§10.1 计数原理与排列、组合(讲解部分)
计数原理与排列、组合(讲解部分)
每一步得到的只是中间结果,任 何一步都不能独立完成这件事, 缺少任何一步也不可,只有各步 骤都完成了才能完成这件事
区别二
各类办法之间是互斥的、并列 各步之间是相互依存的,并且既
的、独立的
不能重复也不能遗漏
2.排列与排列数 (1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的① 顺序 排 成一列,叫做从n个不同元素中取出m个元素的一个排列.
AB),(EF,CD,AB),(EF,AB,CD)5种情况,共有
A
3种情况,而这
3
A
3种情况仅是
3
AB,CD,EF的顺序不同,因此只能作为一种分法,故分配方式有
C62C42C22
A
3 3
=15(种).
(4)有序均匀分组问题.
在(3)的基础上再分配给3个人,共有分配方式
C62C42C22 A33
·A33
A
6 6
种
方法,故共有5×A66 =3 600(种)方法.
(4)(捆绑法)将女生看成一个整体,与3名男生在一起进行全排列,有 A 44 种方
法,再将4名女生进行全排列,有
A
4 4
种方法,故共有
A44
·A
4 4
=576(种)方法.
(5)(插空法)男生互不相邻,而女生不作要求,∴应先排女生,有
A
4 4
种方法,再
注意 易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有
关,排列问题与顺序有关,组合问题与顺序无关.
4.排列数、组合数的公式及性质
公式
n!
(1) Anm =n(n-1)(n-2)…(n-m+1)=③ (n-m)! ;
性质
高三数学考点-两个计数原理、排列与组合
第十章计数原理、概率、随机变量及其分布1.计数原理(1)理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.(2)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.(3)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.(4)会用二项式定理解决与二项展开式有关的简单问题.2.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.②了解两个互斥事件的概率加法公式.(2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率.②了解几何概型的意义.3.概率与统计(1)理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列.(2)了解超几何分布,并能进行简单应用.(3)了解条件概率的概念,了解两个事件相互独立的概念;理解n次独立重复试验模型及二项分布,并能解决一些简单问题.(4)理解取有限个值的离散型随机变量的均值、方差的概念,会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单问题.(5)借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.10.1两个计数原理、排列与组合1.分类加法计数原理完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么完成这件事共有N=________________种不同的方法.2.分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么完成这件事共有N=____________种不同的方法.3.两个计数原理的区别分类加法计数原理和分步乘法计数原理解决的都是有关做一件事的不同方法的种数问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法______________,用其中______________都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法______________,只有______________才算做完这件事.4.两个计数原理解决计数问题时的方法最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要分步.(1)分类要做到“______________”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“______________”,即完成了所有步骤,恰好完成任务,当然步与步之间要______________,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.5.排列(1)排列的定义:从n个不同元素中取出m(m≤n)个元素,按照____________排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的________________的个数叫做从n个不同元素中取出m个元素的排列数,用符号______表示.(3)排列数公式:A m n=________________________.这里n,m∈N*,并且________.(4)全排列:n个不同元素全部取出的一个____________,叫做n个元素的一个全排列.A n n=n×(n-1)×(n-2)×…×3×2×1=__________,因此,排列数公式写成阶乘的形式为A m n=,这里规定0!=________.6.组合(1)组合的定义:从n个不同元素中取出m(m≤n)个元素____________,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的____________的个数,叫做从n个不同元素中取出m个元素的组合数,用符号________表示.(3)组合数公式:C m n=A m nA m m=____________=____________.这里n∈N*,m∈N,并且m≤n.(4)组合数的两个性质:①C m n=____________;②C m n+1=____________+____________.自查自纠1.m1+m2+…+m n2.m1×m2×…×m n3.相互独立任何一种方法互相依存各个步骤都完成4.(1)不重不漏(2)步骤完整相互独立5.(1)一定的顺序(2)所有不同排列A m n(3)n(n-1)(n-2)…(n-m+1)m≤n(4)排列n!n!(n-m)!16.(1)合成一组(2)所有不同组合C m n(3)n (n -1)(n -2)…(n -m +1)m !n !m !(n -m )!(4)①C n -mn ②C m n C m -1n(2016·郑州模拟)某项测试要过两关,第一关有3种测试方案,第二关有5种测试方案,某人参加该项测试,不同的测试方法种数为( )A .8B .15C .125D .243 解:由分步计数原理知所求为3×5=15.故选B.某校学生会由高一年级3人,高二年级3人,高三年级4人组成,现要选择不同年级的两名成员参加市里组织的活动,则共有选法( )A .27种B .33种C .36种D .81种解:由两个计数原理知,所求为3×3+3×4+3×4=33(种).故选B.(2016·四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) A .24 B .48 C .60 D .72解:由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C 13种方法,再将剩下的四个数字排列有A 44种方法,则满足条件的五位数有C 13A 44=72个.故选D.(2017河南五校质量监测改编)6名同学排成一排照相,甲不站两端,则不同的站法有________种.解:所求为A 14A 55=480种.故填480.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有____________种.解:按A →B →C →D 顺序分四步涂色,共有4×3×2×2=48(种).故填48.类型一 分类与分步的区别与联系甲同学有若干本课外参考书,其中有5本不同的数学书,4本不同的物理书,3本不同的化学书.现在乙同学向甲同学借书,试问:(1)若借一本书,则有多少种不同的借法? (2)若每科各借一本,则有多少种不同的借法? (3)若借两本不同学科的书,则有多少种不同的借法?解:(1)因为需完成的事情是“借一本书”,所以借给他数学、物理、化学书中的任何一本,都可以完成这件事情.故用分类计数原理,共有5+4+3=12(种)不同的借法.(2)需完成的事情是“每科各借一本书”,意味着要借给乙三本书,只有从数学、物理、化学三科中各借一本,才能完成这件事情.故用分步计数原理,共有5×4×3=60(种)不同的借法.(3)需完成的事情是“从三种学科的书中借两本不同学科的书”,要分三种情况:①借一本数学书和一本物理书,只有两本书都借,事情才能完成,由分步计数原理知,有5×4=20(种)借法;②借一本数学书和一本化学书,同理,由分步计数原理知,有5×3=15(种)借法;③借一本物理书和一本化学书,同理,由分步计数原理知,有4×3=12(种)借法.而上述的每一种借法都可以独立完成这件事情,由分类计数原理知,共有20+15+12=47(种)不同的借法.【点拨】仔细区分是“分类”还是“分步”是运用两个原理的关键.两个原理的区别在于一个与分类有关,一个与分步有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事,求完成这件事的方法种数,就用分类加法计数原理;如果完成一件事需要分成n 个步骤,缺一不可,即需要依次完成n 个步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步乘法计数原理.电视台在“欢乐在今宵”节目中拿出两个信箱,其中放着竞猜中成绩优秀的50位观众的来信,甲箱中有30封,乙箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两箱剩下来信中各确定一名幸运观众,有多少种不同结果?解:①幸运之星在甲箱中抽取,选定幸运之星,再在两箱内各抽一名幸运观众,根据分步计数原理有30×29×20=17 400种结果.②幸运之星在乙箱中抽取,有20×19×30=11 400种结果. 根据分类计数原理共有不同结果17 400+11 400=28 800(种).类型二 排列数与组合数公式(1)解方程3A x 8=4A x -19;(2)解方程C x +1x +3=C x -1x +1+C x x +1+C x -2x +2.解:(1)利用3A x 8=38!(8-x )!,4A x -19=49!(9-x +1)!, 得到3×8!(8-x )!=4×9!(10-x )!.利用(10-x )!=(10-x )(9-x )(8-x )!,将上式化简后得到(10-x )(9-x )=4×3. 再化简得到x 2-19x +78=0.解方程得x 1=6,x 2=13.由于A x 8和A x -19有意义,所以x 满足x ≤8和x -1≤9.于是将x 2=13舍去,原方程的解是x =6.(2)由组合数的性质可得C x -1x +1+C x x +1+C x -2x +2=C 2x +1+C 1x +1+C 4x +2=C 2x +2+C 4x +2, 又C x +1x +3=C 2x +3,且C 2x +3=C 2x +2+C 1x +2, 即C 1x +2+C 2x +2=C 2x +2+C 4x +2.所以C 1x +2=C 4x +2,所以5=x +2,x =3.经检验知x =3符合题意且使得各式有意义,故原方程的解为x =3.【点拨】(1)应用排列、组合数公式解此类方程时,应注意验证所得结果能使各式有意义.(2)应用组合数性质C m n +1=C m -1n+C m n 时,应注意其结构特征:右边下标相同,上标相差1;左边(相对于右边)下标加1,上标取大.使用该公式,像拉手风琴,既可从左拉到右,越拉越长,又可以从右推到左,越推越短.(1)解方程:3A 3x =2A 2x +1+6A 2x ; (2)已知1C m 5-1C m 6=710C m 7,则C m8=____________. 解:(1)由3A 3x =2A 2x +1+6A 2x 得3x (x -1)(x -2)=2(x +1)x +6x (x -1), 由x ≠0整理得3x 2-17x +10=0.解得x =5或23(舍去).即原方程的解为x =5.(2)由已知得m 的取值范围为{m |0≤m ≤5,m ≤Z },m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,整理可得m 2-23m +42=0,解得m =21(舍去)或m =2.故C m 8=C 28=28.故填28.类型三 排列的基本问题5名男生、2名女生站成一排照相: (1)两名女生要在两端,有多少种不同的站法? (2)两名女生都不站在两端,有多少种不同的站法? (3)两名女生要相邻,有多少种不同的站法? (4)两名女生不相邻,有多少种不同的站法? (5)女生甲要在女生乙的右方,有多少种不同的站法? (6)女生甲不在左端,女生乙不在右端,有多少种不同的站法?解:(1)两端的两个位置,女生任意排,中间的五个位置男生任意排:A 22A 55=240(种); (2)中间的五个位置任选两个排女生,其余五个位置任意排男生:A 25A 55=2 400(种);(3)把两名女生当作一个元素,于是对六个元素任意排,然后解决两个女生的任意排列:A 66A 22=1 440(种); (4)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生:A 55A 26=3 600(种); (5)七个位置中任选五个排男生问题就已解决,因为留下两个位置女生排法是既定的:A 57=2 520(种); (6)采用排除法,在七个人的全排列中,去掉女生甲在左端的A 66 个,再去掉女生乙在右端的A 66个,但女生甲在左端同时女生乙在右端的A 55 种排除了两次,要找回来一次.有A 77-2A 66+A 55=3 720(种).【点拨】(1)有约束条件的排列问题一般有以下几种基本类型与方法:①特殊元素优先考虑;②对于相邻问题采用“捆绑法”,整体参与排序后,再考虑整体内容排序;③对于不相邻问题,采用“插空”法,先排其他元素,再将不相邻元素插入空档;④对于定序问题,可先不考虑顺序限制,排列后再除以定序元素的全排列数.(2)解题的基本思路通常有正向思考和逆向思考两种.正向思考时,通过分步、分类设法将问题分解;逆向思考时,从问题的反面入手,然后“去伪存真”.3名女生和5名男生排成一排. (1)如果女生全排在一起,有多少种不同排法? (2)如果女生都不相邻,有多少种排法? (3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不邻),有多少种排法? (5)其中甲不站左端,乙不站右端,有多少种排法?解:(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有6个元素,排成一排有A 66种排法,而其中每一种排法中,三个女生又有A 33种排法,因此共有A 66·A 33=4 320(种)不同排法.(2)(插空法)先排5个男生,有A 55种排法,这5个男生之间和两端有6个位置,从中选取3个位置排女生,有A 36种排法,因此共有A 55·A 36=14 400(种)不同排法. (3)法一(位置分析法) 因为两端不排女生,只能从5个男生中选2人排列,有A 25种排法,剩余的位置没有特殊要求,有A 66种排法,因此共有A 25·A 66=14 400(种)不同排法.法二(元素分析法) 从中间6个位置选3个安排女生,有A 36种排法,其余位置无限制,有A 55种排法,因此共有A 36·A 55=14 400(种)不同排法. (4)8名学生的所有排列共A 88种,其中甲在乙前面与乙在甲前面各占其中的12,所以符合要求的排法种数为12A 88=20 160(种).(5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法) 甲在最右边时,其他的可全排,有A 77种;甲不在最右边时,可从余下6个位置中任选一个,有A 16种.而乙可排在除去最右边位置后剩余的6个中的任意一个上,有A 16种,其余人全排列,共有A 16·A 16·A 66种.由分类加法计数原理,共有A 77+A 16·A 16·A 66=30 960(种).法二(特殊位置法) 先排最左边,除去甲外,有A 17种,余下7个位置全排,有A 77种,但应剔除乙在最右边时的排法A 16·A 66种,因此共有A 17·A 77-A 16·A 66=30 960(种).法三(间接法) 8个人全排,共A 88种,其中,不合条件的有甲在最左边时,有A 77种,乙在最右边时,有A 77种,其中都包含了甲在最左边,同时乙在最右边的情形,有A 66种.因此共有A 88-2A 77+A 66=30 960(种).