指数函数的图像与性质 ppt课件

合集下载

高一数学指数函数ppt课件

高一数学指数函数ppt课件

与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。

指数函数ppt课件

指数函数ppt课件

04
指数函数的应用
在金融领域的应用
复利计算
股票和期货价格预测
在金融领域,复利计算是评估投资回 报的重要方式。指数函数用于计算复 利,通过复利公式,可以计算出投资 的未来价值。
在股票和期货市场中,指数函数常用 于价格预测模型。通过分析历史数据 ,利用指数函数可以预测未来的价格 走势。
保险精算
在保险行业中,指数函数用于精算模 型,例如生命表和风险评估。通过指 数函数,保险公司可以预测未来的风 险和损失。
指数函数和三角函数在某些方面具有 相似性,例如在周期性和对称性方面 。
三角函数的图像具有对称性,例如正 弦函数和余弦函数的图像关于y轴对称 ,而指数函数的图像则关于y=1对称 。
三角函数具有周期性,而指数函数在 形式上也可以表示为具有周期性的形 式。
06
练习题与答案解析
基础练习题
定义域和值域
指数函数的定Leabharlann 域和值域分别是什么?指数函数的起源与历史
起源
指数概念最早可以追溯到古代数学家和天文学家的著作中,但现代意义上的指 数函数则是在17世纪由数学家约翰·纳皮斯和费马等人提出。
历史发展
随着数学和科学技术的不断发展,指数函数的概念和应用范围也在不断扩展和 深化。在复数、微积分、线性代数等领域中,指数函数都扮演着重要的角色。
02
指数函数与幂函数的关系
指数函数和幂函数具有相似的 形式,即y=a^x和y=x^a。
当a>0时,指数函数和幂函数 的图像都是单调递增的;当 a<0时,指数函数和幂函数的 图像都是单调递减的。
指数函数和幂函数的定义域都 是全体实数集R,值域都是正 实数集(0,+infty)。
指数函数与三角函数的关系

指数函数图像与性质ppt课件

指数函数图像与性质ppt课件

探究:
为什么要规定a 0且a 1呢?
0
1
a
分类讨论
(1) 若a 0 , ax 不一定有意义,
如:a
2, x
1 ,ax
1
(2) 2
2,显然无意义;
2
(2) 若a 0 , x 0 时ax 0,x 0时ax均无意义;
(3) 若 a 1 ,1x 1,没有研究的必要 .
范例
例1.已知指数函数 f (x) ax(a>0且a≠1)的
函 数 y a x (a 1)
y ax (0 a 1)
图象
定义域 值域
单调性 过定点
函数值变 化情况
R
(0,+∞)
在R上是增函数 (0,1)
x > 0时,y > 1 x < 0时,0< y <1
R
(0,+∞)
在R上是减函数 (0,1)
x > 0时,0< y <1 x < 0时,y > 1
普通高中课程标准实验教科书·人教A版数学必修一(2.1.2)
2
1
0
1
关于y轴对称
x
观察右边图象,回答下列问题:y
(
1
)x
y
(1 3
)x
2
问题一:
图象分布在哪几个象限?
y=3X
Y y=2x
答四个图象都在第_Ⅰ_、_Ⅱ_象限。
问题二:
O
Y=1
X
图象的上升、下降与底数a有什么联系?
答:当底数_a >_1 时图象上升;当底数_0<_a_<_1时图象下降.
问题三: 图象中有一个最特殊的点?

人教B版(2019)数学必修(第二册):4.1.2 指数函数的性质与图像 课件(共104张PPT)

人教B版(2019)数学必修(第二册):4.1.2 指数函数的性质与图像  课件(共104张PPT)

c=0.22.1,则a,b,c的大小关系是( )
A.a<c<b
B.b>a>c
C.b<a<c
D.c>a>b
【解析】选B.a=0.52.1∈(0,1),b=20.5>1,c=0.22.1, 0.52.1>0.22.1,所以a>c,所以b>a>c.
【加练·固】
已知
a

