的三角形是等边三角形,等边三角形是特殊的等腰三角形.【类型二】三个角都是60°的三角形是等边三角形如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O ,且OD ∥AB ,OE ∥AC .试判定△ODE 的形状,并说明你的理由.解析:根据平行线的性质及等边三角形的性质可得∠ODE =∠OED =60°,再根据三角形内角和定理得∠DOE =60°,从而可得△ODE 是等边三角形.解:△ODE 是等边三角形,理由如下:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°.∵OD ∥AB ,OE ∥AC ,∴∠ODE =∠ABC =60°,∠OED =∠ACB =60°.∴∠DOE =180°-∠ODE -∠OED =180°-60°-60°=60°.∴∠DOE =∠ODE =∠OED =60°.∴△ODE 是等边三角形.方法总结:证明一个三角形是等边三角形时,如果较易求出角的度数,那么就可以分别求出这个三角形的三个角都等于60°,从而判定这个三角形是等边三角形.【类型三】 有一个角是60°的等腰三角形是等边三角形如图,在△EBD 中,EB =ED ,点C 在BD 上,CE =CD ,BE ⊥CE ,A 是CE 延长线上一点,AB =BC .试判断△ABC 的形状,并证明你的结论.解析:由于EB =ED ,CE =CD ,根据等边对等角及三角形外角性质,可求得∠CBE =12∠ECB .再由BE ⊥CE ,根据三角形内角和定理,可求得∠ECB =60°.又∵AB =BC ,从而得出△ABC 是等边三角形.解:△ABC 是等边三角形.理由如下:∵CE =CD ,∴∠CED =∠D .又∵∠ECB =∠CED +∠D .∴∠ECB =2∠D .∵BE =DE ,∴∠CBE =∠D .∴∠ECB =2∠CBE .∴∠CBE =12∠ECB .∵BE ⊥CE ,∴∠CEB =90°.又∵∠ECB +∠CBE +∠CEB =180°,∴∠ECB +12∠ECB +90°=180°,∴∠ECB =60°.又∵AB =BC ,∴△ABC 是等边三角形.方法总结:(1)已知一个三角形中两边相等,要证明这个三角形是等边三角形,有两种思考方法:①证明另一边也与这两边相等;②证明这个三角形中有一个角等于60°.(2)已知一个三角形中有一个角等于60°,要证明这个三角形是等边三角形,有两种思考方法:①证明另外两个角也等于60°;②证明这个三角形中有两边相等.探究点二:含30°角的直角三角形的性质【类型一】 利用含30°角的直角三角形的性质求线段长如图,在Rt △ABC 中,∠ACB =90°,∠B=30°,CD 是斜边AB 上的高,AD =3cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm解析:在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ACD =∠B =30°.在Rt △ACD 中,AC =2AD =6cm ,在Rt △ABC 中,AB =2AC =12cm.∴AB 的长度是12cm.故选D.方法总结:运用含30°角的直角三角形的性质求。
最新北师大版八年级下册数学 第1讲:等腰三角形与直角三角形-学案
一、提请学生回忆并整理已经学过的8条基本事实中的5条:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等(SAS);4.两角及其夹边对应相等的两个三角形全等(ASA);5.三边对应相等的两个三角形全等(SSS);在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明;2.回忆全等三角形的性质。
二、等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。
问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2.我们是如何证明上述定理的?问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?三、顶角是60°的等腰三角形是等边三角形;底角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形;三条边都相等的三角形是等边三角形。
二、1、定理斜边和一条直角边对应相等的两个直角三角形全等.这一定理可以简单地用“斜边、直角边”或“HL”表示.2、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边就等于斜边的一半3、课堂练习:考点一:等腰三角形【例题】1.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20° B.30° C.40° D.50°2.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°3.如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个4.(2014秋•西城区校级期中)已知:AD既是△ABC的角平分线又是BC边上的中线,DE⊥AB于E,DF ⊥AC于F,求证:BE=CF.5.(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.6.(2015•应城市二模)如图,点D、E在△ABC的BC边上,AB=AC,BD=CE.求证:AD=AE.7.如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.(1)用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹);(2)求证:BM=EM .8.