类型四 组合的基本问题课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法? (1)只有1名女生; (2)两队长当选; (3)至少有1名队长当选; (4)至多有2名女生当选; (5)既要有队长,又要有女生当选.解:(1)1名女生,4名男生,故共有C 15·C 48=350(种).(2)将两队长作为一类,其他11个作为一类,故共有C 22·C 311=165(种). (3)至少有1名队长当选含有两类:只有1名队长和2名队长.故共有:C 12·C 411+C 22·C 311=825(种). 或采用间接法:C 513-C 511=825(种).(4)至多有2名女生含有三类:有2名女生、只有1名女生、没有女生,故选法为:C25·C38+C15·C48+C58=966(种).(5)分两类:第一类女队长当选:有C412种选法;第二类女队长不当选:有C14·C37+C24·C27+C34·C17+C44种选法.故选法共有:C412+C14·C37+C24·C27+C34·C17+C44=790(种).【点拨】①分类时不重不漏;②注意间接法的使用,在涉及“至多”“至少”等问题时,多考虑用间接法(排除法);③应防止出现如下常见错误:如对(3),先选1名队长,再从剩下的人中选4人得C12·C412≠825,请同学们自己找错因.从7名男同学和5名女同学中选出5人,分别求符合下列条件的选法总数为多少?(1)A,B必须当选;(2)A,B都不当选;(3)A,B不全当选;(4)至少有2名女同学当选;(5)选出3名男同学和2名女同学,分别担任体育委员、文娱委员等五种不同的工作,但体育委员必须由男同学担任,文娱委员必须由女同学担任.解:(1)只要从其余的10人中再选3人即可,有C310=120(种).(2)5个人全部从另外10人中选,总的选法有C510=252(种).(3)直接法,分两类:A,B一人当选,有C12C410=420(种).A,B都不当选,有C510=252(种).所以总的选法有420+252=672(种).间接法:从12人中选5人的选法总数中减去从不含A,B的10人中选3人(即A,B都当选)的选法总数,得到总的选法有C512-C310=672(种).(4)直接法,分四步:选2名女生,有C25C37=10×35=350(种);选3名女生,有C35C27=210(种);选4名女生,有C45C17=35(种);选5名女生,有C55=1(种).所以总的选法有350+210+35+1=596(种).间接法:从12人中选5人的选法总数中减去不选女生与只选一名女生的选法数之和,即满足条件的选法有C512-(C57+C15C47)=596(种).(5)分三步:选1男1女分别担任体育委员、文娱委员的方法有C17C15=35(种);再选出2男1女,补足5人的方法有C26C14=60(种);最后为第二步选出的3人分派工作,有A33=6(种)方法.所以总的选法有35×60×6=12 600(种).类型五分堆与分配问题按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本; (5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本; (7)甲得1本,乙得1本,丙得4本. 解:(1)无序不均匀分组问题.先选1本,有C 16种选法;再从余下的5本中选2本,有C 25种选法;最后余下3本全选,有C 33种选法. 故共有C 16C 25C 33=60(种).(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有C 16C 25C 33A 33=360(种). (3)无序均匀分组问题.先分三步,则应是C 26C 24C 22种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB ,CD ,EF ),则C 26C 24C 22种分法中还有(AB ,EF ,CD ),(CD ,AB ,EF ),(CD ,EF ,AB ),(EF ,CD ,AB ),(EF ,AB ,CD ),共有A 33种情况,而这A 33种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有C 26C 24C 22A 33=15(种).(4)有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式C 26C 24C 22A 33·A 33=C 26C 24C 22=90(种). (5)无序部分均匀分组问题.共有C 46C 12C 11A 22=15(种).(6)有序部分均匀分组问题. 在(5)的基础上再分配给3个人,共有分配方式C 26C 12C 11A 22·A 33=90(种). (7)直接分配问题.甲选1本,有C 16种方法;乙从余下的5本中选1本,有C 15种方法,余下4本留给丙,有C 44种方法,故共有分配方式C 16C 15C 44=30(种).【点拨】平均分配给不同人的分法等于平均分堆的分法乘以堆数的全排列.分堆到位相当于分堆后各堆再全排列,平均分堆不到指定位置,其分法数为:平均分堆到指定位置堆数的阶乘.对于分堆与分配问题应注意:①处理分配问题要注意先分堆再分配;②被分配的元素是不同的(像“名额”等则是相同元素,不适用),位置也应是不同的(如不同的“盒子”);③分堆时要注意是否均匀,如6分成(2,2,2)为均匀分组,分成(1,2,3)为非均匀分组,分成(4,1,1)为部分均匀分组.(1)6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有____________种不同的分派方法.解:先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种分派方法.故填90.(2)(2015·广州调研)有4名优秀学生A ,B ,C ,D 全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有____________种.解:先把4名学生分为2、1、1的3组,有C 24C 12C 11A 22=6种分法,再将3组分到3个学校,有A 33=6种情况,则共有6×6=36种不同的保送方案.故填36.(3)(2015·江西模拟改编)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有____________种不同的分法.解:将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法; 第2步,在余下的5名教师中任取2名作为一组,有C 25种取法; 第3步,余下的3名教师作为一组,有C 33种取法.6名教师分组共有C 16C 25C 33=60种取法.再把这3组教师分配到3所中学,有A 33=6种分法, 因此共有60×6=360种不同的分法.故填360.类型六 数字排列问题用0,1,2,3,4,5这6个数字. (1)能组成多少个无重复数字的四位偶数?(2)能组成多少个奇数数字互不相邻的六位数(无重复数字)? 解:(1)符合要求的四位偶数可分为三类: 第一类:0在个位时,有A 35个;第二类:2在个位时,千位从1,3,4,5中选定一个(A 14种),十位和百位从余下的数字中选,有A 24种,于是有A 14·A 24个; 第三类:4在个位时,与第二类同理,也有A 14·A 24个. 由分类加法计数原理得,共有A 35+2A 14·A 24=156(个).(2)先排0,2,4,再让1,3,5插空,总的排法共A 33·A 34=144(种),其中0在排头,将1,3,5插在后三个空的排法共A 22·A 33=12(种),此时构不成六位数, 故总的六位数的个数为A 33·A 34-A 22·A 33=144-12=132(种). 【点拨】本例是有限制条件的排列问题,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置,同时注意题中隐含条件0不能在首位.(2015·山西模拟改编)用五个数字0,1,2,3,4组成没有重复数字的自然数,问: (1)四位数有几个?(2)比3 000大的偶数有几个?解:(1)首位数字不能是0,其他三位数字可以任意,所以四位数有C 14A 34=96个.(2)比3 000大的必是四位数或五位数. (Ⅰ)若是四位数,则首位数字必是3或4.①若4在首位,则个位数字必是0或2,有C 12A 23个数, ②若3在首位,则个位数字必是0或2或4,有C 13A 23个数,所以比3 000大的四位偶数有C12A23+C13A23=30个.(Ⅱ)若是五位数,则首位数字不能是0,个位数字必是0或2或4,①若0在个位,则有A44个;②若0不在个位,则有C12C13A33个数,所以比3 000大的五位偶数有A44+C12C13A33=60个.故比3 000大的偶数共有30+60=90个.1.解答计数应用问题的总体思路根据完成事件所需的过程,对事件进行整体分类,确定可分为几大类,整体分类以后,再确定在每类中完成事件要分几个步骤,这些问题都弄清楚了,就可以根据两个基本原理解决问题了,此外,还要掌握一些非常规计数方法,如:(1)枚举法:将各种情况一一列举出来,它适用于种数较少且计数对象不规律的情况;(2)转换法:转换问题的角度或转换成其他已知问题;(3)间接法:若用直接法比较复杂,难以计数,则可考虑利用正难则反的策略,先计算其反面情形,再用总数减去即得.2.排列与组合的区别与联系排列、组合之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题,排列是在组合的基础上对入选的元素进行全排列,因此,分析解决排列问题的基本思路是“先选,后排”.3.解排列、组合题的基本方法(1)限制元素(位置)优先法:①元素优先法:先考虑有限制条件的元素,再考虑其他元素;②位置优先法:先考虑有限制条件的位置,再考虑其他位置.(2)正难则反排异法:有些问题,正面考虑情况复杂,可以反面入手把不符合条件的所有情况从总体中去掉.(3)复杂问题分类分步法:某些问题总体不好解决时,常常分成若干类,再由分类加法计数原理解决或分成若干步,再由分步乘法计数原理解决.在解题过程中,常常既要分类,也要分步,其原则是先分类,再分步.(4)相离问题插空法:某些元素不能相邻或要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间.(5)相邻问题捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”作全排列,最后再“松绑”——将“捆绑”元素在这些位置上作全排列.(6)相同元素隔板法:将n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法,等价于种放法.这是针对相同元素的将n个相同小球串成一串,从间隙里选m-1个结点,剪截成m段,共有C m-1n-1组合问题的一种方法.(7)定序问题用除法:对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数.4.解组合问题时应注意(1)在解组合应用题时,常会遇到“至少”“至多”“含”等词,要仔细审题,理解其含义.(2)关于几何图形的组合题目,一定要注意图形自身对其构成元素的限制,解决这类问题常用间接法(或排除法).(3)分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者则即使两组元素个数相同,但因元素不同,仍然是可区分的.对于这类问题必须先分组后排列,若平均分m 组,则分法=取法m !.1.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A .56B .65 C.5×6×5×4×3×22D .6×5×4×3×2解:因为每位同学均有5种讲座可供选择,所以6位同学共有5×5×5×5×5×5=56种选法.故选A.2.A 32n =10A 3n ,n =( )A .1B .8C .9D .10解:原式等价于2n (2n -1)(2n -2)=10n (n -1)(n -2),n >3且n ∈N *,整理得n =8.故选B.3.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种B .70种C .75种D .150种解:从中选出2名男医生的选法有C 26=15种,从中选出1名女医生的选法有C 15=5种,所以不同的选法共有15×5=75种,故选C.4.(2017·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种解:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有C 24种方法,然后进行全排列A 33即可,由乘法原理,不同的安排方式共有C 24×A 33=36种方法.故选D.5.(2016·郑州二模)某校开设A 类选修课2门;B 类选修课3门,一位同学从中选3门,若要求两类课程中至少选一门,则不同的选法共有( )A .3种B .6种C .9种D .18种解:可分以下两种情况:①A 类选修课选1门,B 类选修课选2门,有C 12C 23种不同选法;②A 类选修课选2门,B 类选修课选1门,有C 22C 13种不同选法.所以根据分类加法计数原理知不同的选法共有:C 12C 23+C 22C 13=6+3=9(种).故选C.6.(2017·江西新余第一中学调研)西部某县将7位大学生志愿者(4男3女) 分成两组, 分配到两所小学支教, 若要求女生不能单独成组, 且每组最多5人, 则不同的分配方案共有( ) A .36种 B .68种 C .104种 D .110种解:分组的方案有3、4和2、5两类,第一类有(C 37-1)A 22=68(种);第二类有(C 27-C 23)A 22=36(种),所以共有68+36=104种不同的方案.故选C.7.(2017·天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)解:本题分两类:一类是一个数字是偶数,三个数字是奇数的四位数有C 14C 35A 44=960(个),二类是四个数字都是奇数的四位数有A 45=120(个),所以共有1 080个.故填1 080.8.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)解:第一步,选出4人,由于至少1名女生,故有C 48-C 46=55种不同的选法;第二步,从4人中选出队长,。
计数原理与排列组合
