tl494lm339方案atx电源电路工作原理与维修
ATX电源工作原理及检修
ATX电源工作原理及检修ATX电源工作原理及检修ATX电源工作原理及检修检修ATX开关电源,从+5VSB、PS-ON和PW-OK信号入手来定位故障区域,是快速检修中行之有效的方法。
一、+5VSB、PS-ON、PW-OK控制信号ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。
+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头9脚引出。
PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。
当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。
PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。
脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB 外,不输出其它电压。
其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时PS-ON信号为低电平,PW-OK、+5VSB信号为高电平,ATX插头+3.3V、±5V、±12V有输出,开关电源风扇旋转。
上述操作亦可作为选购ATX开关电源脱机通电验证的方法。
二、控制电路的工作原理ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON 和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。
TL494LM339方案ATX电源电路工作原理和维修
LWT2005 [TL494(KA7500)+LM339] ATX电源电路工作原理与维修随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX开关电源又将成为维修界的一个新的亮点。
本文以市面上最常见的LWT2005型开关电源供应器为例,详细讲解最新ATX开关电源的工作原理和检修方法,对其它型号的开关电源供应器,也借此起到一个抛砖引玉的作用。
一、概述ATX开关电源的主要功能是向计算机系统提供所需的直流电源。
一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。
它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。
其外观图和部结构实物图见图1和图2所示。
ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V(0.5A)、+12V(10A)、—12V(1A)、+3.3V(14A)、+5VSB(0.8A)。
为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。
二、工作原理ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。
参照实物绘出整机电路图,如图3所示。
1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。
如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。
C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。
TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。
L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。
ATX电源的电路原理及常见故障检修详解
ATX电源的电路原理及常见故障检修详解1.ATX电源的工作原理ATX电源的主变换电路和AT电源相似,采用双管半桥它激式电路。
整个电路的核心是脉宽调制(PWM)控制芯片,多数ATX电源都采用TL494(或其替代芯片),利用TL494的④脚“死区控制”功能来实现主变换电路的开启和关闭。
2.如何判定故障范围由于微机电源都设置了过压、过流保护电路,电源发生故障时,大多表现为主机加电无任何指示,主机不启动,显示器无任何显示,电源风扇不转。
由于ATX主板上有一部分电路称为“电源检测模块”,它可以控制电源的开启和关闭,这部分电路出现了故障,也表现为上述故障现象。
那么,怎样判定是ATX电源故障还是主板故障呢?ATX电源和主板之间是通过一个20脚长方形双排综合插件连接的,如图2所示,其中14脚(绿色线)为PS-ON信号,主板就是通过这个信号来控制电源的开启和关闭的。
当主板电源的“电源检测部件”使PS-ON信号为高电平时,电源关闭;当主板使PS-ON信号为低电平时,电源工作,向主板供电。
当ATX 电源不和主板相连时,电源内部提供PS-ON信号高电平,ATX电源不工作,处于待机状态。
当计算机通电后无法开启时,可将所有供电插头拔下,将14脚和地线(黑色线)用导线短接,若电源风扇转动,各路输出正确,即可判定电源是正常的,否则是电源故障。
3.ATX电源常见故障维修(l)无300V直流电压。
这种故障,首先从交流输入插座查起,保险管、整流二极管(桥)、滤波电容是常坏的元件。
找到损坏元件后,还要检查主变换电路大功率开关管及其附属电路,在保证其正常时,才可以加电,因为这种故障通常是山大功率元件损坏后引起的。
大功率管多采用MJE13007(400V/8A/75W),是故障率最高的元件,更换时要选用性能参数等于或高于原参数的管子,最好选用原型号的管子,还要注意两个管子的参数应一致。
(2)通电后辅助电源正常,启动电源各路主电压无输出。
这种故障有两种可能,一是主变换电路有故障,二是控制部分损坏。
第6讲 ATX电源(主电源)工作原理及检修2
7.5 开关机控制电路的故障检修
(1)开关机控制电路的常见故障 (2)开关机控制电路的检修方法 7.6 稳压控制电路的故障检修 (1)稳压控制电路的常见故障
(2)稳压控制电路的检修方法 7.7 保护电路故障检修
(1)保护电路的常见故障 (2)保护电路故障的检修方法
-5.00 +5.00 +3.30
最大 +5.25 +12.80 -13.00
-5.25 +5.25 +3.45
单位 V V V
V V V
3、PWM脉冲产生电路
3.1 TL494 内部结构图
3.2 PWM脉冲产生电路
4、 PW-OK(PW-GOOD)信号产生电路
4.1 LM339内部结构图
4.2 PW-OK(PW-GOOD)信号产生电路
5、PS-ON开关机控制信号
6、过压、缺相保护电路
7、主电源故障检修(辅助电源正常后才能进行)
7.1 开关主回路的检修 (1)开关主回路的常见故障 (2)开关主回路的检修 7.2 功率变换输出电路故障的检修 (1)功率变换输出电路的常见故障 (2)功率变换输出电路的检修方法 7.3 开关脉冲驱动电路的故障检修 (1)开关脉冲驱动电路的常见故障 (2)开关脉冲驱动电路的的检修方法 7.4 开关脉冲产生电路的故障检修 (1)开关脉冲产生电路的常见故障 (2)开关脉冲产生电路的检修方法
(二)主电源电路
1、开关主回路(双管半桥式)电路及驱动电路
2、高频功率变换及低压输出电路
2.1 电源输出排线功能图
2.2
输出电压的变化范围