(1)如图1,已知△ABC ,以AB 、AC 为边向△ABC 外作等边△ABD 和等边△ACE ,连接BE ,CD ,判断BE 与CD 的大小关系为:BE_____CD .(不需说明理由)(2)如图2,已知△ABC ,以AB 、AC 为边向外作等腰△ABD 和等腰△ACE ,且顶角∠BAD =∠CAE ,连接BE 、CD ,BE 与CD 有什么数量关系?请说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B 、E 的距离.已经测得∠ABC =45°,∠CAE =90°,AB =BC =100米,AC =AE ,求BE 的长.9.如图,在ABC △中,AC =AB ,120=B AC ∠°,B E =A E ,D 为EC 中点.C D E B A(1)求CAE ∠的度数;(2)求证:A DE △是等边三角形【习题】1.(1)如图,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .求证:AD=BE .(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM 为△DCE边DE上的高,连接BE.①求证:2CM+BE=AE;②若将图2中的△DCE绕点C旋转至图3所示位置,①中的结论还成立吗?若不成立,写出它们之间的数量关系.2.如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.3.(2014秋•嘉鱼县校级月考)如图所示,∠1=∠2,BD=CD,试证明△ABC是等腰三角形.4(2014秋•衡阳县校级月考)已知:如图所示,AD是△ABC的高,E为AD上一点,且BE=EC,求证:△ABC是等腰三角形.5.(2013秋•滨湖区校级期中)把一张对边平行的纸条,如图所示折叠,重合部分是什么形状?说明理由.6.(2012•温州模拟)在下列四个条件中:①AB=DC;②BE=CE;③∠B=∠C;④∠BAE=∠CDE.请选出两个作为条件,得出△AED是等腰三角形(写出一个即可),并加以证明.已知:;求证:△AED是等腰三角形.7.(2012秋•文登市校级期中)如图,△ABC是等边三角形,BD是中线,P是直线BC上一点,CP=CD.求证:△DBP是等腰三角形.8.(2011秋•西城区校级期中)如图所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD 延长线于E,BA、CE延长线相交于F点.求证:(1)△BCF是等腰三角形;(2)BD=2CE.9.(2010春•福安市期末)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.10.(2009春•东山县校级期末)△ABC是等腰直角三角形,∠BAC=90°,BE是角平分线,ED⊥BC.①请你写出图中所有的等腰三角形;②若BC=10,求AB+AE的长.11.(2015春•龙口市期末)将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.考点二:直角三角形【例题】1.(2007春•南阳期末)如图:△ABC中,AD⊥BC于D,点E在AD上,△ADC和△BDE是等腰三角形,EC=5cm,求AB的长.2.(2002•呼和浩特)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.3.如图,△ABC的高BD与CE相交于点O,OD=OE,AO的延长线交BC于点M,请你从图中找出几对全等的直角三角形,并说明理由.4.(2014•南岗区模拟)如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE中点,连接MD,若BD=2,CD=1.则MD的长为.5.(2015春•白城校级期中)在Rt△ABC中,∠C=90°,D是BC边上一点,且BD=AD=10,∠ADC=60°,求△ABC的面积.6.(2015秋•岳池县期中)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长.【习题】1.(2010•大连校级自主招生)在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE交于点P,若∠A=50°,则∠BPC的度数是度.2.(2007•包头)如图,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6.沿DE折叠,使得点A与点B重合,则折痕DE的长为.3.(2015春•秦淮区期末)如图,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.4.(2015秋•武威校级月考)如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.5.(2015秋•周口校级月考)如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.6.如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=152°,求∠EDF.7.(2015秋•威海期中)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,求BE的长.8.(2013秋•龙口市期末)如图,Rt△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,若AD=6cm,求DC 的长.9.(2012•淮安)如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10,AB=20.求∠A的度数.10.(2015秋•建湖县期中)如图,在四边形ABCD中,∠BAD=∠BCD=90°,M、N分别是BD、AC的中点(1)求证:MN⊥AC;(2)若∠ADC=120°,求∠1的度数.11.(2015秋•东台市期中)如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,试说明:(1)MD=MB;(2)MN⊥BD.12.(2015秋•绍兴校级期中)已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)若∠EMD=40°,求∠DAC的度数.13.(2014秋•无锡校级期末)已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.14.(2014秋•黄浦区期末)如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点.(1)求证:MN⊥BD;(2)当∠BCA=15°,AC=10cm,OB=OM时,求MN的长.11。