(
3
)
1 3
,
b

(
3 )
1 4
类型一 指数函数的概念 【典例】1.函数y=(a2-3a+3)·ax是指数函数,则a的值 为________. 2.指数函数y=f(x)的图像经过点(π,e),则f(-π) =________.
【思维·引】1.根据指数函数的解析式的特征列方程 求解. 2.设出指数函数的解析式,代入点的坐标求f(-π).
A.[3,9] C. [ 1,3]
3
B.[ 1,9]
3
D. [ 1,1]
93
3.已知函数f(x)=ax(a>0,a≠1)在区间[-1,1]上的最 大值与最小值的差是1,则实数a的值为________.
【思维·引】1.根据被开方数大于等于0求定义域. 2.先确定函数的单调性,再求最值. 3.分情况表示出最大值、最小值,列方程求a的值.
【加练·固】
函数y= 1-(1)x 的定义域为________.
3
【解析】因为函数有意义的充要条件是1- (1)x ≥0,则
3
(1)x ≤1,即x≥0,
3
所以函数的定义域为[0,+∞).
第2课时 指数函数的性质与图像的应用

指数函数的图像及性质ppt课件

指数函数的图像及性质ppt课件

3.在R上是增 3.在R上是减
象逐渐上升
象逐渐下降
函数
函数
特 征
4.图象分布在左 下和右上两个 区域内
4.图象分布在左 上和右下两个 区域内
质 4.当x>0时,y>1; 当x<0时,0<y<1.
4.当x>0时, 0<y<1;当x<0 时, y>1.
可编辑课件PPT 5.既不是奇函数又不是偶函数 13
y=1
(0,1)

0
x
y=ax y
y=1 (0,1)
0
x
1.定义域为R,值域为(0,+).
性 2.过点(0,1)即x=0时,y=1
3.在R上是增函数 3.在R上是减函数
例2.求下列函数的定义域、值域:
1
(1)y3x (2)y(0.2)52x 1
解 (1) 函数的定义域为{x|x 0},
值域为{y |y>0 ,且y1}. (2) 由2x10,得x1
3.3
可编辑课件PPT
1
问题1.某种细胞分裂时,由1个分裂成2个,2个 分裂成4个,……. 1个这样的细胞分裂 x 次 后,得到的细胞个数 y 与 x 的函数关系是什 么?
可编辑课件PPT
2
问题1
细胞分裂过程
细胞个数
第一次
2=21
第二次
表达式
4=22
第三次
……y…=…2x
8=23
第x次
……
2x
细胞个数y关于分裂次数x的表达为:
探讨:若不满足上述条件 y a x 会怎么样?
(1)若 a 0
则当x > 0时,a x 0

数学人教A版必修第一册4.2.2指数函数的图像与性质课件

数学人教A版必修第一册4.2.2指数函数的图像与性质课件
轴且与轴无交点.
(2)所有图像都过(0,1)
之势;y =
1 x
和y
2
=
1 x
呈下降之势.
3
x
y
7
6
y = 3x
5
4
y=
不同点:
y = 2x 和y = 3x 的图像从左到右呈上升
()
1
3
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
思考2:你认为是什么原因造成y = 2x 和y = 3x 的图像从
的大小是否有关?如有,底数的大小是如何影响函
数图像在第一象限内的分布呢?
y=
()
1
3
x
y
7
6
y = 3x
5
4
底数越大,其图像越在上方
y=
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x




思考4:你能根据对上述四个函数图像及其性质的分
析,填写下表吗?
0<a<1
图像
y
y
4
4
3
3
2
2
1
1
–2 –1 O 1
(2)判断该函数的奇偶性和单调性.
1
解:(1)根据题意,函数 = (2)|| + 的图象过原点,则
有0 = + ,则 = −,
又由 () 的图象无限接近直线 = −2 但又不与该直线相交,
则 = 2,又由 + = 0,则 = −2,

指数函数及其图像与性质_图文

指数函数及其图像与性质_图文

小试牛刀
例2.判断下列函数在其定义域上的单调性
(1)y=4x; 解:
知识积累:
y
指数函数y=2x的性质 x
(1)函数的定义域为R,值域为(0,∞); (2)图像都在x轴的上方,向上无限延伸,
向下无限接近x轴; (3)函数图象都经过(0,1)点; (4)函数图像自左至右呈上升趋势。
动手试一试
列表:
x