计数原理与排列组合1.两个计数原理2.排列3.组合1.计数原理的两个不同点(1)分类问题中的每一个方法都能完成这件事.(2)分步问题中每步的每一个方法都只能完成这件事的一部分.2.排列与组合问题(1)三个原则①有序排列、无序组合.②先选后排.③复杂问题分类化简或正难则反.(2)两个优先①特殊元素优先.②特殊位置优先.即先考虑特殊的元素(或位置),再考虑其他元素(或位置).3.正确理解组合数的性质(1)C m n=C n-mn从n个不同元素中取出m个元素的方法数等于取出剩余n-m个元素的方法数.(2)C m n+C m-1=C m n+1n从n+1个不同元素中取出m个元素可分以下两种情况:①不含特殊元素A有C m n种方法;②含特殊元素A有C m-1种方法.n[四基自测]1.从3,5,7,11这四个质数中,每次取出两个不同的数分别为a,b,共可得到lg a-lg b的不同值的个数是()A.6B.8C.12D.16答案:C2.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13 D.10答案:C3.(a+b+c)(d+e+f+h)(i+j+k+l+m)展开后共有________项.答案:604.如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有________条不同的路线.答案:325.(2017·高考全国卷Ⅱ改编)安排3人完成3项工作,每人完成一项,有______种安排方式.答案:6授课提示:对应学生用书第187页考点一计数原理◄考基础——练透[例1](1)已知集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15 D.21解析:因为P={x,1},Q={y,1,2},且P⊆Q,所以x∈{y,2}.所以当x=2时,y=3,4,5,6,7,8,9,共有7种情况;当x=y时,x=3,4,5,6,7,8,9,共有7种情况.故共有7+7=14种情况,即这样的点的个数为14.答案:B(2)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有() A.10种B.25种C.52种D.24种解析:共分4步:一层到二层有2种,二层到三层有2种,三层到四层有2种,四层到五层有2种,一共有24种.答案:D(3)从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A.56 B.54C.53 D.52解析:在8个数中任取2个不同的数共有8×7=56个对数值;但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52个.答案:D(4)从0,1,2,3,4这5个数字中任选3个组成三位数,其中偶数的个数为________.解析:按个位数字是否为0进行分类,因为0不能排在首位.若0在个位,则十位数字有4种排法,百位数字有3种排法,共有4×3=12种.若2或4在个位,个位数字有2种排法,再分类,若0在十位,则百位数字有3种排法.若0不在十位,十位数字有3种排法,百位数字有2种排法.共有2×(1×3+3×2)=18,故总12+18=30.答案:30应用计数原理的三个注意点(1)注意完成“这件事”是做什么.(2)弄清完成“这件事”是分类还是分步.①根据完成事件的特点,进行“分类”,根据事件的发生过程进行“分步”.②分类要按照同一个标准,任何一类中的任何一种方法都可以单独完成这件事.③分步时各步相互依存,只有各步都完成时,才算完成这件事.(3)合理设计步骤、顺序,使各步互不干扰,还要注意元素是否可以重复选择.1.将本例(3)改为从1,2,3,4,9中每次取出两个数记为a,b,则可得到log a b 的不同值的个数为()A.9 B.10C.13 D.16解析:显然a≠1,若a=2,3,4,9,b=1时,有log a b=0,1个;若a=2,b=3,4,9时,有log23,log24=2,log29,3个;若a =3,b =2,4,9时,有log 32,log 34,log 39=2(舍去),2个; 若a =4,b =2,3,9时,有log 42=12,log 43,log 49=log 23(舍去),2个; 若a =9,b =2,3,4时,有log 92,log 93=12(舍去),log 94=log 32(舍去),1个,共有1+3+2+2+1=9个. 答案:A2.将本例(4)改为用数字2,3,4,6,8组成无重复数字的三位偶数的个数为________.解析:先排个位有4种方法,再排十位有4种方法,最后排百位,有3种方法,故共有4×4×3=48种排法,对应48个三位偶数. 答案:483.将本例(4)改为在所有的两位数中,个位数字大于十位数字的两位数的个数为________.解析:根据题意,将十位上的数字按1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题设条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知:符合条件的两位数共有8+7+6+5+4+3+2+1=36(个). 答案:36考点二 排列问题◄考能力——知法[例2] (1)室内体育课上王老师为了丰富课堂内容,调动同学们的积极性,他把第四排的8名同学请出座位并且编号为1,2,3,4,5,6,7,8.通过观察这8名同学的身体特征,王老师决定,按照1,2号相邻,3,4号相邻,5,6号相邻,而7号与8号不相邻的要求站成一排做一种游戏,则有________种排法.(用数字作答)解析:把编号相邻的3组同学每两名同学捆成一捆,这3捆之间有A 33=6(种)排序方法,并且形成4个空当,再将7号与8号插进空当中,有A24=12(种)插法,而捆好的3捆中每相邻的两名同学都有A22=2(种)排法.所以不同的排法种数为23×6×12=576.答案:576(2)(2019·济南模拟)航天员拟在太空授课,准备进行标号为0,1,2,3,4,5的六项实验,向全世界人民普及太空知识,其中0号实验不能放在第一项,最后一项的标号小于它前面相邻一项的标号,则实验顺序的编排方法种数为________(用数字作答).解析:优先安排第一项实验,再利用定序问题相除法求解.由于0号实验不能放在第一项,所以第一项实验有5种选择.最后两项实验的顺序确定,所以共有5A55A22=300种不同的编排方法.答案:300有限制条件的排列问题的解题方法1.(2019·衡水冀州中学月考)将A,B,C,D,E五种不同的文件放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,若文件A,B必须放入相邻的抽屉内,文件C,D也必须放入相邻的抽屉内,则所有不同的放法有()A.120种B.210种C.420种D.240种解析:可先排相邻的文件,再作为一个整体与其他文件排列,则有A22A22A35=240种排法,所以选D.答案:D2.6名同学排成1排照相,要求同学甲既不站在最左边又不站在最右边,共有________种不同站法.解析:先从其他5人中安排2人站在最左边和最右边,再安排余下4人的位置,分为两步:第1步,从除甲外的5人中选2人站在最左边和最右边,有A25种站法;第2步,余下4人(含甲)站在剩下的4个位置上,有A44种站法.由分步乘法计数原理可知,共有A25A44=480(种)不同的站法.答案:480考点三组合问题及混合问题◄考基础——练透角度1简单的组合问题[例3](1)(2018·高考全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)解析:法一:按参加的女生人数可分两类:只有1位女生参加有C12C24种,有2位女生参加有C22C14种.故共有C12C24+C22C14=2×6+4=16(种).法二:间接法.从2位女生,4位男生中选3人,共有C36种情况,没有女生参加的情况有C34种,故共有C36-C34=20-4=16(种).答案:16(2)有甲、乙、丙3项任务,甲需2个人承担,乙、丙各需1个人承担,从10个人中选出4个人承担这3项任务,不同的选法有________.解析:要从10个人中选出4个人承担3项任务,甲需2个人承担,乙、丙各需1个人承担,先从10个人中选出2个人承担甲项任务,不同的选法有C210种;再从剩下8个人中选1个人承担乙项任务,不同的选法有C18种;最后从另外7个人中选1个人承担丙项任务,不同的选法有C17种.综上,不同的选法共有C210C18C17=2 520(种).答案:2 520角度2简单的组合与排列混合问题[例4](1)将红、黑、蓝、黄4个不同的小球放入3个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放在同一个盒子,则不同的放法的种数为()A.18 B.24C.30 D.36解析:将4个小球放入3个不同的盒子,先在4个小球中任取2个作为1组,再将其与其他2个小球对应3个盒子,共有C24A33=36种情况,若红球和蓝球放到同一个盒子,则黑、黄球放进其余的盒子里,有A33=6种情况,则红球和蓝球不放到同一个盒子的放法种数为36-6=30种.答案:C(2)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案种数是() A.150 B.300C.600 D.900解析:若甲去,则乙不去,丙去,再从剩余的5名教师中选2名,有C25×A44=240种方法;若甲不去,则丙不去,乙可去可不去,从6名教师中选4名,共有C46×A44=360种方法.因此共有600种不同的选派方案.答案:C角度3分组、分配问题[例5](1)(2017·高考全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种解析:因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C24C12C11A22=6种,再分配给3个人,有A33=6种,所以不同的安排方式共有6×6=36(种).答案:D(2)将2名教师、4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有() A.12种B.10种C.9种D.8种解析:先从4名学生中选2人安排到甲地,有C24种不同的方法;再从2名老师中选1人安排到甲地,有C12种不同的方法;其余2名学生和1名老师安排到乙地只有一种方法,根据分步乘法计数原理,不同的安排方法共有C24C12=12种,故选A.答案:A1.解决简单的排列与组合的综合问题的思路(1)根据附加条件将要完成事件先分类.(2)对每一类型取出符合要求的元素组合,再对取出的元素排列.(3)由分类加法计数原理计算总数.2.“分组分配”问题的解题技巧1.(2019·河南豫北名校联考)2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有()A.18种B.24种C.48种D.36种解析:由题意,有两类:第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个,有C23=3种,然后分别从选择的班级中再选择一个学生,有C12C12=4种,故有3×4=12种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,有C13=3种,然后再从剩下的两个班级中分别选择一人,有C12C12=4种,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式,故选B.答案:B2.(2019·福建福州模拟)福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有()A.90种B.180种C.270种D.360种解析:根据题意,分3步进行分析:①在6位志愿者中任选1个,安排到甲展区,有C16=6种情况;②在剩下的5个志愿者中任选1个,安排到乙展区,有C15=5种情况;③将剩下的4个志愿者平均分成2组,然后安排到剩下的2个展区,有C24C22A22×A22=6种情况,则一共有6×5×6=180种不同的安排方案,故选B.答案:B数学建模、数学运算——不定方程与组合问题中的学科素养在学习排列组合知识时,我们经常遇到把若干相同元素分成几组的问题.这类问题可以用一个比较简单的模型,就是转化为不定方程解的个数问题,从而得以快速解决.[直接隔板法][例]把6个相同的小球放入4个盒子中,每个盒子都不为空,有多少种不同的放法?解析:本题相当于将6个相同的球分为4组.可以先把6个球排成一排,中间有五个空位,我们只需在这五个位置中任取三个位置放上隔板就可把小球分隔成4组了,故有C35=10种不同的放法.[拓展为不定方程法]设每个盒子中的小球数分别为x1,x2,x3,x4,求x1+x2+x3+x4=6的正整数解的组数.这是四元不定方程,把6分为6个1,6个1之间有5个空,选3个空放3个加号,所以有C35=10种放法.一种放法就唯一对应不定方程x1+x2+x3+x4=6的一组正整数解,故此不定方程有C35=10组正整数解.[拓展模型]设n,m∈N*,n≥m≥1,则不定方程x1+x2+x3+…+x m=n的正整数解有C m-1n-1组.拓展应用1把20个相同的小球放入4个盒子中,有多少种不同的放法?解析:与例题相比少了“每个盒子都不为空”这个条件,就是说盒子里可以为空.我们可以这样理解:设每个盒子的小球数分别为x1,x2,x3,x4,求不定方程x1+x2+x3+x4=20的非负整数解的组数.那么能否转化为模型1来解决呢?先在每个盒子里放上1个球,保证每个盒子不空,然后再来放这20个球,就是模型1了.即(x1+1)+(x2+1)+(x3+1)+(x4+1)=20+4=24,令y1=x1+1,y2=x2+1,y3=x3+1,y4=x4+1,则y1,y2,y3,y4为正整数,问题转化为求不定方程y1+y2+y3+y4=24的正整数解的组数,从而转化为模型1,可知不定方程有C4-1=C323组正整数解.所以,原20+4-1问题中,有C323种不同的放球方法.拓展应用2把20个相同的小球放入5个编号为1,2,3,4,5的盒子中,且每个盒子里的球数不得少于编号,问有多少种不同的放法?解析:问题即是解不定方程x1+x2+x3+x4+x5=20,(x i≥i,x i∈N*).我们先在2号盒子里放1个球,3号盒子放2个球,4号盒子放3个球,5号盒子放4个球,则有x1+(x2-1)+(x3-2)+(x4-3)+(x5-4)=10,令y i=x i-(i-1),则y1,y2,y3,y4,y5为正整数,只需求y1+y2+y3+y4+y5=C49=126种不同=10的正整数解有多少组,从而转化为模型1,知有C5-110-1的放法.课时规范练单独成册:对应学生用书第325页A组基础对点练1.把标号为1,2,3,4,5的同色球全部放入编号为1~5号的箱子中,每个箱子放一个球且要求偶数号的球必须放在偶数号的箱子中,则所有的放法种数为()A.36B.20C.12 D.10解析:依题意,满足题意的放法种数为A22·A33=12,选C.答案:C2.一个学习小组有6个人,从中选正、副组长各一个,则不同的选法种数为()A.C26B.A26C.62D.26解析:问题可转化为从6个元素中任选两个元素的排列问题,共有A26种不同的选法.答案:B3.已知集合A={1,2,3,4,5,6},则集合A的含偶数个元素的子集的个数为()A.16 B.32C.64 D.128解析:由题意,集合A的含偶数个元素的子集的个数为C06+C26+C46+C66=1+15+15+1=32.答案:B4.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A.24B.18C.12 D.6解析:当从0,2中选取2时,组成的三位奇数的个位只能是奇数,十位、百位全排列即可,共有C23C12A22=12个.当选取0时,组成的三位奇数的个位只能是奇数,0必须在十位,共有C23C12=6个.综上,共有12+6=18个.选B.答案:B5.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的插法共有()A.336种B.120种C.24种D.18种解析:分三步完成:第一步,插入第1本书,有6种方法;第二步,插入第2本书,有7种方法;第三步,插入第3本书,有8种方法,所以不同的插法有6×7×8=336种.答案:A6.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144 B.120C.72 D.24解析:先把三把椅子隔开摆好,它们之间和两端有4个位置,再把三人带椅子插放在四个位置,共有A34=24种放法,故选D.答案:D7.若从1,2,3,…,9这9个数字中同时取4个不同的数字,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种解析:共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).答案:D8.(2019·洛阳模拟)从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.72 B.56C.49 D.28解析:分两类:甲、乙中只有1人入选且丙没有入选,甲、乙均入选且丙没有入选,计算可得所求选法种数为C12C27+C22C17=49.答案:C9.(2019·唐山模拟)某会议室第一排有9个座位,现安排4人就座,若要求每人左右均有空位,则不同的坐法种数为()A.8 B.16C.24 D.60解析:根据题意,9个座位中满足要求的座位只有4个,现有4人就座,把4人进行全排列,即有A44=24种不同的坐法.答案:C10.(2019·成都模拟)由数字1,2,3,4,5组成没有重复数字的五位数,若2与4相邻,且1与2不相邻,则这样的五位数共有()A.12个B.24个C.36个D.48个解析:分步完成,先排2,4,有A22种排法,再把排好的2,4看成一个整体,与3,5再排,有A33种排法;最后把1插空,仅有3个空位可选,有3种插法,故共有A22A33·3=2×6×3=36个不同的五位数.答案:CB组能力提升练11.如图所示,∠MON的边OM上有四点,A1,A2,A3,A4,ON上有三点B1,B2,B3,则以O,A1,A2,A3,A4,B1,B2,B3为顶点的三角形个数为()A.30 B.42C.54 D.56解析:分类完成.在O,A1,A2,A3,A4这5个点中取2个,在B1,B2,B3中取1个,有C25C13个三角形;在B1,B2,B3中取2个,在A1,A2,A3,A4中取1个,有C23C14个三角形,故共C25C13+C23C14=42个.答案:B12.某学习小组共6人,现遇到了两道难题,一道物理题,一道数学题,其中甲、乙、丙三人对数学题感兴趣,丁对两道题都感兴趣,戍、己两人对物理题感兴趣,现从感兴趣的人中各选2人解这两道难题,则不同的选法种数为() A.9 B.15C.18 D.30解析:若丁解数学题,则不同的选法为C24C22;若丁解物理题,则不同的选法为C23C23;故共有C24C22+C23C23=15种不同的选法.答案:B13.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对解析:正方体中共有12条面对角线,任取两条作为一对共有C212=66对,12条对角线中的两条所构成的关系有平行、垂直、成60°角.相对两面上的4条对角线组成的C24=6对组合中,平行有2对,垂直有4对,所以所有的平行和垂直共有3C24=18对.所以成60°角的有C212-3C24=66-18=48(对).答案:C14.