北师大版八年级下册数学1.2直角三角形全等的判定(HL定理)教学设计
一、教学目标
(一)知识与技能
1.理解并掌握直角三角形的定义及性质;
2.掌握HL定理的证明过程和判定方法;
3.学会运用HL定理解决实际问题时,正确识别直角三角形的直角边和斜边;
4.能够运用HL定理与其他全等判定方法(如SSS、SAS等)相结合,解决复合型全等问题。
4.强调HL定理在实际生活中的应用,激发学生学习数学的兴趣,提高学生的应用意识。
5.布置课后作业,让学生在课后进一步巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固学生对直角三角形全等判定(HL定理)的理解和应用,特布置以下作业:
1.完成教材课后练习题1-5题,要求学生在解题过程中,准确识别直角边和斜边,熟练运用HL定理进行判定。
(二)过程与方法
在教学过程中,教师应关注以下方面:
1.引导学生通过观察、分析、归纳等思维活动,发现并理解HL定理;
2.采用问题驱动法,设计具有启发性和挑战性的问题,激发学生的求知欲和探究精神;
3.组织学生进行小组合作学习,培养学生的团队协作能力和交流表达能力;
4.引导学生运用HL定理解决实际问题,培养学生的应用意识和实践能力;
5.反馈评价,查漏补缺:通过课堂练习、小组互评等方式,了解学生的学习情况,针对学生的薄弱环节进行有针对性的辅导;
6.归纳总结,提炼方法:在课程结束时,引导学生对所学知识进行归纳总结,提炼解题方法,提高学生的几何素养。
在教学过程中,教师应关注以下方面:
1.关注学生个体差异,实施差异化教学,使每位学生都能在原有基础上得到提高;
b.分享:组内成员在学习HL定理过程中遇到的困难和解决方法;
1.2.1 直角三角形的性质与判定教说课稿 2022-2023学年北师大版八年级数学下册
1.2.1 直角三角形的性质与判定教说课稿一、教学目标1.知识与技能:掌握直角三角形的性质与判定方法。
2.过程与方法:通过引导学生观察、归纳和推理,培养学生分析问题、解决问题的能力。
3.情感态度价值观:培养学生对数学的兴趣,增强数学的实际应用能力。
二、教学重点和难点1.教学重点:直角三角形的性质和判定方法。
2.教学难点:引导学生运用所学知识进行问题解决。
三、教学准备1.教学工具:黑板、彩色粉笔、三角板、直尺等。
2.教学材料:教材《数学》(北师大版)八年级下册。
四、教学过程4.1 导入新课(板书)直角三角形的定义:一个三角形中,含有一个直角(90°)的三角形叫做直角三角形。
老师:同学们,我们今天将要学习的是直角三角形的性质与判定方法。
首先,请同学们简单回顾一下,什么是直角三角形?请举个例子。
4.2 引入新知识(板书)直角三角形的性质:直角三角形的两条直角边相互垂直;直角三角形的斜边最长。
老师:很好,直角三角形的定义大家都回忆了一下。
现在,我们来看一下直角三角形的性质。
请注意我的板书,直角三角形的性质有哪两个?学生:直角三角形的两条直角边相互垂直,斜边最长。
老师:非常棒!直角三角形的两条直角边相互垂直,斜边最长。
下面我们来看一些直角三角形的例子。
(教师展示直角三角形的图片,并引导学生观察)老师:同学们,请观察这些直角三角形的特点,它们的两条直角边是不是相互垂直?它们的斜边是不是最长的?学生:是的,两条直角边相互垂直,斜边最长。
老师:很好!我们通过观察可以发现,直角三角形的两条直角边相互垂直,斜边最长。
这是直角三角形的性质之一。
接下来,我们学习一下直角三角形的判定方法。
请看我的板书。
(板书)直角三角形的判定方法:方法一:三边关系法。
如果一个三角形的两条边的平方之和等于斜边的平方,那么这个三角形就是直角三角形。
方法二:两边关系法。
如果一个三角形的两条边长已知,且两条边相互垂直,那么这个三角形就是直角三角形。
(北师大版)数学八年级下册同步导学案汇总(全书完整版)
(2)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的腰长为.
4.△ABC中, AB=AC, 且BD=BC=AD,求∠A的度数.
5.如图,已知D.E在△ABC的边BC上,AB=AC,AD=A E,求证:BD=CE
中考真题:已 知:如图,△ABC中,AD是高,CE是中线,DC=BE, DG⊥CE,G是垂足,求证:
2.D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别为E.F,且DE=DF,
求证BF=CE[解析]本题解决的关键是利用“HL”证明△BFD≌△CED
三、例题展示:
1.下列各选项中的两个直角三角形不一定全等的是()
A.两条直角边对应相等的两个直角三角形.
B.两条锐角边对应相等的两个直角三角形.
二、基础训练:
观察勾股定理及上述定理,它们的条件和结论之间有怎样的关系?然后观察下列每组命题,是否也在类似关系
(1)如果两个角是对顶角,那么它们相等.
如果两个角相等,那么它们 是对顶角.
(2)如果小明患了肺炎,那么他一定会发烧.
如果小明发烧,那么他一定患了肺炎.
(3)三角形中相等的边所对的角相等.
三角形中相等的角所对的边相等.