-3

8
图像:
指数函数y= 的图像
-2
-1.5
-1
-0.5
指数函数及其图像与性质_图文.ppt
直观感知:核裂变
如果裂变次数为x ,裂变后的原子核为 y,则y与x之间的关 系是什么?
y=2x
你还能举出一些类似的例子吗? (如细胞分裂……)
归纳结论
指数函数的概念:
一般地,设a>0且a≠1,形如y=ax的函数称为指数函数。 定义域:R
学以致用
问题:对于其它a的值,指数函数的图像又 是怎样的呢?
及时复习~~积沙成塔
指数函数的图像和性质:
y=ax
a
a>1
0<a<1


性 质
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时,y>1;当x<0时, 0<y<1; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时, 0<y<1 ;当x<0时, y>1 ; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
0
0.5

课件6:4.1.2 指数函数的性质与图像

课件6:4.1.2 指数函数的性质与图像
∴ =在[-1,1]上单调递增,

1
0< ≤≤.

由二次函数的图象知,
1
当∈[ , ]时,
函数=( + 1) −
2
1
2在[ , ]上为增函数,
故当=时,max=2 + 2 − 1,
∴ 2 + 2 − 1=14,解得=3或=-5(舍去).
②若0<<1,∵ ∈[-1,1],

2 −2−3

1
2
∴ y=

1 −4
=16.又∵
2
2 −2−3

1
2
2 −2−3

1
的值域为(0,16].
2
>0,
形如y=af(x)的函数的定义域和值域的求法
(1)函数y=af(x)的定义域与函数f(x)的定义域相同;
(2)求函数y=af(x)的值域,需先确定函数f(x)的
值域,再根据指数函数y=ax的单调性确定函数y=af(x)
图象;
③函数=|()|的图象是将函数 = ()的图象在轴下
方的部分沿轴翻折到上方,轴上方的部分不变.
若直线=2与函数=| − 1|(>0,且≠1)
1
0,
的图象有两个公共点,则的取值范围是( 2 ) .
(3)图象的识别问题
例5 如图所示的是指数函数①y=ax;②y=bx;③y=
1
−4
(1) 2

(2)


2
1 −2−3
.
2
解:(1)由-4≠0,得≠4,
∴ =2
1
−4
的定义域为{|∈R,且≠4}.
1

4.2.2指数函数的图象和性质课件-高一上学期数学人教A版必修第一册

4.2.2指数函数的图象和性质课件-高一上学期数学人教A版必修第一册

y( )
1 x
3
6
y( )
1 x
2
y2
5
x
4
3
2
1
-4
-3 -2
-1 0
x
1
2
3
4
y
y
1
y
2
x
y ax
1
y
3
y
x
y 3x
y 2x
y ax
(a 1)
(0 a 1)
1
1
1
0
x
0
1
0 x
x
一、定点问题
例1:已知 = + + ( > , ≠ )图象恒
系中的图象可能是( )
()
()
()
()
二、图象辨认
• 例4:比较, , , 的大小
=
=
=
y
=
x
O
二、图象辨认
• 例5:已知实数, 满足2020 = 2021 = ,则下
列四个关系式中可能成立的是(
. 0 < <
. < < 0
. 0 < <
. < < 0
)
二、辨认图象
• 例3:若0 < < 1, < −1,则函数()

=+的图象一定不经过第______象限.
三、图象辨认
• 例6:函数 = − 的图象如图所示,其中a,b为
常数,则下列结论正确的是( )
A. > 1, < 0
4.2.2指数函数的图象和性质

指数函数的性质与图像ppt课件

指数函数的性质与图像ppt课件

资料下载:./ziliao/
个人简历:./j ia nli/
试卷下载:./shiti/
教案下载:./j ia oa n/
手抄报:./shouchaobao/
P P T课件:./ke j ia n/
语文课件:./kejian/y uwen/ 数学课件:./kejian/shuxue/
英语课件:./kejian/y ingy u/ 美术课件:./kejian/meishu/
化学课件:./kejian/huaxue/ 生物课件:./kejian/shengwu/
地理课件:./ke j ia n/dili/
历史课件:./ke j ia n/lishi/
第四章 指数函数、对数函数与幂函数
■名师点拨 底数 a 与 1 的大小关系决定了指数函数图像的“升”与“降”.当 a>1 时,指数函数的图像是“上升”的;当 0<a<1 时,指数函数 的图像是“下降”的.
科学课件:./kejian/kexue/ 物理课件:./kejian/wuli/
化学课件:./kejian/huaxue/ 生物课件:./kejian/shengwu/
地理课件:./ke j ia n/dili/
历史课件:./ke j确的打“√”,错误的打“×”) (1)y=x2 是指数函数.(× )
栏目 导引
⑤指数函数的图像.
P P T模板:./m oba n/
PPT素材:./sucai/
P P T背景:./be ij ing/
PPT图表:./tubiao/
PPT下载:./xiazai/
PPT教程: ./powerpoint/
资料下载:./ziliao/
个人简历:./j ia nli/