最小 +4.75 +11.20 -11.00
-4.75 +4.75 +3.15
TL494核心的ATX电源原理及维修
组提供 的Q 3 的基极 电流,使Q 3 加 快进 入饱和 导 通状态 。 Q 3 饱和 后,反馈 电压 经R 1 1 、R 1 3 、Q 3 基一 射极 给C 2 9 反 向充 电 ,由于R 1 4 ( 6 6 0 K ) 阻值较 大 ,经 R 1 4 提供 的Q 3 基极 电流太 小,不 足 以维 持Q 3 的饱和 导通 ,Q 3 的饱和 导通状 态靠C 2 9 的 反 向充 电来 维持 ,C 2 9 的反 向充 电时 间常数决 定了Q 3 的导通时 间长短 ,随着 C 2 9 的反 向充 电 电流 的减 小 ,Q 3 基 极 电流 也减 小 ,Q 3 饱和 程 度 下 降 ,I c 减 小 ,经 过一 段 时 间,进 入放 大 区,I b 恢复对 I c 的控制 ,这时 由于 I b 减 小,I c 下降 , 由愣 次 定律 可 知 :① ~② 绕组 感应 出 上正 下 负 的 电动 势 ,经 变 压器 耦 合 ,③ 一④ 绕 组 上 也产 生上 负 下 正的 感应 电动势 。该 反 馈 电压经R l l ,C 2 9 提供反 向偏置 电压 ,使I b 更 加 减小导致 I c 也减小 ,这 一反馈过程 ,使Q 3 很 快进 入截止状 态。Q 3 截止 后,整流桥输 出的 电 压 给C 2 9 正 向充 电,充 电路径 是 :整流桥 正端 R 1 4 一c 2 9 一R l 1 一反 馈绕 组③ 一④一 热地 。 使C 2 9 上 的电压按 指数规 律上升 。Q 3 基极 电位 按 指数规律上 升。经一 定时间后 ,Q 3 发 射极 由 反偏 变为正偏 ,I b 增加 ,I c 也增加 ,Q 3 由截 止 变 为饱 和 ,Q 3 按上述方式周 而复始 的工作 ,产 生 自激振 荡。 当待机时 ,T L 4 9 4 ( 3 ) 脚为零 电平 ,经 R 4 6 使 L M 3 3 9 ( 9 ) 输入低 电位,L M 3 3 9 0  ̄ 输出零 电平 ,主 机 待机 。受控 启动后 ,T L 4 9 4 ( 3 ) 脚 电位 上升 , L M 3 3 9 ( 9 ) 脚 电位也 上升 ,当( 9 ) 脚 电位 大于其 固 定 分压 比后 ,L M 3 3 9 0  ̄ 输 出高 电平 ( 5 V ) ,主机 检测 到P G 的高 电平 后 ,启动 系统 。关机 时,P G 输 出信 号 L h A T X 电源+ 5 V 输 出电压 提前几 百毫秒 消 失 ,通 知主 机 触发 系 统在 电源 断 电前 自动 关 闭 ,防 止 因硬 盘磁 头 来不 及 归位 而划 伤硬 盘一一P G 信号 的特 点为 : “ 晚来早走”。 主 电源 :待机 时,主板向P S ( 绿色线) 端输 出高 电平 ( 3 . 6 V ) ,经R 2 5 、R 4 9 到达L M 3 3 9 ( 6 ) ,其 ( 2 ) 脚 输 出高 电平 经D 2 6 2 给T L 4 9 4 ( 4 ) 脚 ,使之关 闭( 8 ) 、O D 两脚 的脉 宽调制信 号,导致B 3 推动变 压器 、B l 主 电源开 关变压器停振 。除+ 5 V S B ( 紫 色线) 外 ,其它各路 电压均 无输 出。
ATX电源中的TL494及LM339集成电路
ATX电源中的TL494及LM339集成电路ATX电源的控制电路见图1。
控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TLTL494相同,可互换)及LM339集成电路(以下简称TL494和LM339)。
TL494是双排16脚集成电路,工作电压7~40V。
它含有由14脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由5脚外接电容及6脚外接电阻来决定。
13脚为高电平时,由 8脚及11脚输出双路反相(即推挽工作方式)的脉宽调制信号。
本例为此种工作方式,故将13脚与14脚相连接。
比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。
比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。
TL494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。
其中a是死区时间比较器。
因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。
两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。
因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。
为防止这样的事情发生,TL494设置了死区时间比较器a。
从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接TL494的4脚。
比较器a同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,TL494没有脉冲输出,避免了对直流电源的短路。
死区时间还可由4脚外接的电平来控制,4脚的电平上升,死区时间变宽,TL494输出的脉冲就变窄了,若4脚的电平超过了锯齿波的峰值电压,TL494就进入了保护状态,8脚和 11脚就不输出脉冲了。
电源ATX电源电路故障检修精要ok
电源A TX电源电路故障检修精要一、工作原理1.整流输出的+300V分别通过两个脉冲变压器加到主电源、辅助电源的功率管集电极,辅助电源开始工作,输出(1)+12V供电TL494;(2)+5VSB、PS-ON到20脚排插。
2、TL49412脚得到+12V,开始工作,它的13、14、15输出+5V,但它被④脚死区控制。
当PS-ON端为低电平时,④脚电压跳变,解除控制,从⑧、11输出推挽波形,推动小功率对管工作,通过变压器耦合,使主电源功率对管工作,由主脉冲变压器另一端后续电路输出各型电压。
TL494输出的+5V,供电LM339③脚,它由四个比较器构成。
3、维修技巧1.TL494 注意:12脚Vcc端有的为20V,甚至高达40V。
2.LM339(如图3)②脚通过二极管(IN4148)等控制TL494④脚;⑥脚通过电阻等联接20针排插PS-ON端;3.易损部件:(1)保险、电解电容、开关管、整流桥堆;(2)与开关管联接的启动电阻、限流电阻;(3)开关管附近的快恢复二极管、IN4148和稳压管、小功率三极管;(4)TL494、LM339。
常见配件型号:(1)主电源的功率对管为E13007、C4242、C4161;(2)辅助电源管为C5027、C3866,有的为N型场效应管;(3)集成块有两片,一片为TL494,有的型号尽管不含494字样,但功能相同,另一片为LM339,有的用LM393(8脚)。
其它:(1)正常的A TX电源,短路PS-ON,风扇转动正常,各路输出正常,若风扇一转即停,再重复,又如此,这是有空载保护,把硬盘接在输出端,应出现正常现象;否则,为故障。
(2)输出正常,排除主机板故障,但主机不工作,最大可能为power-good信号不正常。
(3)电源功率与主机要配匹,主机经常重新启动,排除电力供应的故障,应考虑换电源。
(4)检修完毕,一定要测各路输出的电压值是否正常。
五、检修实例东阳电源现象:无任何反应。