在一次8名运动员参加的百米成绩测试中,甲,乙,丙三人要求在第三、四、五跑道上,其他人随意安排,则安排这8人进行成绩测试的方法的种数为________.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有3,4,5三条跑道可安排.所以安排方式有3×2×1=6种.第二步:安排另外5人,可在余下的5条跑道上安排,所以安排方式有5×4×3×2×1=120种.所以安排这8名运动员的方式有6×120=720种.答案:72015.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).解析:“小集团”处理,特殊元素优先,则不同的排法共有C36C12A22A33=480(种).答案:48016.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形,使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为“3,5,7”的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.解析:首先看图形中的3,5,7,有C13=3种涂法.对于2,有两种涂法,对于4有两种涂法.当2,4涂的颜色相同时,1有2种涂法;当2,4涂的颜色不同时,1有1种涂法.根据对称性可知共有3×(2×2+2×1)2=108种涂法.答案:108第二节二项式定理授课提示:对应学生用书第190页[基础梳理]1.二项式定理(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*),其中右端为(a+b)n 的二项展开式.2.二项展开式的通项公式=C k n a n-k b k.第k+1项为:T k+13.二项式系数(1)定义:二项式系数为:C k n(k∈{0,1,2,…,n}).(2)二项式系数的性质和1.一对易混概念二项展开式中第r+1项的(1)二项式系数是C r n .而不是C r +1n .(2)项的系数是该项的数字因数. 2.两个常用公式(1)C 0n +C 1n +C 2n +…+C n n =2n .(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.(展开式的奇数项、偶数项的二项式系数相等) 3.三个重要特征(1)字母a 的指数按降幂排列由n 到0. (2)字母b 的指数按升幂排列由0到n .(3)每一项字母a 的指数与字母b 的指数和等于n .[四基自测]1.二项式⎝ ⎛⎭⎪⎫2x +1x 26的展开式中,常数项的值是( )A .240B .60C .192D .180答案:A2.(x -1)10的展开式中第6项的系数是( ) A .C 610 B .-C 610 C .C 510 D .-C 510答案:D3.二项式(2a 3-3b 2)10的展开式中各项系数的和为________. 答案:14.C 111+C 311+…+C 1111=________.答案:2105.(2018·高考全国卷Ⅲ改编)(x 2+2x )5的展开式的二项式系数和为________. 答案:32授课提示:对应学生用书第190页考点一 通项公式法解决特定项或系数问题◄考基础——练透[例1] (1)(2018·高考全国卷Ⅲ)⎝ ⎛⎭⎪⎫x 2+2x 5的展开式中x 4的系数为( )A .10B .20C .40D .80解析:⎝ ⎛⎭⎪⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝ ⎛⎭⎪⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40. 故选C . 答案:C(2)二项式⎝ ⎛⎭⎪⎫x -1ax 6(a >0)展开式中x 2项的系数为15,则实数a =________.解析:由题意可知T r +1=C r 6x 6-2r(-1)r ·a -r ,0≤r ≤6,r ∈Z ,则x 2项的系数是C 26a-2=15,又a >0,则a =1. 答案:1(3)⎝⎛⎭⎪⎪⎫x -124x 8的展开式中的有理项共有________项. 解析:⎝ ⎛⎭⎪⎪⎫x -124x 8的展开式的通项为T r +1=C r 8(x )8-r ⎝ ⎛⎭⎪⎪⎫-124x r =⎝ ⎛⎭⎪⎫-12r C r 8x (r=0,1,2,…,8),为使T r +1为有理项,r 必须是4的倍数,所以r =0,4,8,故共有3个有理项,分别是T 1=⎝ ⎛⎭⎪⎫-120C 08x 4=x 4,T 5=⎝ ⎛⎭⎪⎫-124C 48x =358x ,T 9=⎝ ⎛⎭⎪⎫-128C 88x -2=1256x 2. 答案:3通项公式法即利用二项展开式的通项公式,根据题意,对相应的指数进行赋值,从而解决指定项问题的方法.此方法适用于已知二项式,求常数项、指定项的系数等问题.破解此类题的关键点:(1)求通项,根据二项式(a +b )n 的展开式的通项公式T k +1=C k n an -k b k (k =0,1,2,…,n ),整理出T k +1=m ·x f (k ).(2)找方程,依题设条件中的指定项的相关信息,寻找关于k 的方程. (3)解方程,通过解方程,求出k 的值. (4)得结论,把k 的值代入通项公式,得结论.1.在本例(2)的条件下求展开式中的常数项.解析:由于a =1,(x -1x )6的通项公式T r +1=(-1)r C r 6·x 6-2r . 令6-2r =0,∴r =3. 常数项为T 4=(-1)3C 36=-20.2.将本例(1)改为:⎝ ⎛⎭⎪⎫x 2+a x 5的展开式中x 4的系数为40,求a 的值.解析:T r +1=C r 5(x 2)5-r ·⎝ ⎛⎭⎪⎫a x r=C r 5·a r ·x 10-3r ,令10-3r =4.∴r =2.∴C 25a 2=40,∴a 2=4,∴a =±2.考点二 赋值法解决二项展开式的各项系数和问题◄考能力——知法[例2] (1)设⎝ ⎛⎭⎪⎫5x -1x n 的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,则展开式中含x 的项为________.(2)若⎝ ⎛⎭⎪⎫x 2-1x n的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________. 解析:(1)由已知条件4n-2n=240,解得n =4,T r +1=C r 4(5x )4-r ⎝⎛⎭⎪⎫-1x r=(-1)r 54-r C r 4x ,令4-3r2=1,得r =2,T 3=150x .(2)二项式⎝ ⎛⎭⎪⎫x 2-1x n 的展开式的第6项是T 5+1=C 5n (-1)5x 2n -15,令2n -15=1,得n =8.在二项式(1-3x )8的展开式中,令x =0,得a 0=1;令x =1,得a 0+a 1+…+a 8=(-2)8=256.所以a 1+a 2+…+a 8=255. 答案:(1)150x (2)255赋值法是指对二项式中的未知元进行赋值,从而求得二项展开式的各项的系数和的方法.此方法体现的是从一般到特殊的转化思想.破解此类题的关键点: (1)赋值,认真观察已知等式,给未知元合理赋值.常赋的值有1,-1,0等. (2)求参数,通过合理赋值,建立关于参数的方程,并解方程,求出参数的值. (3)得结论,求出指定项的系数和.1.(2019·河北邯郸模拟)在⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为64,则x 3的系数为( ) A .15 B .45 C .135D .405解析:令⎝ ⎛⎭⎪⎫x +3x n 中x 为1,得各项系数和为4n ,又展开式的各项的二项式系数和为2n,各项系数的和与各项二项式系数的和之比为64,∴4n2n =64,解得n=6,∴二项式的展开式的通项公式为T r +1=C r 6·3r·x ,令6-32r =3,求得r =2,故展开式中x 3的系数为C 26·32=135,故选C .答案:C2.(2019·湖南湘潭模拟)若(1+x )(1-2x )8=a 0+a 1x +…+a 9x 9,x ∈R ,则a 1·2+a 2·22+…+a 9·29的值为( ) A .29 B .29-1 C .39D .39-1解析:(1+x )(1-2x )8=a 0+a 1x +a 2x 2+…+a 9x 9,令x =0,得a 0=1;令x =2,得a 0+a 1·2+a 2·22+…+a 9·29=39, ∴a 1·2+a 2·22+…+a 9·29=39-1.故选D . 答案:D考点三 求非二项式结构的展开的特定项(或系数)◄考基础——练透[例3] (1)如果(1+x +x 2)(x -a )5(a 为实常数)的展开式中所有项的系数和为0,则展开式中含x 4项的系数为________;(2)(x 2-x +1)10展开式中x 3项的系数为________; (3)(1+3x )6⎝⎛⎭⎪⎪⎫1+14x 10展开式中的常数项为________. 解析:(1)∵(1+x +x 2)(x -a )5的展开式所有项的系数和为(1+1+12)(1-a )5=0, ∴a =1.∴(1+x +x 2)(x -a )5=(1+x +x 2)(x -1)5=(x 3-1)·(x -1)4=x 3(x -1)4-(x -1)4,其展开式中含x 4项的系数为C 34(-1)3-C 04(-1)0=-5.(2)由题意,(x 2-x +1)10=[x (x -1)+1]10=C 010[x (x -1)]0·110+C 110[x (x -1)]1·19+C 210[x (x -1)]2·18+C 310[x (x -1)]3·17+…+C 1010[x (x -1)]10·10 =C 010+C 110x (x -1)+C 210x 2(x -1)2+C 310x 3(x -1)3+…+C 1010x 10(x -1)10, 因为x 3出现在C 210x 2(x -1)2+C 310x 3(x -1)3=C 210x 2(x 2-2x +1)+C 310x 3(x 3-3x 2+3x -1)中,所以x 3的系数为C 210(-2)+C 310(-1)=-90-120=-210.(3)分别求两个因式的通项:T r +1=C r 6x,T r ′+1=C r ′10x ,则C r 6x ·C r ′10x=C r 6C r ′10x.又0≤r ≤6,0≤r ′≤10,则r 3-r ′4=0,解得r =r ′=0,r =3且r ′=4,r =6且r ′=8. 即常数项为1+C 36C 410+C 66C 810=4 246.[答案] (1)-5 (2)-210 (3)4 246非二项式结构求指定项的方法1.(2017·高考全国卷Ⅲ)(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40D .80解析:当第一个括号内取x 时,第二个括号内要取含x 2y 3的项,即C 35(2x )2(-y )3,当第一个括号内取y 时,第二个括号内要取含x 3y 2的项,即C 25(2x )3(-y )2,所以x 3y 3的系数为C 25×23-C 35×22=10×(8-4)=40.答案:C2.(2017·高考全国卷Ⅰ)⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .35解析:(1+x )6展开式的通项T r +1=C r 6x r ,所以⎝⎛⎭⎪⎫1+1x2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C .答案:C3.(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:(x 2+x +y )5=[(x 2+x )+y ]5的展开式中只有C 25(x 2+x )3y 2中含x 5y 2,易知x 5y 2的系数为C 25C 13=30,故选C .答案:C考点四 二项式系数或项的系数的最值问题◄考基础——练透[例4] (1)已知二项式(a x +13x)n (a >0)的展开式的第五、六项的二项式系数相等且最大,展开式中x 2项的系数为84,则a 的值为( ) A .1 B .14 C .2D .12解析:由展开式的第五、六项的二项式系数相等且最大可知n =9,则展开式的通项公式为T r +1=C r 9(a x )9-r(13x)r =C r 9a9-rx ·x=C r 9a9-rx (r =0,1,2,3,…,9),令92-5r 6=2,则r =3,所以C 39a 9-3=C 39a 6=84,解得a =±1,因为a >0,所以a =1. 答案:A(2)(2019·石家庄模拟)在(1-2x )n 的展开式中,偶数项的二项式系数之和为128,则展开式二项式系数最大的项为________.解析:由二项式系数的性质知,2n -1=128,解得n =8,(1-2x )8的展开式共有9项,中间项,即第5项的二项式系数最大,T 4+1=C 4814(-2x )4=1 120x 4. 答案:1 120x 41.二项式系数的最大值,根据(a +b )y 的二项式系数性质求解.2.项的系数的最值,利用不等式法.求出展开式的通项公式T r +1=C r n ·m ·x q =a r x q为最大系数,则⎩⎪⎨⎪⎧a r ≥a r +1,a r ≥a r -1.求r 的整数解.1.设n 为正整数,(x -2x 3)n 的展开式中仅有第5项的二项式系数最大,则展开式中的常数项为________.解析:依题意得,n =8,所以展开式的通项T r +1=C r 8x 8-r (-2x 3)r =C r 8x8-4r(-2)r ,令8-4r =0,解得r =2,所以展开式中的常数项为T 3=C 28(-2)2=112.答案:1122.(2019·厦门模拟)⎝⎛⎭⎪⎪⎫x +13x 2n (n ∈N *)的展开式中只有第6项系数最大,则其常数项为( ) A .120 B .210 C .252D .45解析:由已知得,二项式展开式中各项的系数和二项式系数相等.由展开式中只有第6项的系数C 52n 最大,可得展开式有11项,即2n =10,n =5. ⎝⎛⎭⎪⎪⎫x +13x 10展开式的通项为T r +1=C r 10xx=C r 10x,令5-56r =0可得r =6,此时T 7=C 610=210.答案:B数学运算、逻辑推理——二项式定理的展开原理的应用 [例1] (x +2y -3z )9的展开式中含x 4y 2z 3项的系数为( ) A .-136 000 B .-136 080 C .-136 160D .136 280解析:由(x +2y -3z )9=[x +(2y -3z )]9,得展开式的通项T r +1=C r 9·x 9-r ·(2y -3z )r =C r 9·x 9-r ·C t r ·(2y )r -t ·(-3z )t =C r 9·C t r ·2r -t ·(-3)t ·x 9-r ·y r -t ·z t (t ≤r ≤9),令⎩⎪⎨⎪⎧t =3,r -t =2,9-r =4,则⎩⎪⎨⎪⎧t =3,r =5.故含x 4y 2z 3项的系数为C 59×C 35×22×(-3)3=-136 080.故选B . 答案:B[例2] (2019·临沂模拟)489被7除的余数为________.解析:由489=(49-1)9=C 09499+C 19498(-1)+C 29497(-1)2+…+C 8949(-1)8+C 99(-1)9=49[C 09498+C 19497(-1)+C 29496(-1)2+…+C 89(-1)8]-7+6,知489被7除的余数为6. 答案:6课时规范练单独成册:对应学生用书第326页A 组 基础对点练1.(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20D .10解析:T k +1=C k 515-k (2x )k =C k 5×2k ×x k ,令k =2,则可得含x 2项的系数为C 25×22=40. 答案:B2.(x -2y )8的展开式中,x 6y 2项的系数是( ) A .56 B .-56 C .28D .-28解析:二项式的通项为T r +1=C r 8x 8-r (-2y )r ,令8-r =6,即r =2,得x 6y 2项的系数为C 28(-2)2=56.答案:A3.在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15D .10解析:在(1+x )6的展开式中,含x 2的项为T 3=C 26·x 2=15x 2,故在x (1+x )6的展开式中,含x 3的项的系数为15. 答案:C4.⎝ ⎛⎭⎪⎫x 2-12x 6的展开式中,常数项是( ) A .-54 B .54 C .-1516D .1516解析:T r +1=C r 6(x 2)6-r ⎝ ⎛⎭⎪⎫-12x r=⎝ ⎛⎭⎪⎫-12r C r 6x 12-3r ,令12-3r =0,解得r =4. ∴常数项为⎝ ⎛⎭⎪⎫-124C 46=1516.故选D .。
计数原理与排列组合知识点总结