已知:
求证:
证明:
得出定理: .
问题:等腰三角形两条腰上的中线相等吗?高呢?还有其他的结论吗?请你证明它们,并与同 伴交流.
二、基 础训练;
1. 请同学们阅读P6的问题(1).(2),由此得到什么结论?
2. 我们知道等腰三角形的两个底角相等,反过来此命题成立吗?并与同伴交流,由此得到什么结论?
得出定理:;简称:.
新版北师大版八年级下册第一章三角形的证明导学案学生版
模块四:课下练习 1、 2、 在△ABC 中,AB=AC,AB 的垂直平分线与 AC 所在的直线相交所得的锐角为50°,则 如图, 已知∠ABC=20°, BD=DE=EF=FG, 求∠CGF 和∠AFG 的度数分别是_________.
∠B 等于________度.
3、
如图, 在△ABC 中, ∠B、 ∠C 的平分线交于 E, 过 E 作 DF∥BC 交 AB 于 D, 交 AC 于 F. 若 ). D.6 A.9 B.7 C.8
3.如图,A、B、F、D 在同一直线上,AB=DF, AE=BC,且 AE∥BC. 求证:⑴△AEF≌△BCD, ⑵EF∥CD.
●中考在线 1、 已知:如图,△ABC 中,AD 是高,CE 是中线,DC=BE, DG⊥CE,G 是垂足, 求证: (1)G 是 CE 中点; (2)∠B=2∠BCE.
2.C 是线段 AB 的中点,CD 平分∠ACE,CE 平分∠BCD,CD=CE. (1)求证:△ACD≌△BCE; (2)若∠D=50°,求∠B 的度数.
模块一 一.知识点
第一节 预习反馈(P5 例 1—P9)
等腰三角形(二)
达州耀华育才学校八年级下册数学集体备课教案导学案
主备人:喻茂伦
1、等腰三角形两个底角的平分线相等; 2、等腰三角形腰上的高相等; 3、等腰三角形腰上的中线相等; 4、推理论证:等腰三角形腰上的中线相等; (以上定理画图、写出已知、求证、证明过程) 5.等边三角形的三个内角都相等,并且每个内角都等于 60。 6、两个角相等的三角形是等腰三角形。 (等角对等边) 7、反证法:在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有 定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法。 模块二 基础训练 1. 在如图的等腰三角形 ABC 中, (1)如果∠ABD= 1 1 ∠ABC,∠ACE= ∠ACB 呢?由此,你能得到一个什么结论? 3 3
北师大八年级数学下册第一单元 直角三角形教案3
《2 直角三角形》教案第1课时教学目标1、掌握“直角三角形的两个锐角互余”定理.2、掌握“有两个锐角互余的三角形是直角三角形”定理.3、掌握勾股定理及其逆定理.4、学会利用勾股定理进行计算、证明与作图.教学重难点教学重点:理解并会证明勾股定理及其逆定理.教学难点:会应用勾股定理的逆定理判定一个三角形是否为直角三角形.教学过程一、复习提问:1、什么叫直角三角形?2、直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理:直角三角形的两个锐角互余.(二)勾股定理及其逆定理1、三角形的三边关系.2、问题:直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?3、勾股定理的获得让学生用文字语言将上述问题表述出来.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方.4、勾股定理的逆定理.逆定理:如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形.强调说明:(1)勾股定理及其逆定理的区别.勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.(2)判定直角三角形的方法:①角为90°;②垂直③勾股定理的逆定理.(三)课堂小结(1)定理:直角三角形的两个锐角互余.(2)逆定理应用时易出现的错误分不清哪一条边作斜边(最大边).(3)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运.第2课时教学目标1、使学生理解判定两个直角三角形全等可用已经学过的全等三角形判定方法来判定.2、使学生掌握“斜边、直角边”公理,并能熟练地利用这个公理和一般三角形全等的判定方法来判定两个直角三角形全等.指导学生自己动手,发现问题,探索解决问题(发现探索法).由于直角三角形是特殊的三角形,因而它还具备一般三角形所没有的特殊性质.因为这是第一次涉及特殊三角形的特殊性,所以教学时要注意渗透由一般到特殊的数学思想,从而体现由一般到特殊处理问题的思想方法.