tl494lm339方案atx电源电路工作原理与维修
T L494L M339方案A T X电源电路工作原理与维修(总10页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.MarchLWT2005 [TL494(KA7500)+LM339] ATX电源电路工作原理与维修随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX开关电源又将成为维修界的一个新的亮点。
本文以市面上最常见的LWT2005型开关电源供应器为例,详细讲解最新ATX开关电源的工作原理和检修方法,对其它型号的开关电源供应器,也借此起到一个抛砖引玉的作用。
一、概述ATX开关电源的主要功能是向计算机系统提供所需的直流电源。
一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。
它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。
其外观图和内部结构实物图见图1和图2所示。
ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V()、+12V(10A)、—12V(1A)、+(14A)、+5VSB()。
为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。
二、工作原理ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。
参照实物绘出整机电路图,如图3所示。
1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。
如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。
tl494开关电源维修和原理
tl494开关电源维修和原理TL494充电器原理与维修电动自行车充电器多采用开关电源,型号虽多,但电路结构大同小异,主要区别在于所选的脉宽调制(PWM)芯片不同如(UC3845、UC3842、SG3524、TL494)。
现以佳腾牌充电器为例,介绍其原理和故障检修方法。
一、电路原理根据实物测绘的佳腾牌充电器电路原理如图1所示。
整机可分为PWM产生和推动电路、功率开关变换电路、充电状态指示电路和交流输入电路四个部分。
图11.PWM产生和推动电路PWM产生电路由IC1TL494和外围元件构成。
TL494是PWM开关电源集成电路。
引脚功能和内部框图如图2所示。
IC1的第5、6脚外接的C10、R19是定时元件,决定锯齿波振荡器的振荡频率,F=1.1/RC,按图中数值为50KHz。
第14脚是+5V基准电压输出端,除芯片内部使用外,还直接或分压后供第2、4、13脚和IC2使用。
第13脚为输出方式控制端,该脚接低电平时为单端输出方式,图中接第14脚+5V高电平,为双端输出方式。
第4脚为死区电压控制端,该脚电压决定死区时间。
电位升高,死区时间延长,输出脉宽变窄,当电压大于锯齿波电压时,输出脉宽将变得很窄,甚至停振。
凡输出端采用全桥或半桥式的开关电路,都要正确设置死区时间,以免两个开关管同时导通,发生电源短路的危险。
图中该脚电位由基准电压经R24和R20分压取得,实测电压为0.46V。
第1 、2脚和第16、15脚是IC1内部的两个电压比较器的正、反相输入端,分别用作充电电压取样和充电电流取样。
+44V充电电压经R28、R27和R26分压反馈至第1脚。
C15是软启动电容。
第2脚电位由基准电压经R23和R3分压取得,实测为3.2V。
第1脚电压越高,输出脉宽越窄,充电电压越低;反之脉宽增宽,充电电压升高。
从而实现+44V充电电压的目的。
Ra是充电电压调试电阻,Ra和R26并联值越小,充电电压越高。
R29是脚充电电流取样电阻,由该电阻上取得的电压变化,经R13送入IC1的第15脚。
ATX电源工作原理以及检修详解
ATX电源工作原理以及检修详解1.输入电流滤波:电源插头将交流电输入到电源中,经过滤波电容和变压器,将电流进行滤波和降压处理,使电流变得平稳。
2.整流和滤波:经过滤波电容和整流电路,将交流电转换为脉冲直流电,再通过滤波电容进行进一步的平滑处理,减小电流的波动。
3.变压器:通过变压器将电压转换为计算机内部部件需要的电压水平,一般为12V、5V和3.3V。
4.稳压:通过稳压电路控制输出电压的稳定性,确保输出的电压在一定的误差范围内。
5.保护电路:ATX电源还配备了各种保护电路,如过载保护、过电压保护和短路保护等,确保电源和计算机内部部件的安全运行。
1.电源无输出:首先,检查电源插头是否正确插入,确保电源输入正常。
然后,检查供电线路是否正常,包括电源插头和主板插座等。
如果以上都正常,可能是电源内部损坏,需要更换电源。
2.输出电压不稳定:检查输入电压是否过高或过低,过高或过低的输入电压都会导致输出电压不稳定。
如果输入电压正常,可能是电源内部元件损坏,需要修复或更换电源。
3.过载保护:如果电源输出过载,电源会自动关闭以保护内部元件不被损坏。
此时,需要检查计算机负载是否过重,如果过重需要减少负载。
同时,还要检查供电线路是否正常,包括电源插头和主板插座等。
4.过热:电源过热可能会导致电源自动关闭或输出电压不稳定。
首先,检查电源是否有足够的散热空间,如果没有,需要增加散热措施。
其次,检查风扇是否正常运转,如果风扇故障需要更换。
总结:ATX电源是计算机中重要的电源设备,它将交流电转换为适用于计算机内部各个部件的直流电。
了解ATX电源的工作原理和常见故障的检修方法对于维护和修复计算机故障非常重要。
在检修电源时,需要注意操作安全,避免触电和元件损坏等情况的发生。
如果不熟悉电源的维修和检修,请寻求专业技术人员的帮助。
TL494充电器原理与维修
TL494充电器原理与维修电动自行车充电器多采用开关电源,型号虽多,但电路结构大同小异,主要区别在于所选的脉宽调制(PWM)芯片不同如(UC3845、UC3842、SG3524、TL494)。
现以佳腾牌充电器为例,介绍其原理和故障检修方法。
一、电路原理根据实物测绘的佳腾牌充电器电路原理如图1所示。
整机可分为PWM产生和推动电路、功率开关变换电路、充电状态指示电路和交流输入电路四个部分。
1.PWM产生和推动电路PWM产生电路由IC1TL494和外围元件构成。
TL494是PWM开关电源集成电路。
引脚功能和内部框图如图2所示。
IC1的第5、6脚外接的C10、R19是定时元件,决定锯齿波振荡器的振荡频率,F=1.1/RC,按图中数值为50KHz。
第14脚是+5V基准电压输出端,除芯片内部使用外,还直接或分压后供第2、4、13脚和IC2使用。
第13脚为输出方式控制端,该脚接低电平时为单端输出方式,图中接第14脚+5V高电平,为双端输出方式。
第4脚为死区电压控制端,该脚电压决定死区时间。
电位升高,死区时间延长,输出脉宽变窄,当电压大于锯齿波电压时,输出脉宽将变得很窄,甚至停振。
凡输出端采用全桥或半桥式的开关电路,都要正确设置死区时间,以免两个开关管同时导通,发生电源短路的危险。
图中该脚电位由基准电压经R24和R20分压取得,实测电压为0.46V。
第1 、2脚和第16、15脚是IC1内部的两个电压比较器的正、反相输入端,分别用作充电电压取样和充电电流取样。
+44V充电电压经R28、R27和R26 分压反馈至第1脚。
C15是软启动电容。
第2脚电位由基准电压经R23和R3分压取得,实测为3.2V。