计数原理与排列组合知识点总结计数原理和排列组合是高中数学中重要的概念和工具,在各种数学问题的解决过程中起到了重要的作用。
本文将对计数原理和排列组合的相关知识点进行总结和介绍。
一、计数原理计数原理通过分析一个问题中的各个步骤或条件,来确定解决问题的方式和策略。
常用的计数原理有加法原理、乘法原理、容斥原理和抽屉原理等。
1. 加法原理加法原理适用于多个事件发生的情况,它指出如果一个事件发生的方式有m种,另一个事件发生的方式有n种,那么这两个事件发生的总方式数为m+n。
2. 乘法原理乘法原理适用于多个事件发生的情况,它指出如果一个事件发生的方式有m种,另一个事件发生的方式有n种,则这两个事件发生的总方式数为m×n。
3. 容斥原理容斥原理适用于计算多个集合的并集的情况。
它指出如果有n个集合,分别有A1,A2,...,An个元素,那么这n个集合的并集中元素的个数为:|A1∪A2∪...∪An| = Σ|Ai| - Σ|Ai∩Aj| + Σ|Ai∩Aj∩Ak| - ... + (-1)^(n-1)|A1∩A2∩...∩An|。
4. 抽屉原理抽屉原理也称为鸽笼原理,它指出如果有m+1个物体放入m个抽屉中,那么至少会有一个抽屉中放入两个或两个以上的物体。
二、排列组合排列组合是计数原理的一个重要应用,用于解决选择和安排问题。
它包括排列和组合两个不同的概念。
1. 排列排列是指从一组元素中按一定顺序选取若干元素的方式,其中元素的选取不可重复。
常见的排列问题有全排列和有限排列。
- 全排列是指将一组元素全部进行排列,例如3个元素的全排列有3! = 3×2×1 = 6种。
- 有限排列是指从一组元素中选取若干个元素进行排列,其中元素的选取数目有限。
例如从3个元素中选取2个进行排列,有3×2 = 6种不同的排列方式。
2. 组合组合是指从一组元素中选择若干元素的方式,其中元素的选取不按顺序进行,而是以集合的形式呈现。
排列与组合,分步乘法计数原理,分类加法计数原理
排列:1、排列的概念:从n个不同元素中取出m (mWn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、全排列:把n个不同元素全部取出的一个排列,叫做这n个元素的一个全排列。
3、排列数的概念:从n个不同元素中取出m (mWn)个元素的所有排列的个数,叫做从 n 个不同元素中取出m个元素的排列数,用符号白;表示。
4、阶乘:自然数1到n的连乘积,用n!=1X2X3X・・・Xn表示。
规定:0!=15、排列数公式:*”n (n-1)(n-2)(n-3)…(n-m+1)='卡—活"。
组合:1、组合的概念:从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合。
2、组合数的概念:从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数用符号C;表示。
b=屋=题…---掰+。
_ /3、组合数公式:1H史耀!的I一对;4、组合数性质:K - …,5、排列数与组合数的关系:量二5,排列与组合的联系与区别:从排列与组合的定义可以知道,两者都是从n个不同元素中取出m个(mWn, n, m£N) 元素,这是排列与组合的共同点。
它们的不同点是:排列是把取出的元素再按顺序排列成一列,它与元素的顺序有关系,而组合只要把元素取出来就可以,取出的元素与顺序无关.只有元素相同且顺序也相同的两个排列才是相同的排列,否则就不相同;而对于组合,只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合,如a, b与b, a是两个不同的排列,但却是同一个组合。
排列应用题的最基本的解法有:(1)直接法:以元素为考察对象,先满足特殊元素的要求,再考虑一般元素,称为元素分析法,或以位置为考察对象,先满足特殊位置的要求,再考虑一般位置,称为位置分析法;(2)间接法:先不考虑附加条件,计算出总排列数,再减去不符合要求的排列数。
排列的定义的理解:①排列的定义中包含两个基本内容,一是取出元素;二是按照一定的顺序排列;②只有元素完全相同,并且元素的排列顺序也完全相同时,两个排列才是同一个排列,元素完全相同,但排列顺序不一样或元素不完全相同,排列顺序相同的排列,都不是同一个排列;③定义中规定了 mWn,如果m<n,称为选排列;如果m=n,称为全排列;④定义中“一定的顺序”,就是说排列与位置有关,在实际问题中,要由具体问题的性质和条件进行判断,这一点要特别注意;⑤可以根据排列的定义来判断一个问题是不是排列问题,只有符合排列定义的说法,才是排列问题。
计数原理,排列与组合
第一章 计数原理§1.1计数原理,排列与组合(分析问题:分类或分步;再解决问题即计数:排列,组合或列举) 一, 计数原理1.分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共n m N +=种不同的方法.(每类中每一种都能独立完成)2.分步乘法计数原理:完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有n m N ⨯=种不同的方法.(每类中每一种只能完成事件的一部分);二, 排列与组合1.排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺....序.排成一列,叫做从n 个不同元素中取出m 2.组合:从n 个不同元素中,任取m(m n ≤)个元素(这里的被取元素各不相同)合成一组,叫做从n 个不同元素中取出m 三,排列与组合的公式和性质 1. (1)(2)(1)mnA n n n n m =---+ = !()!n n m - 1. (1)(2)(1)!m mn n mm A n n n n m C A m ---+== 2. 全排列数:(1)(2)21!nnA n n n n =--⋅=(叫做n 的阶乘)2. )!(!!m n m n C m n -=; mn n m n C C -=3.规定 0! =1 . 3. 规定: 01nC=.; m n C 1+=m n C +1-m nC . 四,求解排列应用问题的主要方法1注意区别“恰好”与“至少”从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有多少种 2特殊元素(或位置)优先安排(对有限制的排列组合问题中的特殊元素或特殊位置优先考虑)将5列车停在5条不同的轨道上,其中a 列车不停在第一轨道上,b 列车不停在第二轨道上,那么不同的停放方法有种 3“相邻”用“捆绑”,“不邻”就“插空”七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有多少种 4、混合问题,先“组”后“排”对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能? 5、分清排列、组合、等分的算法区别(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法?(2) 今有10件不同奖品, 从中选6件分给三人,其中1人一件1人二件1人三件, 有多少种分法?(3) 今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法?6、分类组合,隔板处理(一般解决相同元素分配问题,而且对被分成的元素限制很弱(一般只要求不等于零),只对分成的份数有要求。
排列与组合的计数原理
排列与组合的计数原理排列与组合是数学中的一个重要的分支,它们都是计算不同元素的个数的方法。
排列与组合的计数原理是研究在给定条件下,对实验结果进行判断的数学方法。
本文将详细介绍排列与组合的计数原理,并通过实例加深理解。
一、排列的计数原理排列是指从给定的元素集合中选取若干个元素,按照一定的顺序进行排列。
在排列中,每个元素都有可能是选取的第一个元素、第二个元素等等,所以排列的个数是非常庞大的。
假设有n个元素(n>=1),从中选取r个元素进行排列,那么排列的个数可以表示为P(n,r),其中P是排列的符号。
排列的计数原理可以用乘法原理来解释。
乘法原理指的是:如果一个事件的成功与各个阶段的选择有关,且每个阶段的选择数目都有限制,则这些阶段的选择数目相乘即可得到这一事件的总数目。
例如,从1到n的n个数字中选取r个数字,按照数字的先后顺序进行排列,那么排列的个数为P(n,r) = n * (n-1) * (n-2) * ... * (n-r+1)。
接下来,我们通过一个实例来理解排列的计数原理。
实例:假设有8个人排队,其中有3个男性和5个女性,要求男性排在女性之前,请问有多少种排列方式?解:根据排列的计数原理,首先选取3个男性进行排列,共有P(3,3)种方式。
然后选取5个女性进行排列,共有P(5,5)种方式。
由于男性和女性之间的相对位置不变,所以男性和女性的排列个数是相互独立的。
根据乘法原理,男性和女性的排列总数为P(3,3) * P(5,5) = 3! * 5! = 6 * 120 = 720种排列方式。
二、组合的计数原理组合是指从给定的元素集合中选取若干个元素,不考虑其顺序。
相比于排列,组合的个数要少得多。
假设有n个元素(n>=1),从中选取r个元素进行组合,那么组合的个数可以表示为C(n,r),其中C是组合的符号。
组合的计数原理可以用除法原理来解释。
除法原理指的是:如果一个事件的成功与各个阶段的选择有关,且每个阶段的选择数目都有限制,那么这些阶段的选择数目依次相除即可得到这一事件的总数目。
10.1排列
返回目录
按Esc键退出
补充练习
按下列要求分配6本不同的书,各有多少种不同的分配方式?
(1)分成三份,1份一本,1份2本,1份3本; (2)甲、乙、丙三人中,一人得1本,一人得2本, 一人得3本; (3)平均分成三份,每份2本; (4)平均分配给甲、乙、丙三人,每人两本; (5)分成三份,1份4本,另外两份每份1本; (6)甲、乙、丙三人中,一人得4本,另外两人每 人得1本; (7)甲得1本,乙得1本,丙得4本。
5 或不考虑位置关系则有 6 种,甲站最左边或乙站最右边,都有 种 A6 A 5 4 6 5 4 ;甲站最左边且乙站最右边,则有 种.故共有 A6 2 A5 A4 504 种 A4
返回目录
按Esc键退出ຫໍສະໝຸດ (5)6个人排成一排:甲站在最左边,乙不站在最右边,
有多少种不同的排法?
解: 甲站在最左边,乙不站在最右边,则有4 A44 96 种.
返回目录
按Esc键退出
n! An (3)排列数公式: m n n 1 n 2 n m 1 = (n m)! =
.
说明:①n!= n n 1 n 23 2 1 ,叫做n的阶乘; ②规定0!=
1;
.
③当m=n时的排列叫做全排列,全排列数A n= n! n
的方法,…,在第n类办法中有mn 种不同的方法,那么完成这件事共
·+m 有N= m1 m2 ·· n 种不同的方法.
(2)分步计数原理(也称乘法原理):做一件事情,完成它需要分成n个 步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做
第n步有mn种不同的方法,那么完成这件事共有N m1 m2 mn
10.1
计数原理与排列组合
计数原理与排列组合计数原理是组合数学中的一个重要概念,它是指在一定条件下,通过计算得出某种情况的可能性数量。
在实际生活中,计数原理被广泛运用于各个领域,比如概率统计、密码学、组合优化等。
而排列组合则是计数原理的一个重要应用,它涉及到有限集合中元素的排列和组合方式,是数学中的一个重要分支。
首先,我们来了解一下计数原理的基本概念。
计数原理包括加法原理和乘法原理两种基本原理。
加法原理是指如果一个事件可以分解为几个相互独立的子事件,那么这个事件的总数就是这几个子事件的数量之和。
而乘法原理是指如果一个事件可以分解为几个步骤,每个步骤的选择数目与其他步骤无关,那么这个事件的总数就是各个步骤选择数目的乘积。
接下来,我们来讨论排列和组合的概念。
排列是指从给定的元素中取出一部分进行排成一个有序的序列,而组合则是指从给定的元素中取出一部分进行组成一个无序的集合。
排列和组合的计算公式分别为P(n, m) = n!/(n-m)!和C(n, m) =n!/(m!(n-m)!),其中n代表元素的总数,m代表取出的元素的个数,!表示阶乘运算。
在实际应用中,排列和组合有着广泛的用途。
比如在密码学中,排列和组合可以用来生成密码,计算密码的可能性数量;在概率统计中,排列和组合可以用来计算事件的发生概率;在组合优化中,排列和组合可以用来解决最优化问题。
总之,计数原理与排列组合是数学中的重要概念,它们在各个领域都有着广泛的应用。
通过对计数原理和排列组合的深入理解,我们可以更好地解决实际生活中的问题,提高问题的解决效率,为各个领域的发展提供有力支持。
希望本文能够帮助读者更好地理解计数原理与排列组合的概念,为他们在实际应用中发挥作用提供帮助。
2025数学大一轮复习讲义人教版 第十章 基本计数原理与排列组合
自主诊断
2.(多选)下列结论正确的是
√A.3×4×5=A35
B.C25+C35=C26 C.若 Cx10=C210x-2,则 x=3
√D.C07+C27+C47+C67=64
知识梳理
2.排列与组合的概念
名称 排列 组合
定义
从n个不同对象中取出m(m≤n)个 按照 一定的顺序 排成一列
对象
作为一组
知识梳理
3.排列数与组合数 (1)排列数:从n个不同对象中取出m(m≤n)个对象的所有 排列 的个数. (2)组合数:从n个不同对象中取出m(m≤n)个对象的所有 组合 的个数.
自主诊断
3.书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第 3层放有6本不同的体育书.从书架上任取1本书,不同的取法种数为 __1_5___,从第1,2,3层各取1本书,不同的取法种数为___1_2_0___.
由分类加法计数原理知,从书架上任取1本书,不同的取法种数为4+ 5+6=15.由分步乘法计数原理知,从1,2,3层各取1本书,不同的取法 种数为4×5×6=120.
第十章
§10.1 基本计数原理与排列组合
课标要求
1.理解分类加法计数原理、分步乘法计数原理及其意义. 2.理解排列、组合的概念. 3.能利用基本计数原理、排列组合解决简单的实际问题.
内容索引
第一部分 落实主干知识 第二部分 探究核心题型
课时精练
第一部分
落实主干知识
知识梳理
1.基本计数原理 (1)分类加法计数原理:完成一件事,如果有n类办法,且:第一类办法中 有m1种不同的方法,第二类办法中有m2种不同的方法……第n类办法中有 mn种不同的方法,那么完成这件事共有N= m1+m2+…+mn 种不同的 方法. (2)分步乘法计数原理:完成一件事,如果需要分成n个步骤,且:做第一 步有m1种不同的方法,做第二步有m2种不同的方法……做第n步有mn种不 同的方法.那么完成这件事共有N= m1×m2×…×mn 种不同的方法.
计数原理和排列组合
计数原理、知识要点1、分类计数原理:完成一件事,有n类办法,在第一类办法中有m!种不同的方法,第二类方法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有:N= _____________ 种不同的方法。
注意:1 )分类要全、清; 2 )任何一种方法均能完成此事;3)各类方法相互独立。
2、分步计数原理:完成一件事,需要分成n个步骤,做第一步有m!种不同的方法,做第二步有m2 种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有的N=________________________________________________________________________________ 种不同的方法。
注意:1 )各步方法数相互独立;2)每步均完成后才能完成这件事。
3、用两个原理解决实际问题时可按下列步骤进行思考:(1)做什么事?定目标;(2 )怎么做?一一定方法(分类、分步、先分类后分步、先分步后分类等) ;(3)确定每类或每步的方法数;(4)利用原理计算出方法总数并作答。
二、例题分析:例1 :从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中,火车有4班,汽车有2班,轮船有3班。
那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?例2 :如图,由A村去B村的道路有3条,由B村去C村的道路有2条。
从A村经B村去C村,共有多少种不同的走法?三、巩固练习:1.某班级有男三好学生5人,女三好学生4人。
(1)从中任选一人去领奖,有多少种不同的选法?(2)从中任选男、女三好学生各一人去参加座谈会,有多少种不同的选法?2、在所有的两位数中,个位数字大于十位数字的两位数共有多少个?3、一个三位密码锁,各位上数字由0,1,2,3,4,5,6,7,8,9 十个数字组成,可以设置多少种三位数的密码4、如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁(各位上的数字允许重复)?首位数字不为0的密码数是多少?首位数字是0的密码数又是多少?甲地地到丙地有2条路可通。
§10排列组合.