教学重难点教学重点:“斜边、直角边”公理的掌握.教学难点:“斜边、直角边”公理的灵活运用.教学过程一、复习提问1、三角形全等的判定方法有哪几种?2、三角形按角的分类.二、引入新课我们学习了判定两个三角形全等的四种方法——SAS、ASA、AAS、SSS,我们也知道“有两边和其中一边的对角对应相等的两个三角形不一定全等”,这些结论适用于一般三角形.我们在三角形分类时,还学过了一些特殊三角形(如直角三角形).特殊三角形全等的判定是否会有一般三角形不适用的特殊方法呢?我们知道,斜边和一对锐角对应相等的两个直角三角形,可以根据“ASA”或“AAS”判定它们全等,两对直角边对应相等的两个直角三角形,可以根据“SAS”判定它们全等.提问:如果两个直角三角形的斜边和一对直角边相等(边边角),这两个三角形是否能全等呢?1、可作为预习内容如图(1),在△ABC与△A'B'C'中,若AB=A'B',AC=△A'C',∠C=∠C'=90°,这时Rt△ABC与Rt△A'B'C'是否全等?图(1)图(2)研究这个问题,我们先做一个实验:把Rt△ABC与Rt△A'B'C'拼合在一起(教具演示)如图(2),因为∠ACB=∠A'C'B'=90°,所以B、C(C')、B'三点在一条直线上,因此,△ABB'是一个等腰三角形,于是利用“SSS”可证三角形全等,从而得到∠B=∠B',根据“AAS”公理可知:Rt△ABC≌Rt△A'B'C'.2、两位同学比较一下,看看两人剪下的Rt△是否可以完全重合,从而引出直角三角形全等判定公理——“HL”公理.3、讲解新课斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这是直角三角形全等的一个特殊的判定公理,其他判定公理同于任意三角形全等的判定公理.三、小结由于直角三角形是特殊三角形,因而不仅可以应用判定一般三角形全等的四种方法,还可以应用“斜边、直角边”公理判定两个直角三角形全等.“HL”公理只能用于判定直角三角形全等,不能用于判定一般三角形全等,所以判定两个直角三角形的方法有五种:“SAS、ASA、AAS、SSS、HL”.。
北师大版数学八年级下册《直角三角形全等的判定》教学设计1
北师大版数学八年级下册《直角三角形全等的判定》教学设计1一. 教材分析《直角三角形全等的判定》是北师大版数学八年级下册第16章第2节的内容。
本节课主要让学生掌握直角三角形全等的判定方法,即HL(Hypotenuse-Leg)判定法。
学生通过观察、操作、交流等活动,体会数学的转化思想,提高解决问题的能力。
二. 学情分析学生在七年级已经学习了全等图形的概念,掌握了全等图形的性质和判定方法。
但直角三角形全等的判定方法与一般图形的全等判定有所不同,需要学生能够灵活运用已有知识,解决新的问题。
三. 教学目标1.理解直角三角形全等的判定方法(HL);2.能够运用HL判定法证明直角三角形全等;3.提高学生解决问题的能力,培养学生的空间观念。
四. 教学重难点1.教学重点:直角三角形全等的判定方法(HL);2.教学难点:如何运用HL判定法证明直角三角形全等。
五. 教学方法1.采用问题驱动法,引导学生探究直角三角形全等的判定方法;2.运用小组合作学习,让学生在讨论中加深对知识的理解;3.借助几何画板等软件,直观展示直角三角形全等的过程。
六. 教学准备1.准备直角三角形的相关图片和实例;2.准备几何画板软件,用于展示直角三角形全等的过程;3.准备练习题,用于巩固所学知识。
七. 教学过程1. 导入(5分钟)教师通过展示一些生活中的直角三角形实例,如三角板、房屋结构等,引导学生关注直角三角形。
提问:你们知道直角三角形全等的判定方法吗?2. 呈现(10分钟)教师简要回顾全等图形的概念,然后引入直角三角形全等的判定方法(HL)。
通过几何画板软件展示两个直角三角形,让学生观察并判断它们是否全等。
在学生观察的基础上,教师引导学生总结出HL判定法。
3. 操练(10分钟)教师给出几个运用HL判定法的例题,让学生独立完成。
学生在解题过程中,教师巡回指导,帮助学生克服困难。
4. 巩固(10分钟)教师设计一些变式题目,让学生运用HL判定法进行判断。
八年级数学下册导学案导学案1-6
八年级数学下导学案
第6课时
年级八班级学科数学课题 1.6直角三角形(2)
总 6
第1周
编制人审核人使用时间
使用者
星期5
【学习目标】
1、记住“斜边、直角边”或“HL”定理(重点)。
2、会运用“HL”定理解决与直角三角形有关的问题(难点)。
【学习过程】
一、知识回顾引入新课
1、判断三角形全等的方法有几种?
公理:推论:
2、为什么两边及其中一边的对角对应相等的两个三角形(SSA不一定全等。
如
图:)
由图⑴和图⑵可知,这两个三角形全等吗?