第1脚电压越高,输出脉宽越窄,充电电压越低;反之脉宽增宽,充电电压升高。
从而实现+44V充电电压的目的。
Ra是充电电压调试电阻,Ra和R26并联值越小,充电电压越高。
R29是脚充电电流取样电阻,由该电阻上取得的电压变化,经R13送入IC1的第15脚。
用TL494制作的ATXC开关电源控制电路图
用TL494制作的ATXC开关电源控制电路图本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。
494是双排16脚集成电路,工作电压7~40V。
它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路。
图1ATX电源的控制电路见图1。
控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。
494是双排16脚集成电路,工作电压7~40V。
它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。
{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。
本例为此种工作方式,故将{13}脚与{14}脚相连接。
比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。
比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。
494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。
其中a是死区时间比较器。
因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。
两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。
因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。
为防止这样的事情发生,494设置了死区时间比较器a。
从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。
TL494核心的ATX电源原理及维修
TL494核心的ATX电源原理及维修【摘要】以TL494为核心的ATX电源市场占有量较大,且使用多年已到故障多发期。
虽然具体有众多不同的品牌及型号,但原理大同小异。
本文以比较有代表性的长城ATX-300P4-PFC电源为例,详细分析其工作原理。
原理之后,配以相关维修实例,希望能对广大同行起到借鉴的作用。
【关键词】反馈;振荡;饱和;截止一、引言采用以TL494为核心的ATX电源输出功率为300W以下,一般为TL494+LM339组合方式。
其中TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。
TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。
其主要特性如下:1)集成了全部的脉宽调制电路;2)片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容);3)内置误差放大器;4)内置5V参考基准电压源;5)可调整死区时间;6)内置功率晶体管可提供500mA的驱动能力;7)推或拉两种输出方式。
LM339为四电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。
TL494+LM339的组合,面市已久,电路成熟可靠,是一种较为经典的ATX 电源。
其中TL494还可与KA7500直接代换。
二、工作原理在以TL494为核心的ATX电源中,长城ATX-300P4-PFC电源比较有代表性,下面以该电源为例分析一下其相关工作原理。
辅助电源的作用是在电脑主机待机时提供+5VSB(紫色线),主电源的作用是提供电脑开机后所需的+12V、+5V、-5V、+3.3V。
辅助电源工作原理为:220V交流电通过ZL1(5A700V)整流,C8、C9滤波为+300V直流电,经R14(启动电阻)给Q3基极提供正向偏置电压和启动电流,使Q3开始导通。
TL494ATX开关电源工作原理与维修技巧a
TL494 ATX开关电源工作原理与维修技巧a一、原理分析1.待机电源待机电源又称辅助电源,电路见附图。
自激振荡部分由Q03,T3,C14,D04,2R21,2R22,2R4等元件组成;稳压部分由IC5(电压基准源),IC1(光祸),Q4(PWM)等元件组成;保护和尖峰吸收部分由Q4,2823、2R10,C02及2R5、C05A,D06等元件组成。
可见待机电源的构成与部分彩电开关电源(带光祸的)基本一致,详细工作过程也大致相同。
T3次级,一路由DOIA和C09整流滤波输出十22V,为驱动电路T2初级和IC2 (TIA94CN )?脚提供工作电压。
一路由DOf、C03、IA, C05整流滤波输出+5VSB (Stand By),由一根紫色导线经ATX插头送到主板上“电源监控部件”电路,为该电路提供待机电压。
别看待机电源结构简单,在微机系统中却占据着重要地位,一方面它给主控PWM电路和担任多种信号处理的四比较器供电,保障ATX开关电源自行运转;另一方面,它又像永不熄灭的“火种”,向主机提供待机电压。
2.主开关电源)主控PWM型集成电路TL494CN简介TLA94CN内部由振荡器、“死区”比较器、PWM(1比较器、两个误差放大器1和2、触发器、逻辑门、三极管Q1,Q2,基准电压调节器以及由两个滞回比较(器施密特触发器)组成的欠压封锁电路等部分组成。
其中?脚、?脚外接定时电容和定时电阻;由触发器和逻辑门构成的逻辑电路由?脚控制输出方式,在电脑ATX开关电源中(13)脚接5V基准电压,使内部三极管QI,Q2工作在推挽输出方式;基准电压调节器将待机电源经(12)脚提供的22V工作电压转换为5V基准电压,由(14)脚输出。
(2)脉宽调制与驱动电路得到主机启动指令后IC2(TL494CN)立刻由待机状态转人工作状态,?脚、?脚输出相位差为1800的PWM信号,使17初级一侧的Q1,Q2轮流导通或截止,并经T2次级L3 ,LA绕组的藕合,驱动QO1,Q02也为轮流导通或截止,共处于“双管推挽”工作方式。
tl494ATX电源的控制电路
ATX电源的控制电路见图1。
控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。
494是双排16脚集成电路,工作电压7~40V。
它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。
{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。
本例为此种工作方式,故将{13}脚与{14}脚相连接。
比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。
比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。
494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。
其中a是死区时间比较器。
因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。