§10.1 分类计数原理和分步计数原理一.考纲要求: 1掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题 2分类计数原理与分步计数原理是计数问题的基本原理,体现了解决问题时将其分解的两种常用方法,即把问题分类解决和分步解决二.知识要点: 1 分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法件事共有种不同的方法 2分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有 种不同的方法 3两个基本原理的作用:计算做一件事完成它的所有不同的方法种数 4两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成” 5原理浅释分类计数原理(加法原理)中,“完成一件事,有n 类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事只有满足这个条件,才能直接用加法原理,否则不可以分步计数原理(乘法原理)中,“完成一件事,需要分成n 个步骤”,是说每个步骤都不足以完成这件事,这些步骤,彼此间也不能有重复和遗漏.如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m 种不同的方法,那么完成这件事的方法数就可以直接用乘法原理可以看出“分”是它们共同的特征,但是,分法却大不相同.两个原理的公式是: ,这种变形还提醒人们,分类和分步,常是在一定的限制之下人为的,因此,在这里我们大有用武之地:可以根据解题需要灵活而巧妙地分类或分步.强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路的串联、并联类比.三.课前自测:1、有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为( )A 、507 B 、1007 C 、487 D 、203 2、袋中有红、黄、白色球各一个,每次任取一个,有放回地抽取3次,则下列事 件中概率是98的是( ) A 、颜色全同 B 、颜色不全同 C 、颜色全不同 D 、颜色无红色 3、甲射击命中目标的概率是21,乙命中目标的概率是31,丙命中目标的概率是41,现在三人同时射击目标,则目标被击中的概率为( )A 、43B 、32C 、54D 、107 4、在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是( )A 、)1,6.0[B 、]6.0,0(C 、]4.0,0(D 、)1,4.0[5、5个同学任意站成一排,甲、乙两人恰好站在两端的概率是( )A 、81B 、91C 、101D 、111 6、某班有学生36人,按血型分类为:A 型12人,B 型10人,AB 型8人,O 型6人,如果从这个班随机抽出2名学生,则这2名学生血型相同的概率是7、2个篮球运动员在罚球时投球的命中率分别为0.7和0.6,每人投篮3次,则2人都恰好进2球的概率是(保留两位有效数字)8、有一道竞赛题,A 生解出它的概率为21,B 生解出它的概率为31,C 生解出它的概率为41,则A 、B 、C 三人独立解此题只有1人解出的概率为四.典型例题例1 电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?例2 从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个?例3 某城市在中心广场建造一个花圃,花圃分为6个部分(如下图)现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种(以数字作答)例4 (1)有红、黄、白色旗子各n 面(n >3),取其中一面、二面、三面组成纵列信号,可以有多少不同的信号?(2) 有1元、5元、10元的钞票各一张,取其中一张或几张,能组成多少种不同的币值?例5 d c b a ,,,排成一行,其中a 不排第一,b 不排第二,c 不排第三,d 不排第四的不同排法共有多少种?例6 关于正整数2160,求:(1)它有多少个不同的正因数?(2)它的所有正因数的和是多少?【巩固练习】1、同时掷四枚均匀硬币,则至少有两枚“正面向上”的概率是( )A 、1611B 、1613C 、83D 、85 A 、95 B 、94 C 、185 D 、1813 2、袋中有3个红球2个白球和1个黑球,从中任取2个球,那么互斥而不对立的两个事件是( )A 、至少有一个白球,都是白球B 、至少有一个白球,至少有一个红球C 、恰有一个白球,恰有2个白球D 、至少有一个白球,一个红球和一个黑球3、将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k+1次正面的概率,那么k 的值为( )A 、0B 、1C 、2D 、34、一批零件10个,其中有8个合格品,2个次品,每次任取一个零件装配机器,若第一次取到合格品的概率为P 1,第二次才取到合格品的概率为P 2,则( )A 、21P P >B 、21P P =C 、21P P <D 、212P P =5、从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A 、小B 、大C 、相等D 、大小不能确定6、袋中有5个白球,3个黑球,从中任意抽取4个,求下列事件发生的概率:①摸出2个或3个白球;②至少摸出1个白球;③至少摸出1个黑球。
计数原理与排列组合知识点总结
计数原理与排列组合知识点总结在数学的领域中,计数原理与排列组合是非常重要的概念,它们在解决许多实际问题和理论研究中都有着广泛的应用。
接下来,咱们就一起深入地探讨一下这部分的知识。
一、计数原理1、分类加法计数原理完成一件事,如果有 n 类办法,在第 1 类办法中有 m1 种不同的方法,在第 2 类办法中有 m2 种不同的方法,……,在第 n 类办法中有mn 种不同的方法,那么完成这件事共有 N = m1 + m2 +… + mn 种不同的方法。
比如说,从甲地到乙地,可以坐火车、汽车或者飞机。
如果坐火车有 3 种车次可选,坐汽车有 2 种路线可选,坐飞机有 1 种航班可选,那么从甲地到乙地一共有 3 + 2 + 1 = 6 种不同的出行方式。
2、分步乘法计数原理完成一件事,如果需要分成 n 个步骤,做第 1 步有 m1 种不同的方法,做第 2 步有 m2 种不同的方法,……,做第 n 步有 mn 种不同的方法,那么完成这件事共有 N =m1×m2×…×mn 种不同的方法。
例如,从 A 城市到 C 城市需要在 B 城市中转。
从 A 到 B 有 2 条路线可走,从 B 到 C 有 3 条路线可走,那么从 A 到 C 一共有 2×3 = 6 条不同的路线。
这两个计数原理的区别在于:分类加法计数原理是“分类完成”,每一类中的方法都能独立完成这件事;分步乘法计数原理是“分步完成”,每个步骤相互依存,只有每个步骤都完成了,这件事才算完成。
二、排列1、排列的定义从 n 个不同元素中取出 m(m≤n)个元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。
比如,从 1、2、3 这三个数字中取出 2 个数字进行排列,有 12、21、13、31、23、32 这六种情况。
2、排列数的定义从 n 个不同元素中取出 m(m≤n)个元素的所有排列的个数,叫做从 n 个不同元素中取出 m 个元素的排列数,用符号 A(n, m)表示。
(浙江专用)高考数学一轮复习 专题十 计数原理 10.1 计数原理与排列、组合试题(含解析)-人教版
专题十计数原理【考情探究】课标解读考情分析备考指导主题内容一、计数原理、排列、组合1.分类加法计数原理,分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用两个原理分析和解决一些简单的实际问题.2.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.从近几年高考命题情况来看,这一部分主要考查分类加法、分步乘法计数原理以及排列、组合的简单应用.题型以选择题、填空题为主,在解答题中一般将排列、组合知识综合起来,有时也与求事件概率,分布列问题相结合考查.1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r);第二步是根据所求的指数求解所求的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.1.用排列、组合知识解决计数问题时,如果遇到的情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太容易计算时,往往利用表格法、树状图法将其所有的可能一一列举出来,这样会更容易得出结果.2.求解二项展开式的特定项时,即求展开式中的某一项,如第n项,常数项、有理项、字母指数为某些特殊值的项,先准确写出通项T r+1=r a n-r b r,再把系数与字母分离出来(注意符号),最后根据题目中所指定的字母的指数所具有的特征,列出关系式求解即可.二、二项式定理1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.【真题探秘】§10.1计数原理与排列、组合基础篇固本夯基【基础集训】考点计数原理、排列、组合1.甲、乙、丙、丁、戊、己6名同学站成一排照毕业相,要求甲不站在两侧,而且乙和丙相邻、丁和戊相邻,则不同的站法种数为( )A.60B.96C.48D.72答案 C2.在我国第一艘航空母舰“某某舰”的某次舰载机起降飞行训练中,有5架“歼-15”飞机甲、乙、丙、丁、戊准备着舰,规定乙机不能最先着舰,且丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为( )A.24B.36C.48D.96答案 C3.中国国家队在2018俄罗斯世界杯亚洲区预选赛12强小组赛中以1比0力克韩国国家队,赛后有六名队员打算排成一排照相,其中队长主动要求排在排头或排尾,甲、乙两人必须相邻,则满足要求的排法有( )A.34种B.48种C.96种D.144种答案 C4.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有( )A.72种B.36种C.24种D.18种答案 B5.将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有( )A.480种B.360种C.240种D.120种答案 C6.高考结束后6名同学游览某市包括日月湖在内的6个景区,每名同学任选一个景区游览,则有且只有两名同学选择日月湖景区的方案有( )A.A62×A54种B.A62×54种C.C62×A54种D.C62×54种答案 D7.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有种.答案1808.有3女2男共5名志愿者要全部分到3个社区去参加志愿服务,每个社区1到2人,甲、乙两名女志愿者需到同一社区,男志愿者到不同社区,则不同的分法种数为.答案12综合篇知能转换【综合集训】考法一排列、组合问题的解题方法1.(2019某某万州二模,6)某中学某班主任要从7名同学(其中3男4女)中选出两名同学,其中一名担任班长,另一名担任学习委员,且这两名同学中既有男生又有女生,则不同的安排方法有( )A.42种B.14种C.12种D.24种答案 D2.(2018某某某某调研性检测,9)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,这样的四位数有( )A.250个B.249个C.48个D.24个答案 C3.(2018豫北名校联考,9)2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有( )A.18种B.24种C.48种D.36种答案 B4.(2019某某嘉峪关一中模拟)在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场顺序的排法种数为.答案605.(2020届某某某某执信中学10月月考,14)有6X卡片分别写有数字1,1,1,2,2,2,从中任取4X,可排出的四位数有个.答案14考法二分组分配问题的解题方法6.(2018某某某某二模,8)某某西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有( )A.90种B.180种C.270种D.360种答案 B7.(2019某某某某第一次统测,11)将甲、乙、丙、丁、戊共5人分配到A、B、C、D共4所学校,每所学校至少一人,且甲不去A学校,则不同的分配方法有( )A.72种B.108种C.180种D.360种答案 C8.(2018某某某某一模,5)某学校为了更好地培养尖子生,使其全面发展,决定由3名教师对5个尖子生进行“包教”,要求每名教师的“包教”学生不超过2人,则不同的“包教”方案有( )A.60种B.90种C.150种D.120种答案 B9.(2020届某某某某一中10月月考,7)小明和小红都计划在国庆节的7天假期中,到某某“两日游”,若他们不同一天出现在某某,则他们出游的不同方案共有( )A.16种B.18种C.20种D.24种答案 C【五年高考】考点计数原理、排列、组合1.(2017课标Ⅱ,6,5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种答案 D2.(2016课标Ⅱ,5,5分)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9答案 B3.(2015某某,6,5分)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个答案 B4.(2016课标Ⅲ,12,5分)定义“规X01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规X01数列”共有( )A.18个B.16个C.14个D.12个答案 C5.(2018课标Ⅰ,15,5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)答案166.(2017某某,14,5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)答案 1 0807.(2017某某,16,4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)答案6608.(2015某某,12,5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)答案 1 560教师专用题组考点计数原理、排列、组合1.(2014大纲全国,5,5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组.则不同的选法共有( )A.60种B.70种C.75种D.150种答案 C2.(2014某某,9,5分)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168答案 B3.(2014某某,8,5分)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A.24对B.30对C.48对D.60对答案 C4.(2014某某,8,5分)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为( )A.60B.90C.120D.130答案 D5.(2014某某,6,5分)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A.144B.120C.72D.24答案 D6.(2014某某,6,5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192种B.216种C.240种D.288种答案 B7.(2014某某,14,4分)在8X奖券中有一、二、三等奖各1X,其余5X无奖.将这8X奖券分配给4个人,每人2X,不同的获奖情况有种(用数字作答).答案608.(2014,13,5分)把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.答案369.(2018某某,23,10分)设n∈N*,对1,2,…,n的一个排列i1i2…i n,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2…i n的一个逆序,排列i1i2…i n的所有逆序的总个数称为其逆序数,例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2), f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).解析本题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.(1)记τ(abc)为排列abc的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3,所以f3(0)=1,f3(1)=f3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此f4(2)=f3(2)+f3(1)+f3(0)=5.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以f n(1)=n-1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此, f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)-f n-1(2)]+[f n-1(2)-f n-2(2)]+…+[f5(2)-f4(2)]+f4(2)=(n-1)+(n-2)+…+4+f4(2)=n2-n-22.因此,当n≥5时, f n(2)=n 2-n-22.疑难突破要做好本题,关键是理解“逆序”“逆序数”“f n(k)”的含义,不妨从比较小的1,2,3入手去理解这几个概念,这样就能得到f3(2). f4(2)是指1,2,3,4这4个数中逆序数为2的全部排列的个数,可以通过与f3(2), f3(1),f3(0)联系得到,4分别添加在f3(2)的排列中最后一个位置、f3(1)的排列中的倒数第2个位置、f3(0)的排列中的倒数第3个位置.有了上述的理解就能得到f n+1(2)与f n(2),f n(1), f n(0)的关系:f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n,从而得到f n(2)(n≥5)的表达式.【三年模拟】一、单项选择题(每题5分,共50分)1.(2020届九师联盟9月质量检测,8)从1,3,5,7,9中任取两个数,从0,2,4,6,8中任取2个数,则组成没有重复数字的四位数的个数为( )A.2 100B.2 200C.2 160D.2 400答案 C2.(2020届某某某某一中第一次月考,8)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,那么不同的选法有( )A.50种B.60种C.70种D.90种答案 C3.(2020届某某某某七中第二次月考,4)7个人排成一排准备照一X合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有( )A.480种B.720种C.960种D.1 200种答案 C4.(2020届某某洪湖二中月考,9)“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门APP.该款软件主要设有“阅读文章”“视听学习”两个学习版块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题版块.某人在学习过程中,“阅读文章”与“视听学习”两个学习版块之间最多间隔一个答题版块的学习方法有( )A.192种B.240种C.432种D.528种答案 C5.(2018全国百所名校冲刺卷(四),8)航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,则实验顺序的编排方法共有( )A.34种B.48种C.96种D.144种答案 C6.(2019某某金卷先享题二,8)在高三下学期初,某校开展教师对学生的家庭学习问卷调查活动,已知现有3名教师对4名学生家庭进行问卷调查,若这3名教师每位至少到一名学生家中问卷调查,又这4名学生的家庭都能且只能得到一名教师的问卷调查,那么不同的问卷调查方案的种数为( )A.36B.72C.24D.48答案 A7.(2019某某某某一模)如图所示的几何体由三棱锥P-ABC与三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的涂色方案共有( )A.6种B.9种C.12种D.36种答案 C8.(2018某某哈六中二模,9)从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A.48B.72C.90D.96答案 D9.(2019某某某某模拟,8)已知三棱锥的6条棱代表6种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,没有公共顶点的两条棱代表的化工产品放在同一仓库是危险的.现用编号为1,2,3的三个仓库存放这6种化工产品,每个仓库放2种,那么安全存放的不同方法种数为( )A.12B.24C.36D.48答案 D二、多项选择题(共5分)10.(改编题)下列说法正确的是( )A.5个不同的球,放入8个不同的盒子中,每个盒子里至多放一个球,不同的放法有A85种B.5个不同的球,放入8个不同的盒子中,每个盒子放球数量不限,不同的放法有85种C.5个相同的球,放入8个不同的盒子中,每个盒子里至多放一个球,则不同的放法有C85种D.8个相同的小球,放入5个不同的盒子中,每盒不空的放法有C84种答案ABC三、填空题(每题5分,共15分)11.(2020届某某夏季高考模拟,13)某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有种.答案3612.(2020届某某寿光现代中学10月月考,14)某工厂将甲、乙等五名新招聘员工分配到三个不同的车间.每个车间至少分配一名员工,甲、乙两名员工必须分到同一个车间,则不同分法的种数为.答案3613.(2019某某某某中学第一次摸底考试,15)由数字0,1组成的一串数字代码,其中恰好有7个1,3个0,则这样的不同数字代码共有个.答案12014.(2020届某某东阳中学10月月考,14)安排甲、乙、丙、丁、戊5名大学生去某某、某某、某某三个城市进行暑期社会实践,每个城市至少安排一人,则不同的安排方式共有种;其中学生甲被单独安排去某某的概率是.答案150;775。
[广东理数一轮]10.1-2计数原理、排列组合
(3) 参赛女生不少于2人,且英语竞赛由女生参加;
C C A A C C A A 2160
2 5 1 3 4 4
20. 从1,2,3,…,100这100个数字中,任取2个数, 使它 们的积能被7整除, 这2个数的取法有多少种?
C C C 1295
2 14 1 14 1 86
C
同的选取方法.
(2)从n+1个元素中取出m个元素, 其中含有元素a1, m 1 有C _____ n 种不同选取方法.
(3)从n+1个元素中取出m个元素, 其中不含元素a1, m C n 种不同选取方法. 有_____
C
m 1 n
C
m n
C
m n1
【练习】
C C 8 8 8 (2) Cm C C C m 1 C m 1 0 3 5 6 7 7 (3)C7 C C8 C9 C10 C11
解: 由条件 A 90 答: 共有有向线段90条.