由图⑴和图⑶可知,这两个三角形全等吗?;因此,两边及其中一边的对角对
应相等的两个三角形不一定全等。
二、自主学习
问题1:(做一做)已知一条直角边和斜边,求作一个直角三角形。
作直角三角形:(用直尺和圆规完成)
与教材第19页小明作的直角三角形进行比较,你们俩个作直角三角形的是全等的吗?
得出定理:
三、合作探究
证明这个定理。
已知:
求证:
证明:
四、自我挑战
例如图,有两个长度相等的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?
【当堂检测】
点D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且DE=DF,求证:BF=CE.
【课堂小结】
1、直角三角形全等的判定定理及运用。
2、如何作一个直角三角形?
【作业设计】课本第21页知识技能第1、2题。
【教学反思】。
北师大版数学八年级下册1.2《直角三角形全等的判定》(第2课时)教学设计
北师大版数学八年级下册1.2《直角三角形全等的判定》(第2课时)教学设计一. 教材分析北师大版数学八年级下册1.2《直角三角形全等的判定》是学生在学习了全等图形的概念和性质、全等三角形的判定方法的基础上进行学习的。
本节课主要让学生掌握HL(斜边-直角边)判定两个直角三角形全等,并能够运用这一方法解决实际问题。
教材通过丰富的例题和练习,引导学生探索、发现、验证和应用知识,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了全等图形的概念和性质、全等三角形的判定方法。
但部分学生对于如何运用判定方法解决实际问题还不够熟练,特别是对于一些复杂图形的处理能力有待提高。
此外,学生的数学思维能力、观察能力和合作能力也有待进一步提高。
三. 教学目标1.理解HL(斜边-直角边)判定两个直角三角形全等的条件;2.学会运用HL判定方法解决实际问题;3.培养学生的逻辑思维能力、观察能力、合作能力。
四. 教学重难点1.教学重点:掌握HL(斜边-直角边)判定两个直角三角形全等的方法;2.教学难点:如何运用HL判定方法解决实际问题。
五. 教学方法1.情境教学法:通过生活情境导入,激发学生的学习兴趣;2.问题驱动法:引导学生发现并提出问题,培养学生解决问题的能力;3.合作学习法:学生进行小组讨论,培养学生的合作能力;4.实践操作法:让学生动手操作,提高学生的实践能力。
六. 教学准备1.准备相关的教学素材,如PPT、例题、练习题等;2.准备教学课件,以便进行多媒体教学;3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活情境,如建筑工人测量角度,引入直角三角形全等的概念。
提问:如何判断两个直角三角形是否全等?2.呈现(10分钟)展示PPT,引导学生发现并提出问题。
如:如果已知一个直角三角形的斜边和一条直角边,如何求解另一个直角三角形的对应边长?3.操练(10分钟)学生进行小组讨论,让学生通过合作学习,探索并验证HL判定两个直角三角形全等的方法。
北师大版八年级数学下册第一章三角形的证明1.2.1直角三角形优秀教学案例
1.激发学生对数学学习的兴趣,培养他们勇于探索、克服困难的志品质。
2.使学生感受到数学与生活的紧密联系,体会数学学习的实用价值,增强学生的数学应用意识。
3.培养学生的空间观念,提高他们对几何图形的审美能力,丰富学生的数学情感。
4.引导学生树立正确的价值观,认识到数学学习对人的一生发展的重要意义,激发学生追求卓越的信念。
(四)反思与评价
1.鼓励学生在学习过程中进行自我反思,总结自己的学习方法和经验,提高学生的学习策略。
2.教师对学生的学习过程和结果进行评价,关注学生的知识掌握、技能提升和情感态度,给予针对性的指导和鼓励。
3.组织学生互评,让学生学会欣赏他人的优点,发现自身的不足,促进学生的共同成长。
4.定期进行教学反思,根据学生的反馈调整教学策略,提高教学效果,确保每一位学生都能在直角三角形的学习中获得成功体验。
二、教学目标
(一)知识与技能
1.让学生掌握直角三角形的定义及性质,理解直角三角形的判定方法,并能运用相关知识解决实际问题。
2.培养学生运用几何图形、符号、公式等进行逻辑推理的能力,提高学生解决直角三角形相关问题的技能。
3.使学生能够运用直角三角形的性质,解决生活中的实际问题,如测量距离、计算面积等,增强学生的数学应用意识。
3.结合课本例题,设计富有挑战性的问题,引导学生主动探究直角三角形的性质与证明方法,培养学生的空间想象能力和逻辑推理能力。
(二)问题导向
1.以问题驱动教学,设计具有启发性的问题,引导学生思考直角三角形的性质及判定方法,培养学生的问题解决能力。
2.将问题分解为若干小问题,逐步引导学生深入探讨,帮助学生建立完整的知识体系。
(二)过程与方法
1.通过小组合作、讨论交流等方式,培养学生主动探究、发现问题的能力,提高学生的团队协作能力。
新北师大版八年级数学下册导学案