两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。
因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。
为防止这样的事情发生,494设置了死区时间比较器a。
从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。
A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。
死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。
ATX电源工作原理以及检修详解
ATX电源工作原理以及检修详解ATX电源作用是把交流220V的电源转换为计算机内部使用的直流5V,12V,24V的电源。
检修ATX开关电源,从+5VSB、PS-ON和PW-OK 信号入手来定位故障区域,是快速检修中行之有效的方法。
那么将分类讨论ATX电源的工作原理及检修方法。
一、+5VSB、PS-ON、PW-OK控制信号ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。
+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头9脚引出。
PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。
当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。
PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。
脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB 外,不输出其它电压。
其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时PS-ON信号为低电平,PW-OK、+5VSB信号为高电平,ATX插头+3.3V、±5V、±12V有输出,开关电源风扇旋转。
上述操作亦可作为选购ATX开关电源脱机通电验证的方法。
二、控制电路的工作原理ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON 和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。
ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解
用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路ATX电源的控制电路见图1。控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。本例为此种工作方式,故将{13}脚与{14}脚相连接。比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。其中a是死区时间比较器。因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。为防止这样的事情发生,494设置了死区时间比较器a。从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。494内部还有3个二输入端与门(用1、2、3表示)、两个二输入端与非门、反相器、T触发器等电路。与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平。反相器的作用是把输入信号隔离放大后反相输出。与非门则相当于一个与门和一个反相器的组合。T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次。如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平。比较器、与门、反相器、T触发器以及锯齿波振荡器及{8}脚、{11}脚输出的波形见图2。339是四比较过流保护过压保护一、产生PW-OK信号PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约的C比较器的输出端{14}脚为零电平。另外,339的{1}脚低电平信号因D34的钳位作用,也使{14}脚为低电平,经R50和R63使{11}脚亦为低电平。因此D比较器的输出端{13}脚为低电平,也就是PW-OK信号为低电平,主机不会工作。开启主机时,通过人工或遥控操作闭合了与PS-ON相关的开关,PS-ON呈低电平,经R37使339的反相端{6}脚为低电平,B比较器{1}脚输出高电平,D35、D36反偏截止,A比较器的输出电平则由{5}脚与{4}脚的电平决定。正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经R41送到494的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器a输出脉冲信号,另一方面,振荡信号送到了PWM比较器b 的同相输入端,PWM比较器输出的脉冲信号的宽度,则是由494的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定。PWM比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}、{11}脚输出脉冲信号,ATX电源向主机输出±5V、±12V、+3.3V电源。此过程因C35的充电有数百毫秒的延时,但对主机开机并无影响。494的{1}脚从+5V、+12V经取样电阻R15、R16得到电压,其电平略高于{2}脚电平,{3}脚输出高电平,经R48使339的{9}脚得到高电平,其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经R50与基准+5V电源经R64共同对C39充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D比较器{13}脚输出高电平,此电平经R49反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平PW-OK信号,主机检测到此信号后即开始正常工作。关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平。在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出,主机进入待机状态。上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要。此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平。二、稳压494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15、R16与+5V、+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高。当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升。