2 10
二、 有限制条件的组合问题 1.含与不含(确定m,n的值) 2.至多, 至少问题 (分类或排除) 9. 在100件产品中,有98件合格品,2件次品. 从这 100件中任意抽出3件. 按条件各有多少种方法?
3 (1)一共有多少种不同的抽法? C100 161700
7.3个男生和4个女生排成一排,有多少种排法?
(1)女生必须排在一起.
A A
4 4
4 4
3 4 2
(2)男生排在一起,女生排在一起. A3 A4 A2
2 6 (3)甲乙两人必须相邻. A2 A6 3 2 3 (4)甲乙两人之间恰有3人. A5 A2 A3
4 3 (5)男生互不相邻. A4 A5 (6)男女生间隔相排. A3 A4
计数原理与排列组合课件
一。复习回顾 1、知识结构
排列 基
本
原 理 组合
排列数公式 应 用 问
组合数公式 题
2。分类记数原理,分步记数原理
分类记数原理
分步记数原理
原理 区别
完成一件事可以有n类
完成一件事需要分成n个
办法,在第一类中有m1种不 步骤,第一步有m1种不同的 同的方法,在第二类中有m2 方法,第二步有m2种不同的 种不同的方法,……,在第 方法,……,第n步有mn种 n类办法中有mn种不同的方 不同的方法,那么完成这件 法,那么完成这件事共N= 事共N=m1×m2×……×mn
题型4 排列中的“相邻”、“不相邻问题” 【例4】 a1,a2,…,a8共八个元素,分别计算满足下列 条件的排列数. (1)八个元素排成一排,且a1,a2,a3,a4四个元素排在一 起; (2)八个元素排成一排,且a1,a2,a3,a4四个元素互不相 邻; (3)八个元素排成一排,且a1,a2,a3,a4四个元素互不相 邻,并且a5,a6,a7,a8也互不相邻; (4)排成前后两排每排四个元素.
(3)前后排问题,直排法.
变式4 4个男同学,3个女同学站成一排. (1)3个女同学必须排在一起,有多少种不同的排法? (2)任何两个女同学彼此不相邻,有多少种不同的排 法?
(3)其中甲、乙两同学之间必须恰有3人,有多少种不 同的排法?
(4)甲、乙两人相邻,但都不与丙相邻,有多少种不 同的排法?
(5)女同学从左到右按高矮顺序排,有多少种不同的排 法?(3个女生身高互不相等)
素的一个组合。
区别
与顺序有关
与顺序无关
判定 公式
看取出的两个元素互换位置是否为同一种方 法,若不是,则是排列问题;若是,则是组合。
第一节 计数原理、排列与组合
第一节计数原理、排列与组合考试要求1.理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”.2.能利用两个原理解决一些简单的实际问题.3.理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.4.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.[知识排查·微点淘金]知识点1两个计数原理(1)分类加法计数原理完成一件事可以有n 类不同方案,各类方案相互独立,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法.[微提醒]①每类方法都能独立完成这件事,且每次得到的是最后结果,只需一种方法就可完成这件事.②各类方法之间是互斥的、并列的、独立的.(2)分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法.那么,完成这件事共有N=m1×m2×…×m n种不同的方法.[微提醒]①每一步得到的只是中间结果,任何一步都不能独立完成这件事,只有各个步骤都完成了才能完成这件事.②各步之间是相互依存的,并且既不能重复也不能遗漏.知识点2排列与组合(1)排列、组合的定义排列的定义从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合的定义合成一组排列数组合数定义从n个不同元素中取出m(m≤n)个从n个不同元素中取出m(m≤n)个元元素的所有不同排列的个数素的所有不同组合的个数公式A m n=n(n-1)…(n-m+1)=n!(n-m)!C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!性质A n n=n!,0!=1 C m n=C n-mn ,C m n+C m-1n=C m n+1[小试牛刀·自我诊断]1.思考辨析(在括号内打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)所有元素完全相同的两个排列为相同排列.(×)(4)两个组合相同的充要条件是其中的元素完全相同.(√)(5)若C x n=C m n,则x=m成立.(×)2.(链接教材选修2-3 P24例7)将3张不同的武汉军运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2160B.720C.240 D.120答案:B3.(链接教材选修2-3 P28B组T4)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A.18 B.24C.30 D.36答案:C4.(链接教材选修2-3 P28A组T17)A,B,C,D,E五人并排站成一排,如果B必须在A的右侧(A,B可以不相邻),那么不同的排法共有()A.24种B.60种C.90种D.120种答案:B5.(混淆两个计数原理)一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同,则从两个口袋中各取1个小球,有种不同的取法.答案:20一、基础探究点——两个计数原理的应用(题组练透)1.下图是某项工程的网络图(单位:天),则从开始节点①到终止节点⑧的路径共有()A.14条B.12条C.9条D.7条解析:选B由图可知,由①→④有3条路径,由④→⑥有2条路径,由⑥→⑧有2条路径,根据分步乘法计算原理可得从①→⑧共有3×2×2=12条路径.故选B.2.甲、乙、丙三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种解析:选B分两类:甲第一次踢给乙时,满足条件的传递方式有3种(如图);同理,甲第一次踢给丙时,满足条件的传递方式也有3种.由分类加法计数原理可知,共有3+3=6(种)传递方式.3.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240 B.204C.729 D.920解析:选A若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).4.某班一天上午有4节课,每节都需要安排1名教师去上课,现从A,B,C,D,E,F这6名教师中安排4人分别上一节课,第一节课只能从A,B两人中安排一个,第四节课只能从A,C两人中安排一人,则不同的安排方案共有种.解析:①第一节课若安排A,则第四节课只能安排C,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有4×3=12(种)排法.②第一节课若安排B,则第四节课可由A或C上,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有2×4×3=24(种)排法.因此不同的安排方案共有12+24=36(种).答案:36利用两个基本计数原理解决问题的步骤第一步,审清题意,弄清要完成的事件是怎样的;第二步,分析完成这件事应采用分类、分步、先分类后分步、先分步后分类这四种方法中的哪一种;第三步,弄清在每一类或每一步中的方法种数;第四步,根据两个基本计数原理计算出完成这件事的方法种数.二、应用探究点——排列、组合的基本问题(多向思维)[典例剖析]思维点1排列的基本问题[例1]有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.解:(1)从7人中选5人排列,有A57=7×6×5×4×3=2520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37A44=5040(种).(3)解法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3600(种).解法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1440(种).排列应用题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.思维点2组合的基本问题[例2](1)某单位拟安排6位员工在今年6月9日至11日值班,每天安排2人,每人值班1天.若6位员工中的甲不值9日,乙不值11日,则不同的安排方法共有() A.30种B.36种C.42种D.48种解析:若甲在11日值班,则在除乙外的4人中任选1人在11日值班,有C14种选法,9日、10日有C24C22种安排方法,共有C14C24C22=24(种)安排方法;若甲在10日值班,乙在9日值班,余下的4人有C14C13C22=12(种)安排方法;若甲、乙都在10日值班,则共有C24C22=6(种)安排方法.所以不同的安排方法共有24+12+6=42(种).答案:C(2)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为() A.232 B.252C.472 D.484解析:分两类:第一类,含有1张红色卡片,不同的取法共有C14C212=264(种);第二类,不含有红色卡片,不同的取法共有C312-3C34=220-12=208(种).由分类加法计数原理知,不同的取法有264+208=472(种).答案:C组合问题的常见类型与处理方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.[学会用活]1.(2020·全国卷Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.解析:将4名同学分成人数为2,1,1的3组有C24=6种分法,再将3组同学分到3个小区共有A33=6种分法,由分步乘法计数原理可得不同的安排方法共有6×6=36种.答案:362.如图,∠MON的边OM上有四点A1,A2,A3,A4,ON上有三点B1,B2,B3,则以O,A1,A2,A3,A4,B1,B2,B3中三点为顶点的三角形的个数为()A.30B.42C.54 D.56解析:选B间接法:先从这8个点中任取3个点,有C38种取法,再减去三点共线的情形即可,即三角形的个数为C38-C35-C34=42.三、综合探究点——分组与分配问题(思维拓展)[典例剖析][例3] 按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本.解:(1)6本不同的书分成三份,1份1本 ,1份2本,1份3本 ,分三个步骤,第1步,从6本书中取1本有C 16种分配方法;第2步,从剩余的5本书中取2本有C 25=10种分配方法,第3步,从剩余的3本书中取3本有C 33种分配方法,所以总共有C 16C 25C 33=60种分配方法.(2)由(1)可知分组后共有60种方法,分别分给甲、乙、丙后的方法有C 16C 25C 33A 33=360种.(3)从6本书中选择2本书,有C 26种分配方法;再从剩余4本书中选择2本书,有C 24种分配方法.剩余的就是2本书,有C 22种分配方法,所以有C 26C 24C 22=90种分配方法.但是,该过程有重复.假如6本书分别为A ,B ,C ,D ,E ,F ,若三个步骤分别选出的是(AB ),(CD ),(EF ),则所有情况为(AB ,CD ,EF ),(AB ,EF ,CD ),(CD ,AB ,EF ),(CD ,EF ,AB ),(EF ,AB ,CD ),(EF ,CD ,AB ).所以分配方式共有C 26C 24C 22A 33=15种. (4)把(3)中分成的三份书分别分给甲、乙、丙三人,则分配方法为C 26C 24C 22A 33×A 33=90种.(5)从6本书中选4本书的方法有C 46种,从剩余2本书中选1本书的有C 12种,因为在最后两本书选择中发生了重复,所以总共有C 46C 12A 22=15种方法. (6)把(5)中分成的三份书分别分给甲乙丙三人即可,即共有C 46C 12A 22×A 33=90种方法.分组、分配问题的一般解题思路是先分组再分配(1)分组问题属于“组合”问题.①对于整体均分,不管它们的顺序如何,都是一种情况,所以分组后一定要除以组数的阶乘;②对于部分均分,即若有m 组元素个数相同,则分组时应除以m !;③对于不等分组,只需先分组,后排列.(2)分配问题属于“排列”问题.①相同元素的“分配”问题,常用的方法是采用“挡板法”;②不同元素的“分配”问题,利用分步乘法计数原理,分两步完成,第一步是分组,第二步是发放;③有限制条件的分配问题常采用分类法求解.[学会用活]3.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有 种.解析:5名水暖工去3个不同的居民小区,每名水暖工只去一个小区,且每个小区都要有人去检查,5名水暖工分组方案为3,1,1和1,2,2,则分配的方案共有⎝⎛⎭⎫C 35C 122+C 15C 242·A 33=150(种).答案:150体育教育[情境素材]为深入践行“绿色、共享、开放、廉洁”的办奥理念,广泛汇聚海内外各界人士的力量,共同举办一届精彩、非凡、卓越的奥运盛会,北京冬奥组委面向全球招募北京2022年冬奥会和冬残奥会赛会志愿者.赛会志愿者将为北京冬奥会和冬残奥会开闭幕式以及各项比赛提供志愿服务,包括12类:对外联络服务、竞赛运行服务、媒体运行与转播服务、场馆运行服务、市场开发服务、人力资源服务、技术运行服务、文化展示服务、赛会综合服务、安保服务、交通服务、其他.2021年全国乙卷第6题以此为背景设计试题,既考查了排列组合的有关知识,又体现了数学在实际生活中的重要作用.[情境命题](2021·全国乙卷)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种[思维导引]解法一:根据题意从5名志愿者中任选2人,和其他3名志愿者一起分成4组,再分配4个项目即可得出结论;解法二:先从5名志愿者中选出2人安排1个项目,再将剩下的3名志愿者各安排剩下的3个项目中的一个,即可求解.[解法探究]解法一:若每名志愿者只分配到1个项目,且每个项目至少分配1名志愿者,则必有一个项目分配2名志愿者,所以先从5名志愿者中任选2名志愿者放在一起,再和剩下的3名志愿者一起分配到4个项目中,共有C25A44=240(种)不同的分配方案.故选C.解法二:先从5名志愿者中任选2名志愿者安排到1个项目中,则有C25C14种不同的方案;再将剩下的3名志愿者安排到剩下的3个项目中,每个项目1名志愿者,则有A33种不同的方案.根据分步乘法计数原理可知,共有C25C14A33=240(种)不同的分配方案.故选C.[答案] C以北京冬奥会安排志愿者为背景的试题,可以很好的考查排列与组合的有关知识,增强逻辑推理能力.本试题以“分配5名志愿者到4个比赛项目培训”为载体考查了排列与组合的基础知识.[应用](2021·茂名五校联考)电影《夺冠》讲述中国女排姑娘们顽强奋斗、为国争光的励志故事,是一部见证新中国体育改革40年的力作,该影片于2020年9月25日正式上映.在《夺冠》上映期间,一对夫妇带着他们的两个孩子一起去观看该影片.订购的4张电影票恰好在同一排且连在一起.为安全起见,影院要求每个孩子至少有一侧要有家长相邻陪坐,则不同的坐法种数是()A.8B.12C.16 D.20解析:选C将4个座位编号如下,4人的座位可分四种情况:①②③④.①④坐家长、②③坐孩子,①④坐孩子、②③坐家长,①③坐家长、②④坐孩子,①③坐孩子、②④坐家长,所以不同的坐法种数为4A22A22=16.限时规范训练基础夯实练1.(2021·四川成都月考)宋代学者聂崇义编撰的《三礼图集注》中描述的周王城,“匠人营国,方九里,旁三门,国中九经九纬……”;意思是周王城为正方形,边长为九里,每边都有左中右三个门;城内纵横各有九条路……;则依据此种描述,画出周王城的平面图,则图中共有()个矩形()A.3025B.2025C.1225 D.2525解析:选A要想组成一个矩形,需要找出两条横边、两条纵边,根据分步乘法计数原理,依题意,所有矩形的个数为C211·C211=3025,故选A.2.