第一章三角形的证明本章总体设计介绍本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了8 条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论. 运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论.在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础.本章所证明的命题都和等腰三角形、直角三角形有关,主要包括:1.等腰三角形的性质和判定定理;2.直角三角形的性质定理和判定定理;3.线段的垂直平分线性质和判定定理;4.角平分线性质定理和判定定理。
本章教学建议对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。
对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。
证明过程中注意揭示蕴含其中的数学思想方法,如转化、归纳、类比等。
作为初中阶段几何证明的最后阶段,教学中应要求学生掌握综合法和分析法证明命题的基本要求,掌握规范的证明表述过程,达成课程标准对证明表述的要求。
1. 等腰三角形(一)一、学生知识状况分析在八年级上册第七章《平行线的证明》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规范,积累了一定的证明经验;在七年级下,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题,这些都为证明本节有关命题做了很好的铺垫。
二、教学任务分析本节将进一步回顾和证明全等三角形的有关定理,并进一步利用这些定理、公理证明等腰三角形的有关定理,由于具备了上面所说的活动经验和认知基础,为此,本节可以让学生在回顾的基础上,自主地寻求命题的证明,为此,确定本节课的教学目标如下:1.知识目标:理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理;在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理;熟悉证明的基本步骤和书写格式。
北师大版八年级下册数学《1.2 第1课时 直角三角形的性质与判定》教学设计
北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》教学设计一. 教材分析北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》教材,主要介绍了直角三角形的性质与判定方法。
内容包括:直角三角形的定义、性质以及直角三角形的判定方法。
通过本节课的学习,使学生掌握直角三角形的性质与判定,为后续学习勾股定理和相似三角形打下基础。
二. 学情分析学生在七年级已经学习了三角形的性质和分类,对三角形有了一定的认识。
但直角三角形的性质和判定较为抽象,需要通过实例和动手操作来加深理解。
此外,学生可能对数学证明过程感到困难,需要教师在教学中给予引导和帮助。
三. 教学目标1.知识与技能:掌握直角三角形的性质与判定方法。
2.过程与方法:通过观察、操作、探究、归纳等方法,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养合作意识,体验成功的喜悦。
四. 教学重难点1.重点:直角三角形的性质与判定方法的运用。
2.难点:对直角三角形性质与判定方法的理解和应用。
五. 教学方法采用启发式教学法、小组合作学习法、直观演示法、实践操作法等,引导学生主动探究、积极思考,提高学生的几何思维能力。
六. 教学准备1.准备直角三角形的相关图片和实例。
2.准备几何画图工具,如直尺、圆规、三角板等。
3.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过展示生活中常见的直角三角形的实例,如建筑工人使用的勾股尺、三角板等,引导学生回顾直角三角形的定义,激发学生的学习兴趣。
2.呈现(10分钟)教师利用多媒体展示直角三角形的性质与判定方法,引导学生观察、思考,并通过几何画图工具进行实际操作,让学生感受直角三角形的性质与判定方法。
3.操练(10分钟)教师提出一些有关直角三角形性质与判定的问题,学生进行小组讨论,引导学生运用所学知识解决问题。
在此过程中,教师应及时给予指导和鼓励,提高学生的问题解决能力。
北师大版八年级下册数学《1.1 第4课时 等边三角形的判定及含30°角的直角三角形的性质》教学设计
北师大版八年级下册数学《1.1 第4课时等边三角形的判定及含30°角的直角三角形的性质》教学设计一. 教材分析《1.1 第4课时等边三角形的判定及含30°角的直角三角形的性质》这一课时主要内容是等边三角形的判定和含30°角的直角三角形的性质。
北师大版八年级下册数学教材在安排这一内容时,旨在让学生通过观察、操作、猜想、归纳等方法,自主探究等边三角形的判定方法和含30°角的直角三角形的性质,培养学生的几何思维能力和空间想象能力。
二. 学情分析学生在学习这一课时之前,已经掌握了三角形的基本概念、性质和分类,具备了一定的几何知识基础。
但对于等边三角形的判定和含30°角的直角三角形的性质,可能还较为陌生。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生通过观察、操作、猜想、归纳等方法,逐步掌握等边三角形的判定方法和含30°角的直角三角形的性质。