由于494内的放大器增益很高,故稳压精度很好。从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法。如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大。要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69、R35来降低输出电压。三、过流保护过流保护的原理是基于负载愈大,Q3、Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54、R55并联电阻与R51、R56、R58等组成的分压电路送到494的{16}脚。随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小。另外,从R56、R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V、±12V、+3.3V 电源的输出,达到过流及短路保护的目的。需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V、±12V、+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V、+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机。四、过压保护过电压保护由R17和稳压管Z02并联电路从+5V采样,经D37送到339的{5}脚。若+5V电源由于某种原因升高,339的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去494的{4}脚,封锁±5V、±12V、+3.3V电源的输出,达到过电压保护的目的。正常工作时,R17上的压降不大,Z02截止送到{5}脚的电压较低,若+5V电源的电压上升,使R17上的压降超过Z02的稳压值,Z02导通,+5V电源上升后的电压值全部加到339的{5}脚上,促使其快速封锁494脉冲的输出,以保护电源五、欠压保护欠压保护从-5V的D32及-12V处的R14取样,经R34和D37送到339的{5}脚。若因某种原因使输出电压过低时,-12V及-5V电压的负值也会随之减小,也就是电压值上升,经R34及D37送往339的{5}脚使电平上升,339的{2}脚送出高电平到494的{4}脚,从而封锁449脉冲的输出,实现欠压保护。二极管D32在导通时,其电压降与通过的电流基本无关,保持在0.6V~0.7V,于是-5V电压的减少量会全部传送到D32的负端,提高了欠压保护的灵敏度。六、电源保护电路故障的维修从上面的叙述中可以了解到,各种保护电路最终都是通过控制339的{5}脚电平来控制494的{4}脚电平实现的。正常工作时,339的{5}脚电平低于339的{4}脚电平,339的{2}脚输出低电平,使494的{4}脚呈低电平状态(约为0.25V)。若339的{5}脚电平高于339的{4}脚电平,339的{2}脚输出高电平,于是494的{4}脚变为高电平,电源就进入了保护状态,终止各路电源的输出。因此ATX电源出了故障,若电源的整流、滤波、逆变以及辅助电源均完好,则要检查339的{4}、{5}脚的电平。若是{5}脚电平高于{4}脚的电平,表示电源进入了保护状态。下一步则找出是什么原因使电源进入了保护状态。可检查与339的{5}脚相连各支路另一端的电压是不是比{5}脚电压高,高出{5}脚电压的支路就是故障所在的支路。另外,也可以用断开与{5}脚相连的一个个支路,若是断开某一条支路后{5}脚的电平正常了,那么故障就出在这一条支路上。再沿着这条支路往下查,很快就可以把故障排除。下面通过两个实例来加以说明。1.一台SLPS-250ATXC电源的输出电压偏低。空载下,+5V电源的电压只有+1.8V,其他各路电压也按比例同样下降。电源是采用TL494及LM339集成电路的典型ATX电路。检查494的{4}脚电压为+2.6V。电路似乎处于保护状态。但保护状态时各路输出的电压均应为零,而现在却是正常电压的三分之一,令人费解。试着把494的第{4}脚接地,电源立即输出正常。{4}脚接地就正常工作,说明494并未损坏,问题可能出在339以及有关的电路。用万用表查339管脚的电压,当查到第{4}脚及{7}脚时,各路电源均正常了。甚至只用一条表笔去碰{7}脚或{4}脚,也可使电源恢复正常工作。这等于在{4}脚或{7}脚上加了一条“天线”,天线接收了外来信号电源就工作正常了!我试了试天线的长度,40厘米以下对电源不起作用,长度增加了,输出电压也随着增加,达到1米左右时,输出电压就正常了,494的{4}脚电压也恢复到0V。但电源要用“天线”才能工作,说明还有故障未找到。再检查339的{4}脚与{5}脚的电压,{5}脚电压为2.4V,{4}脚的电压为1.2V,输出端{2}脚的电压为2.9V。(这部分电路见图3)。但是339的{2}脚高电位,必须由{5}脚电位高于{4}脚的电位时才能产生,那{5}脚最初的高电位是怎么来的?把与{5}脚相连的各支路断开试一试。在断开c支路以后,电源就正常了。沿着D2往下找,最后在+3.3V电源处对地接一个1000μF的电容时,电源就正常了。再检查+3.3V电源原来的滤波电容,发现已经失效。更换电容后494的{4}脚电压恢复正常,用表笔去碰触339的{4}脚或{7}脚也不起作用,问题得到了解决。为什么+3.3V电源的滤波电容失效会造成输出电压偏低?+3.3V电源在没有电容滤波时,输出的直流电源中含有很强的由逆变功率管输出的脉冲成分,通过D3及D2送到LM339的{5}脚,使{5}脚的电平高于{4}脚的电平,电源进入了保护状态。从+20V 电源经R3、D1、R2和三个并联电阻到接地的支路中,三个电阻并联后的电阻值是2.43kΩ,再略去其他支路的影响,可以估算出{5}脚的电压大约是2.3V,因二极管D1的钳位作用,{2}脚输出电压只能在2.9V左右,经R1送到TL494的{4}脚,减去电阻R1的降压,494的{4}脚电压就是2.6V了。在此电压下,494会输出较窄的脉冲,于是在空载下,+5V电源有约1.8V的电压输出。解决的办法可在d支路中串联一个47kΩ的电阻,并把R2由3.9kΩ换成100kΩ就行了。经这样处理后,不论是正常工作或是保护状态,各路电源的输出电压和各管脚的电压均正常了。而R2电阻的改动,也不会影响电源的过载保护性能。至此,电源的故障才完全得到了解决(爱好者手中若有SLPS-250ATXC电源,可参考此例加一个47kΩ电阻以提高电源的保护性能)。为什么339的{4}脚加了天线会正常工作呢?这是{2}脚经D1反馈到{5}脚后,产生了轻微的高频寄生振荡。{4}脚或{7}脚接了天线以后,破坏了电路的振荡条件,使{4}脚的电压升高,当超过{5}脚的电压时,{2}脚送出0V的低电平信号到494的{4}脚,电源就工作正常了。同样,在D1支路中串联了47kΩ电阻后,增加了阻尼因数,破坏了电路的振荡条件,电源也就正常了。此时若取下+3.3V电源处新加的电解电容,通电后,电源会立即进入保护状态,各路电源都没有输出。2.一台新时代HY-ATX300电源,空载时输出电压正常,但不能带动负载。检查494各个管脚的电压,发现{12}脚的电压只有10V,这是造成不能带动负载的原因。在辅助电源逆变变压器T3的初级线圈1加上16.5V的高频电压,测得次级+5VSB挡线圈3的电压是0.9V,向494集成电路{12}脚供电线圈4的电压为1.5V,约是+5VSB挡线圈电压的 1.7倍。电源的+5VSB电源是直接从线圈3经整流和滤波后得到,+5VSB电源的稳压则是借助WD431稳压集成电路和光电耦合器反馈回逆变三极管得到的,如图4所示。由此可以算出线圈4的电压为5×1.7=8.5V,因负载较轻,经电容滤波后的电压就是10V左右了。由此说明T3脉冲变压器线圈4的匝数少了。拆开T3变压器,得到各绕组的匝数为:初级2×110匝;反馈绕组10匝;+5VSB绕组12匝;绕组4的匝数是8匝。重新绕制绕组4,把匝数由原来的8匝增加到20匝,其余绕组的匝数不变。绕好后上机实验,494集成电路{12}脚的电压上升到17V,电源的输入功率可达130W,故障排除。从故障现象看,可能是工厂生产时将变压器装错了。。