2024版高一数学指数函数及其性质PPT课件图文

2024版高一数学指数函数及其性质PPT课件图文

学习方法建议
深入理解指数函数的概念
掌握指数函数的定义、图像和性质, 理解底数、指数和幂的含义。
多做练习题
通过大量的练习题,加深对指数函数 的理解和掌握,提高解题能力。
系统学习指数函数的运算
学习指数函数的四则运算,掌握运算 规则和技巧。
解题技巧分享
换元法
通过将指数函数中的变量 进行换元,简化问题,使 问题更容易解决。
指数函数在数学模 型中的应用举例
在经济学中,指数函数被用来描 述复利、折旧等问题;在物理学 中,指数函数被用来描述放射性 元素的衰变等问题;在工程学中, 指数函数被用来描述材料的疲劳 寿命等问题。
数学模型在解决实际问题中的价值
提高解决问题的效率
揭示问题的本质和规律
通过建立数学模型,可以将实际问题转化为 数学问题,利用数学方法和技术进行求解, 从而提高解决问题的效率。
05
指数函数与数学模型
数学模型简介
01
数学模型的定义
数学模型是描述客观事物或它的本质和本质的一系列数学形 式。它或能利用现有的数学形式如数学公式、数学方程、数 学图形等加以表述,或能抽象出数学的基本概念和基本结构。
02
数学模型的分类
根据研究目的,可以将数学模型分为描述性模型和预测性模 型。
03
数学模型的作用
指数方程求解
通过对方程两边取相同的底数的对数或者 利用换元法等方法求解指数方程。
指数函数性质应用
利用指数函数的单调性、奇偶性、周期性 等性质解决相关问题。
03
指数函数性质探究
单调性
01
指数函数的单调性取决于底数a的 大小
02
当a>1时,指数函数在整个定义 域上是增函数;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你还能发 现指数函数图 象和底数的关 系吗?
y
y 1 x 2
y 1 x 3
在第一象限 沿箭头方向
底增大
y 3x y 2x
底互为倒2
0 y 1 x
x
3
观察右边图象,回答下列问题:
y (1)x 3
y=3X
问题一:
y (1)x
图象分别在哪几个象限? 2
解析: 设指数函数 f(x)=ax(a>0 且 a≠1), 由题意得 a2=4,∴a=2, ∴f(x)=2x, ∴f(-3)=2-3=18.
设问2:得到函数的图象一般步骤:
列表、描点、连线作图
在同一直角坐标系画出y 2 x
的图象,
y,
1 2
x
并思考:两个函数的图象有什么关系?
x
… -3
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 3 …
① y x2
√⑤ y x
√② y 8 x
⑥ y 52x21
√③y(2a1)x ( a 1 且 a 1 )
2
④ y (4)x
⑦ y xx
⑧ y 10x
[题后感悟] 判断一个函数是否为指数函数只 需判定其解析式是否符合y=ax(a>0,且a≠1)这 一结构形式,其具备的特点为:
例题 已知指数函数 fxaxa0 ,a1
--66
--44
--22
22
44
66
8
7
6
y
1
x
5
2
4
3
2
1
-6
-4
-2
y 2x
2
4
6
认识
分组画出下列四个函数的图象: (1)y=2x (2)y=(1/2)x (3)y=3x (4)y=(1/3)x
y
y 1 x 2
y 1 x 3
y 3x y 2x
1
0
1
x
y
y
y 1 x
研究
截取
次数 1次 2次 3次 4次
x次
y (1)x 2
木棰 1 尺 1 尺 1 尺 1 尺
剩余 2
4
8
16
(1)x尺 2
提炼
y 2x, y (1)x 2
设 问 1 : 以 上 两 个 函 数 有 何 共 同 特 征 ? (1)均为幂的形式 ; (2)底数是一个正的常数 ; (3)自变量x在指数位.置 定义 : 一般地,函 y数 ax(a0,a1)叫做指数 函数,其x是 中自变量,函数域 的是 定义 R。
如 y(2)x在 x1处 无 意 义 ! 2
(3)a1时 对 于 x R , 都 有 a x 1 ! 是 一 个 常 量 ,没 有 研 究 的 必 要 !
在规定以后,对于任何x R,a x 都有意义,
且 a x >0. 因此指数函数的定义域是R,
值域是(0,+∞).
例题
(口答)判断下列函数是不是指 数函数,为什么?
的图像经过点 3 , , 求f0、 f1、 f3
的值.
分析:指数函数的图象经过点 3, ,
故 f 3 ,
1
即 a3
于是有
,解得a x
f x 3
3
想一