某校开展“学党史,感党恩”演讲活动,组建了甲、乙、丙、丁四个演讲组,分别到A,B,C,D四地参加演讲,每组仅去一地,每地仅去一组.其中甲不去B地,乙和丙不去A地也不去B地,则四个演讲组到A,B,C,D四地演讲的不同安排方案共有() A.5种B.4种C.3种D.2种解析:选D因为甲不去B地,乙和丙不去A地也不去B地,所以只能丁去B地,甲只能去A地,乙和丙只能去C地和D地.可能乙去C地,丙去D地,也可能乙去D地,丙去C地,故有两种安排方案.故选D.3.(2021·安徽合肥模拟)某医院有6个医疗小组,每个小组都配备1位主治医师,现根据工作需要,医院准备将其中3位主治医师由原来的小组均相应地调整到其他医疗小组,其余的3位主治医师仍在原来的医疗小组(不做调整),如果调整后每个医疗小组仍都配备1位主治医师,则调整的不同方案数为()A.36 B.40C.48 D.56解析:选B从6个医疗小组选出3位主治医师,有C36=20种不同的方法;不妨设这3位主治医师分别为甲、乙、丙,调整即为不在原来的医疗小组,有2种不同的方法.综上,调整的不同方案数为20×2=40.故选B.4.(2021·福建省南安一中二模)现有一圆桌,周边有标号为1,2,3,4的四个座位,甲、乙、丙、丁四位同学坐在一起探讨一个数学课题,每人只能坐一个座位,甲先选座位,且甲、乙不能相邻,则所有选座方法有()A.6种B.8种C.12种D.16种解析:选B先安排甲,其选座方法有C14种,由于甲、乙不能相邻,所以乙只能坐甲对面,而丙、丁两位同学坐另两个位置的坐法有A22种,所以共有坐法种数为C14·A22=4×2=8种.故选B.5.(2021·四川乐至中学月考)某研发机构依次研发六项不同的产品,其中产品a必须排在后三位,产品b,c必须排在一起,则这六项产品的不同安排方案共有() A.120种B.156种C.210种D.226种解析:选A当b, c排在前三位时共有C13A22A22A33=72种,当b, c排在后三位时共有A22 A22A33=24种,当b,c排在3,4位时共有A22C12A33=24种,这项产品的不同安排方案共有72+24+24=120种.故选A.6.(2021·山东泰安二模)如图,洛书(古称龟书)是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取3个数,则选取的3个数之和为奇数的方法数为()A.30 B.40C.42 D.44解析:选B根据题意,4个阴数即4个偶数:2、4、6、8;5个阳数即1、3、5、7、9,从中任选3个,使选出的三个数的和为奇数,共有两种可能:①选出的3个数都是奇数,有C35=10种选法;②选出的3个数有2个偶数、1个奇数,共有C24C15=30种选法.综上所述,一共有30+10=40种选法.故选B.7.某人民医院召开抗疫总结表彰大会,有7名先进个人受到表彰,其中有一对夫妻.现要选3人上台作报告,要求夫妻两人中至少有1人作报告,若夫妻同时被选,则两人的报告顺序需要相邻,这样不同的报告方案共有()A.80种B.120种C.130种D.140种解析:选D若夫妻中只选一人,则有C12C25A33=120种不同的方案;若夫妻二人全选,则有C15A22A22=20中不同方案,故总计有140种不同的方案,故选D.8.(2021·广东实验中学模拟)某校组织A、B、C、D、E五名学生分别上台演讲,若A 必须在B前面出场,且都不能在第3号位置,则不同的出场次序有()种() A.18 B.36C.60 D.72解析:选B因为A在B的前面出场,且A,B都不在3号位置,则情况如下:①A在1号位置时,B有2、4、5三种位置选择,有3A33=18种次序;②A在2号位置时,B有4,5号两种选择,有2A33=12种次序;③A在4号位置时,B有5号一种选择,有A33=6种;故共有18+12+6=36(种).故选B.9.若在7位男生和3位女生中随机挑选出1人,则所有选法种数是.(用数字作答)解析:在7位男生和3位女生中随机挑选出1人,从7位男生中随机挑选1人,有7种不同方法,从3位女生中随机挑选1人,有3种不同的方法,根据分类加法计数原理,则所有选法种数是7+3=10(种).答案:1010.(2021·上海模拟)第14届国际数学教育大会于7月在上海举办,大会一共进行8天.若有4位学者分别作个人大会报告,一天只能安排一个报告,且第一天和最后一天不安排报告,则不同的安排方案种数为(用数字作答).解析:根据题意,大会一共进行8天,第一天和最后一天不安排报告,只需在中间的6天中,任选4天,安排4位学者作报告即可,则有A46=360种安排方法.答案:360综合提升练11.(2021·辽宁实验中学二模)某班级的六名同学计划制作一个关于清明节的宣传栏,每人承担一项工作,现需要一名总负责,两名美工,三名文案,但甲,乙不参与美工,丙不能书写文案,则不同的分工方法有多少种( )A .11种B .15种C .30种D .9种解析:选B 若丙是美工,则需要从甲、乙、丙之外的三人中再选一名美工,然后从剩余四人中选三名文案,剩余一人是总负责人,共有C 13C 34=12种分工方法;若丙不是美工,则丙一定是总负责人,此时需从甲、乙、丙之外的三人中选两名美工,剩余三人是文案,共有C 23种分工方法;综上,共有12+3=15(种)分工方法,故选B .12.(2021·湖南高三模拟)某单位在春节七天的假期间要安排值班表,该单位有值班领导3人,值班员工4人,要求每位值班领导至少值两天班,每位值班员工至少值一天班,每天要安排一位值班领导和一位值班员工一起值班,且一人值多天班时要相邻的安排方案有( )A .249种B .498种C .1052种D .8640种解析:选D 先安排值班领导:选1位值班领导值三天班,则安排3位领导值班共有C 13A 33=18(种)方案.再安排值班员工:若4名员工中有1名员工值四天班,其他员工各值一天班,则有C 14=4(种)选法;若1名员工值两天班,另一名员工值三天班,剩余2名员工各值一天班,则有C 14C 13=12(种)选法;若3名员工各值两天班,1名员工值一天班,则有C 14=4(种)选法,故安排4名员工值班共有(4+12+4)A 44=480(种)方案.因此,该单位在春节七天的假期间值班表安排方案共有18×480=8640(种).故选D .13.(2021·贵州贵阳一中月考)有6名实习生去3个学校实习,每个学校至少去一人,每人去一个学校,有多少种安排方法( )A .540B .630C .450D .720解析:选A 6个人分成3组,有(2, 2, 2),(4, 1, 1),(3, 2, 1)三种情况,按(2, 2, 2)分组有C 46·C 24·C 22A 33·A 33=90,按(3, 2, 1)分组有C 36·C 23·C 11·A 33=360种,按(4, 1, 1)分组有C 46·C 12·C 11A 22·A 33=90(种),故一共有540种方法,故选A .14.(2021·江苏无锡模拟)四色定理又称四色猜想,是世界近代三大数学难题之一.它是于1852年由毕业于伦敦大学的格斯里提出来的,其内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色”.四色问题的证明进程缓慢,直到1976年,美国数学家运用电子计算机证明了四色定理.某校数学兴趣小组在研究给四棱锥P-ABCD的各个面涂颜色时,提出如下的“四色问题”:要求相邻面(含公共棱的平面)不得使用同一颜色,现有4种颜色可供选择,那么不同的涂法有()A.36种B.72种C.48种D.24种解析:选B如图所示:底面ABCD的涂色有4种选择,侧面P AB有3种选择,侧面PBC有2种选择.①若侧面PCD与侧面P AB所涂颜色相同,则侧面P AD有2种选择;②若侧面PCD与侧面P AB所涂颜色不同,则侧面P AD有1种选择.综上所述,不同的涂法种数为4×3×2×(2+1)=72种.故选B.15.(2021·辽宁沈阳二中模拟)《红楼梦》是中国古代章回体长篇小说,中国古典四大名著之一,一般认为是清代作家曹雪芹所著.《红楼梦》是一部具有世界影响力的人情小说,举世公认的中国古典小说巅峰之作,中国封建社会的百科全书,传统文化的集大成者.《红楼梦》第三十七回中贾探春提议邀集大观园中有文采的人组成海棠诗社.诗社成立目的旨在“宴集诗人於风庭月榭;醉飞吟盏於帘杏溪桃,作诗吟辞以显大观园众姊妹之文采不让桃李须眉.”诗社成员有林黛玉、薛宝钗、史湘云、贾迎春、贾探春、贾惜春、贾宝玉、李纨共8人.若林黛玉、薛宝钗、贾宝玉3人不相邻,共有种排列方法.(用数字作答) 解析:原问题等价于:含a, b, c在内的8个不同元素排成一排,其中a, b, c互不相邻的排列方法有多少种?先将除a, b, c之外的5个元素(小圆圈)排成一排,共有6个空档(小三角),如图所示.将a,b,c安排到6个空档之中,原来5个元素全排列即可,所以不同的排列方法共有A36A55=120×120=14 400(种).答案:14 40016.(2021·重庆杨家坪中学模拟)某学校,通过心理问卷调查,发现某校高三年级有6位学生心理问题凸显,需要心理老师干预.已知该校高三年级有三位心理老师,每位心理老师至少安排一位学生,至多安排三位学生,问共有种心理辅导安排方法.解析:根据题意,分2步进行分析:①将6位学生分为3组,若每组2人,有C26C24C22 A33=15种分组方法,若一组3人,一组2人,最后1组1人,有C36C23=60种分组方法,则共有15+60=75(种)分组方法;②将分好的3组安排给3个老师进行心理辅导,有A33=6种情况,则共有75×6=450种安排方法.答案:450。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在女生之间及首尾空出的5个空位中任选3个空位排男生,有 A35 种方法,故
共有
A
4 4
·A35
=1
440(种)方法.
例2 (1)(2019广东揭阳一模,5)某班星期一上午安排5节课,若数学2节,语 文、物理、化学各1节,且物理、化学不相邻,2节数学相邻,则星期一上午 不同课程安排种数为 ( ) A.6 B.12 C.24 D.48 (2)(2019安徽合肥二模,6)某部队在一次军演中要先后执行六项不同的任 务A,B,C,D,E,F,要求是:任务A必须排在前三项执行,且执行任务A之后需立 即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有 ( ) A.36种 B.44种 C.48种 D.54种
A
2 2
种排法;②将物理课、化学课在第一步排后的3个空隙
中选两个插进去,有A32 种方法,根据分步乘法计数原理得不同课程安排种
数为
A
2 2
A
2 3
=12,故选B.
(2)①当A,E分别排在第一、二位置时,有
A
2 2
A32
=12种执行方案;
②当A,E分别排在第二、三位置时,有
A12
A33
+
A12
A
2 2
解题导引 (1)2节数学相邻,相邻问题捆绑解决,不相邻问题插空解决,优先 考虑无限定课程,再将物理、化学插空排.(2)A,E可看成一项任务,由于A必 须在前三项执行,故先对A,E分类,最后排B,C,将B,C插空排列即可.
解析 (1)根据题意,分2步进行分析:①将两节数学课“捆”在一起与语文
课先进行排列,有
解析 (1)无序不均匀分组问题.
先选1本,有C16 种选法;再从余下的5本中选2本,有C52 种选法;最后余下3本全 选,有 C33 种选法. 故共有C16 C52 C33=60(种). (2)有序不均匀分组问题.
插空法
不相邻问题插空处理,即先考虑不受限制元素的排列,再将不相邻的元素插在前面 元素排列的空位中
先整体后局部 “小集团”排列问题中,先整体后局部
除法 间接法
对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列 正难则反,等价转化的方法
考法二 分组分配问题的解题方法
例3 按下列要求分配6本不同的书,各有多少种不同的分配方式? (1)分成三份,1份1本,1份2本,1份3本; (2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本; (3)平均分成三份,每份2本; (4)平均分配给甲、乙、丙三人,每人2本; (5)分成三份,1份4本,另外两份每份1本; (6)甲、乙、丙三人中,一人得4本,另外两人每人得1本; (7)甲得1本,乙得1本,丙得4本.
1)
=④
n! m!(n-m)!
.(n,m∈N*,且m≤n)
(1)0!=1;(2)
C0n
=n!;(3)n
C ;(4)
Cnn
-m
=Cm n1
+
m n
知能拓展
考法一 排列、组合问题的解题方法
例1 有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数: (1)选其中5人排成一排; (2)排成前后两排,前排3人,后排4人; (3)全体排成一排,甲不站在排头也不站在排尾; (4)全体排成一排,女生必须站在一起; (5)全体排成一排,男生互不相邻.
(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,
叫做从n个不同元素中取出m个元素的排列数,记作②
A
m n
.
注意 易混淆排列与排列数,排列是一个具体的排法,不是数而是一件事, 而排列数是所有排列的个数,是一个正整数. 3.组合与组合数 (1)组合:从n个不同元素中取出m(m≤n)个元素组成一组,叫做从n个不同元 素中取出m个元素的一个组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数, 叫做从n个不同元素中取出m个元素的组合数,记作Cmn .
高考数学
第十章 计数原理 §10.1 计数原理与排列、组合
考点清单
考点 计数原理、排列、组合
1.两个计数原理的联系与区别
原理
分类加法计数原理
分步乘法计数原理
联系
两个计数原理都是对完成一件事的方法种数而言的
区别一
每类办法都能独立完成这件事, 它是独立的、一次的,且每次得 到的是最后结果,只需一种方法 就可完成这件事
解题导引
解析
(1)从7个人中选5个人来排列,有
A
5 7
=7×6×5×4×3=2
520(种)方法.
(2)分两步完成,先选3人排在前排,有
A37
种方法,余下4人排在后排,有
A
4 4
种方
法,故共有
A37
·A
4 4
=5
040(种)方法.(事实上,本小题即为7人排成一排的全排
列,无任何限制条件)
(3)(优先法)甲为特殊元素,先排甲,有5种方法,再将其余6人全排列,有
A
6 6
种
方法,故共有5×A66 =3 600(种)方法.
(4)(捆绑法)将女生看成一个整体,与3名男生在一起进行全排列,有
A
4 4
种方
法,再将4名女生进行全排列,有
A
4 4
种方法,故共有
A
4 4
·A
4 4
=576(种)方法.
(5)(插空法)男生互不相邻,而女生不作要求,∴应先排女生,有
A
4 4
种方法,再
每一步得到的只是中间结果,任 何一步都不能独立完成这件事, 缺少任何一步也不可,只有各步 骤都完成了才能完成这件事
区别二
各类办法之间是互斥的、并列 各步之间是相互依存的,并且既
的、独立的
不能重复也不能遗漏
2.排列与排列数 (1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的① 顺序 排 成一列,叫做从n个不同元素中取出m个元素的一个排列.
=12+4=16种执行方案;
③当A,E分别排在第三、四位置时,有
C12
C12
A
2 2
A
2 2
=16种执行方案.
根据分类加法计数原理得不同的执行方案有12+16+16=44种,故选B.
答案 (1)B (2)B
方法总结
直接法
把符合条件的排列数直接列式计算
优先法
优先安排特殊元素或特殊位置
捆绑法
相邻问题捆绑处理,即可以把相邻元素看成一个整体与其他元素排列,同时注意捆 绑元素的内部排列
注意 易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有
关,排列问题与顺序有关,组合问题与顺序无关.
4.排列数、组合数的公式及性质
公式
n!
(1) Anm =n(n-1)(n-2)…(n-m+1)=③ (n-m)! ;
性质
(2)Cnm =
Anm Amm
= n(n-1)(n-2)?
m!
(n-m