银河ATX电源(LM393+TL494方案)
ATX 电源是在AT 电源的基础上发展来的,ATX 电源与AT 电源不同的地方是多了一个+3.3V 电源和+5V SB 电源。
不同品牌 ATX 电源的±5V 、±12V 电源的电路结构基本上相同,但+3.3V 电源的电路结构却差别较大。
笔者现列举几种+3.3V 电源的电路供爱好者参考。
一、图1是《电子报》去年第48期“普及型ATX 电源控制电路的工作原理”介绍的普及型ATX 电源的+3.3V 电源电路图。
+3.3V 电源由脉冲输出变压器Tl 的5V绕组经线圈L5、L6降压,由共阴极的肖特基整流块D23整流,再经Ll 、C28滤波后得到。
L5、L6的电压降与通过其中的电流有关,电流小时压降小,输出电压高,空载时的电压可达9.5V 左右。
电流大时电压降大,输出电压低。
为保证在最大负载时+3.3V 电源输出电压不低于+3.3V ,线圈L5和L6的电感量应妥善设计。
在本例中,L5和L6采用外直径12mm 、内径6mm 、厚4mm 的磁心,用φ0.93mm 的漆包线穿绕8T ,在负载电流为10A 时,未经稳压的输出电压为+3.5V 。
如果要求负载电流更大,可适当减少线圈的匝数.世纪之星ST-ATX320电源将两个线圈的匝数减少为7T ,+3.3V电源可输出更大的电流。
低于最大负载电流及空载时,电源的输出电压会超过+3.3V 。
为使+3.3V 电源输出电压稳定,设置了由TL43l 及Q5等组成的稳压电路。
此时电源的空载输出电压近似等于Vrefx(1+R26/R29)。
Vref 为TL431管子内部的基准电压值,为2.44V-2.55V ,一般取2.5V ,则输出电压约等于2.5×(1+4.7/13)=3.4V 。
若某种原因使输出电压上升,经R26和R29分压以后,送到控制极R 的电位也跟着上升,TL431阴极K 的电位下降,经R17使Q5的基极电位下降,Q5通过的电流增大,也就是流经L5和L6的电流增加.其上的电压降增大,于是+3.3V 电源的输出电压回落,从而保持了输出电压的稳定。
TL494 LM339方案ATX电源电路工作原理与维修
LWT2005 [TL494(KA7500)+LM339] ATX电源电路工作原理与维修随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX开关电源又将成为维修界的一个新的亮点。
本文以市面上最常见的LWT2005型开关电源供应器为例,详细讲解最新ATX开关电源的工作原理和检修方法,对其它型号的开关电源供应器,也借此起到一个抛砖引玉的作用。
一、概述ATX开关电源的主要功能是向计算机系统提供所需的直流电源。
一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。
它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。
其外观图和内部结构实物图见图1和图2所示。
ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V()、+12V(10A)、—12V(1A)、+(14A)、+5VSB()。
为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。
二、工作原理ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。
参照实物绘出整机电路图,如图3所示。
1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。
如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。
C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。
TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。
L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。
C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LWT2005 [TL494(KA7500)+LM339] ATX电源电路工作原理与维修随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX开关电源又将成为维修界的一个新的亮点。
本文以市面上最常见的LWT2005型开关电源供应器为例,详细讲解最新ATX开关电源的工作原理和检修方法,对其它型号的开关电源供应器,也借此起到一个抛砖引玉的作用。
一、概述ATX开关电源的主要功能是向计算机系统提供所需的直流电源。
一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。
它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。
其外观图和内部结构实物图见图1和图2所示。
ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V()、+12V(10A)、—12V(1A)、+(14A)、+5VSB()。
为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。
二、工作原理ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。
参照实物绘出整机电路图,如图3所示。
1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。
如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。
C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。
TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。
L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。
C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。
R2和R3为隔离平衡电阻,在电路中对C5和C6起平均分配电压作用,且在关机后,与地形成回路,快速泄放C5、C6上储存的电荷,从而避免电击。
2、高压尖峰吸收电路如图5所示,D18、R004和C01组成高压尖峰吸收电路。