思考:确定一个指数函数
所以:
需要什么条件?
f 0π0 1,
f
1
1 π3
3 π,
f 3 π1 1.
π
例题:已知指数函数f(x)的图象过点(2,4),求 f(-3)的值.
y2 ax
(a1)
y 1 x 3
y
y 3x y 2x
y ax
(0a1)
1
1
1
0
x
0
1
0x
x
F:\指数函数比赛课件.rar指数函数性质图象.rar
指数函数 y a x 的图像及性质
a>1
0<a<1

y
y=ax
(a>1)
y=ax
y
(0<a<1)
(0,1)
y=1
象 y=1
(0,1)
当 x > 0 时,y > 01.
x
当 x < 0 时0,y > 1; x
定 义 域 : R 当 x < 0 时,. 0< y < 1
当 x > 0 时, 0< y < 1。

值 域: ( 0,+ ∞ )
恒 过 点: ( 0 , 1 ) ,即 x = 0 时, y = 1 .
质 在 R 上是单调 增函数 在 R 上是单调 减函数
深入探究
一般地,函 y数 ax(a0,a1)叫做指 函数,其x是 中自变量,函数域 的是 定 R。
思考 (1)为什么定义域为R?
(2)为什么规定底数a >0且a ≠1呢?
认识:关于底数a范围的说明a:0,a1
(1)a0时 当 x>0时 , ax=0!
当 x0 时 , ax无 意 义 !
(2)a0时 对 于 x 的 某 些 数 值 , 可 使 a x 无 意 义 !
指数函数的图像 与性质
问题 引入
问题1、某种细胞分裂时,由1个分裂成 2个,2个分裂成4个,1个这样的细胞分 裂x次后,得到的细胞个数y与x的函数 关系式是什么?
研究
分裂
次数 1次 2次 3次 4次
x次
……
y 2x
细胞 2个 4个 8个 16个
总数
21
22
23
24
2x
问题 引入
问题2、《庄子·天下篇》中写道:“一尺 之棰,日取其半,万世不竭。”请你写出 截取x次后,木棰剩余量y关于x的函数关 系式?
[题后感悟] 求指数型函数图象所过的定 点,只要令指数为0,求出对应的x与y的 值,即为函数图象所过的定点.
2.函数 y=a2x+b+1(a>0,且 a≠1, b∈R)的图象恒过定点(1,2),求 b 的值.
指数函数的图象 函数 y=ax-3+3(a>0,且 a≠1)恒过定点 ________.
利用指数函数y=axa>0且a≠1恒过定点0, 1的性质求解.
[解题过程] 原函数可变形为y-3=ax-3(a>0, 且a≠1), 将y-3看做x-3的指数函数, ∵x-3=0时,y-3=1,即x=3,y=4. ∴y=ax-3+3(a>0,且a≠1)恒过定点(3,4). 答案: (3,4)
Y y=2x
答:四个图象都在第_Ⅰ_、_Ⅱ_象限
问题二: 图象的上升、下降与底数a有联系吗?O
Y=1
X
答:当底数_a >_1 时图象上升;当底数_0<_a_<_1时图象下降.
底数a由小变大时函数图像在第一象限内按__逆__
时针方向旋转.
问题三: 图象中有哪些特殊的点?
答:四个图象都经过点_(_0_,1)_.
y 2 x … 0.13 0.25 0.35 0.5 0.71 1 1.4 2 2.8 4 8 …
x … -3 -2 -1.5 -1 -0.5
y ( 1 ) x … 8 4 2.8 2 1.4 2
0 0.5 1 1.5 2
3…
1 0.71 0.5 0.35 0.25 0.13 …
88 77 66 55 44 33 22 1
相关文档
最新文档