三. 教学目标1.知识与技能目标:使学生掌握等边三角形的判定方法,理解含30°角的直角三角形的性质,并能运用所学知识解决相关问题。
2.过程与方法目标:通过观察、操作、猜想、归纳等方法,培养学生的几何思维能力和空间想象能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生在解决问题的过程中,体验到数学的乐趣和成就感。
四. 教学重难点1.重点:等边三角形的判定方法,含30°角的直角三角形的性质。
2.难点:等边三角形的判定方法的灵活运用,含30°角的直角三角形的性质在实际问题中的应用。
五. 教学方法1.引导发现法:教师通过提出问题,引导学生观察、操作、猜想、归纳等,发现等边三角形的判定方法和含30°角的直角三角形的性质。
2.小组合作学习法:学生分组进行讨论、交流,共同解决问题,培养团队合作精神。
3.案例教学法:教师通过出示相关案例,让学生运用所学知识进行分析和解决,提高学生的实际应用能力。
北师大版八年级下册数学《1.1 第4课时 等边三角形的判定及含30°角的直角三角形的性质》教案
北师大版八年级下册数学《1.1 第4课时等边三角形的判定及含30°角的直角三角形的性质》教案一. 教材分析等边三角形的判定及含30°角的直角三角形的性质是北师大版八年级下册数学第1.1节的内容。
这一节主要让学生了解等边三角形的判定方法,以及含30°角的直角三角形的性质。
在教材中,通过图片和实例引出等边三角形的判定方法,以及通过几何图形和推理介绍含30°角的直角三角形的性质。
二. 学情分析学生在学习这一节内容前,已经学习了三角形的性质,角的度量等基础知识。
对于这部分内容,学生可能已经有一定的了解,但需要进一步引导他们通过几何图形和推理来深入理解等边三角形的判定方法和含30°角的直角三角形的性质。
三. 教学目标1.了解等边三角形的判定方法,能够判断一个三角形是否为等边三角形。
2.掌握含30°角的直角三角形的性质,能够运用这些性质解决实际问题。
3.培养学生的空间想象能力和逻辑推理能力。
四. 教学重难点1.等边三角形的判定方法。
2.含30°角的直角三角形的性质及其应用。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等。
通过引导学生观察实例,提出问题,引导学生通过几何图形和推理来解决问题,培养学生的空间想象能力和逻辑推理能力。
六. 教学准备1.PPT课件2.几何图形板七. 教学过程1.导入(5分钟)通过展示一些等边三角形的图片,引导学生观察等边三角形的特点,引发学生的兴趣。
同时,提出问题:“你们知道等边三角形的判定方法吗?”2.呈现(15分钟)利用PPT课件,展示等边三角形的判定方法。
通过几何图形和推理,引导学生理解等边三角形的判定方法。
同时,展示含30°角的直角三角形的性质,引导学生理解并能够运用这些性质。
3.操练(15分钟)让学生分组合作,利用几何图形和直尺,尝试判断一些给定的三角形是否为等边三角形,并运用含30°角的直角三角形的性质解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:1.2直角三角形(第一课时)
课型:新课执笔人:吴春元审核:七年级数学备课组
学习目标
1、了解勾股定理及其逆定理的证明方法,
2、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立逆命
题不一定成立.
3、进一步掌握推理证明的方法,发展演绎推理能力
学习重点
勾股定理及其逆定理.
教学难点
用勾股定理的逆定理判断一个三角形是不是直角三角形及综合运用直角三角形的性质解题.
学习过程
一、知识点:
勾股定理:_______________________________________________________
勾股定理逆定理:_________________________________________________
逆命题与互逆命题:______________________________________________
互逆定理及逆定理:______________________________________________
二、自己试一下:
观察图1,你能验证a2+b2 =c2吗?把你的验证过程写下来,并与同伴进行交流.
三、用心想一想:
1、已知:在△ABC中,AB2+AC2=BC2
求证:△ABC是直角三角形。
2、在△ABC中,已知AB=10cm,BC=12cm,BC边上的中线AD=8cm.
求证:AB=AC.
四、巩固练习:
1. 已知直角三角形的两边长为3,4,则第三边长为________.
2.△ABC的三边为a=0.6cm, b=0.8cm, c=1cm, 则∠C=________.
3.Rt△ABC中,斜边AB=5,则AB2+BC2+CA2=_________.
4. 等边三角形的边长为8,则它的面积为_____________.
如图,AD=4,CD=3,∠ADC=90°,AB=13,BC=12,求图形的面积.
五、反思小结:
六、布置作业:
1.2直角三角形(1)
一、a2+b2 =c2三、应用举例
二、勾股定理及其逆定理四、随堂练习及小结。