当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。
3、辅助电源电路如图6所示,整流器输出的+300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。
Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50、C04整流滤波后,一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。
反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势开始下降,最终使T3③~④反馈绕组感应电动势反相(上负下正),并与C02电压叠加后送往Q03的b极,使b极电位变负,此时开关管Q03因b极无启动电流而迅速截止。
开关管Q03截止时,T3③~④反馈绕组、D7、R01、R02、R03、R04、R05、C09、IC3、IC4组成再起振支路。
当Q03导通的过程中,T3初级绕组将磁能转化为电能为电路中各元器件提供电压,同时T3反馈绕组的④端感应出负电压,D7导通、Q1截止;当Q03截止后,T3反馈绕组的④端感应出正电压,D7截止,T3次级绕组两个输出端的感应电动势为正,T3储存的磁能转化为电能经D50、C04整流滤波后为IC4提供一个变化的电压,使IC3的①、②脚导通,IC3内发光二极管流过的电流增大,使光敏三极管发光,从而使Q1导通,给开关管Q03的b极提供启动电流,使开关管Q03由截止转为导通。
同时,正反馈支路C02的充电电压经T3反馈绕组、R003、Q03的be极等效电阻、R06形成放电回路。
随着C41充电电流逐渐减小,开关管Q03的Ub电位上升,当Ub电位增加到Q03的be极的开启电压时,Q03再次导通,又进入下一个周期的振荡。
如此循环往复,构成一个自激多谐振荡器。
Q03饱和期间,T3次级绕组输出端的感应电动势为负,整流二级管D9和D50截止,流经初级绕组的导通电流以磁能的形式储存在辅助电源变压器T3中。
当Q03由饱和转向截止时,次级绕组两个输出端的感应电动势为正,T3储存的磁能转化为电能经D9、D50整流输出。
其中D50整流输出电压经三端稳压器7805稳压,再经电感L7滤波后输出+5VSB。
若该电压丢失,主板就不会自动唤醒ATX电源工作。
D9整流输出电压供给IC2(脉宽调制集成电路KA7500B)的12脚(电源输入端),经IC2内部稳压,从第14脚输出稳压+5V,提供ATX开关电源控制电路中相关元器件的工作电压。
T2为主电源激励变压器,当副电源开关管Q03导通时,Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),并作用于T2初级②~③绕组,产生感应电动势(上负下正),经D5、D6、C8、R5给Q02的b极提供启动电流,使主电源开关管Q02导通,在回路中产生电流,保证了整个电路的正常工作;同时,在T2初级①~④反馈绕组产生感应电动势(上正下负),D3、D4截止,主电源开关管Q01处于截止状态。
在电源开关管Q03截止期间,工作原理与上述过程相反,即Q02截止,Q01工作。
其中,D1、D2为续流二极管,在开关管Q01和Q02处于截止和导通期间能提供持续的电流。
这样就形成了主开关电源它激式多谐振电路,保证了T2初级绕组电路部分得以正常工作,从而在T2次级绕组上产生感应电动势送至推动三极管Q3、Q4的c极,保证整个激励电路能持续稳定地工作,同时,又通过T2初级绕组反作用于T1主开关电源变压器,使主电源电路开始工作,为负载提供+、±5V、±12V工作电压。
4、PS信号和PG信号产生电路以及脉宽调制控制电路如图7所示,微机通电后,由主板送来的PS信号控制IC2的④脚(脉宽调制控制端)电压。
待机时,主板启动控制电路的电子开关断开,PS信号输出高电平,经R37到达IC1(电压比较器LM339N)的⑥脚(启动端),由内部经IC1的①脚输出低电平,使D35、D36截止;同时,IC1的②脚一路经R42送出一个比较电压对C35进行充电,另一路经R41送出一个比较电压给IC2的④脚,IC2的④脚电压由零电位开始逐渐上升,当上升的电压超过3V时,关闭IC2⑧、11脚的调制脉宽电压输出,使T2推动变压器、T1主电源开关变压器停振,从而停止提供+、±5V、±12V等各路输出电压,电源处于待机状态。
受控启动后,PS信号由主板启动控制电路的电子开关接地,IC1的⑥脚为低电平(0V),IC2的④脚变为低电平(0V),此时允许⑧、11脚输出脉宽调制信号。
IC2的13脚(输出方式控制端)接稳压+5V (由IC2内部14脚稳压输出+5V电压),脉宽调制器为并联推挽式输出,⑧、11脚输出相位差180度的脉宽调制信号,输出频率为IC2的⑤、⑥脚外接定时阻容元件R30、C30的振荡频率的一半,控制推动三极管Q3、Q4的c极相连接的T2次级绕组的激励振荡。
T2初级它激振荡产生的感应电动势作用于T1主电源开关变压器的初级绕组,从T1次级绕组的感应电动势整流输出+、±5V、±12V等各路输出电压。
D12、D13以及C40用于抬高推动管Q3、Q4的e极电平,使Q3、Q4的b极有低电平脉冲时能可靠截止。
C35用于通电瞬间关闭IC2的⑧、11脚输出脉宽调制信号脉冲。
ATX电源通电瞬间,由于C35两端电压不能突变,IC2的④脚输出高电平,⑧、11脚无驱动脉冲信号输出。
随着C35的充电,IC2的启动由PS信号电平高低来加以控制,PS信号电平为高电平时IC2关闭,为低电平时IC2启动并开始工作。
PG产生电路由IC1(电压比较器LM339N)、R48、C38及其周围元件构成。
待机时IC2的③脚(反馈控制端)为零电平,经R48使IC1的⑨脚正端输入低电位,小于11脚负端输入的固定分压比,IC113脚(PG信号输出端)输出低电位,PG向主机输出零电平的电源自检信号,主机停止工作处于待机状态。
受控启动后IC2的③脚电位上升,IC1的⑨脚控制电平也逐渐上升,一旦IC1的⑨脚电位大于11脚的固定分压比,经正反馈的迟滞比较器,13脚输出的PG信号在开关电源输出电压稳定后再延迟几百毫秒由零电平起跳到+5V,主机检测到PG电源完好的信号后启动系统,在主机运行过程中若遇市电停电或用户执行关机操作时,ATX开关电源+5V输出电压必然下跌,这种幅值变小的反馈信号被送到IC2的①脚(电压取样比较器同相输入端),使IC2的③脚电位下降,经R48使IC1的⑨脚电位迅速下降,当⑨脚电位小于11脚的固定分压电平时,IC1的13脚将立即从+5V下跳到零电平,关机时PG输出信号比ATX开关电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘的磁头来不及归位而划伤硬盘。
5、主电源电路及多路直流稳压输出电路如图8所示,微机受控启动后,PS信号由主板启动控制电路的电子开关接地,允许IC2的⑧、11脚输出脉宽调制信号,去控制与推动三极管Q3、Q4的c极相连接的T2推动变压器次级绕组产生的激励振荡脉冲。
T2的初级绕组由它激振荡产生的感应电动势作用于T1主电源开关变压器的初级绕组,从T1次级①②绕组产生的感应电动势经D20、D28整流、L2(功率因素校正变压器,也称低电压扼流线圈。
以它为主来构成功率因素校正电路,简称PFC电路,起自动调节负载功率大小的作用。
当负载要求功率很大时,则PFC电路就经过L2来校正功率大小,为负载输送较大的功率;当负载处于节能状态时,要求的功率很小,PFC电路通过L2校正后为负载送出较小的功率,从而达到节能的作用。