(完整版)新北师大版九年级数学二次函数知识点归纳总结
北师版数学九下9B教材知识梳理及中考复习 第12讲 二次函数的图象与性质
![北师版数学九下9B教材知识梳理及中考复习 第12讲 二次函数的图象与性质](https://img.taocdn.com/s3/m/136a130131b765ce050814f6.png)
第12 讲二次函数的图象与性质一、知识清单梳理知识点一:二次函数的概念及解析式关键点拨与对应举例1. 一次函形如y=ax2+bx+c (a,b,c 是常数,a≠0)的函数,叫做二次函数. 例:如果函数y=(a-1)x2 是二次函数,那么a 的取值范围是数的定义a≠0.(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其若已知条件是图象上的三个中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2 为点或三对对应函数值,可设一2.解析式抛物线与x 轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析若已知抛物线与x轴的两个交式.点坐标,可设交点式.知识点二:二次函数的图象与性质yy(1)比较二次函数函数值大x x图象小的方法:①直接代入求值法;O O②性质法:当自变量在对称轴y=ax2+bx+c(a上0) y=ax2+bx+c(a上0) 同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可开口向上向下先利用函数的对称性转化到3.二次函对称轴x=b2a同侧,再利用性质比较;④图象法:画出草图,描点后比较数的图象和性质顶点坐标增减性2b 4ac b,2a 4ab时,y 随x 的增大而增大;2a当x>当x<时,y 随x 的增大而减小.b2ab时,y 随x 的增大而减小;当x>2ab时,y 随x 的增大而增大.当x<2a函数值大小.失分点警示(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解.例:当0≤x≤5时,抛物线最值x= b2ay 最小=,4acb24a. x=b2ay 最大=,4acb24a. y=x2+2x+7的最小值为7 .a决定抛物线的开口方向及开口大小当a>0 时,抛物线开口向上;当a<0 时,抛物线开口向下.某些特殊形式代数式的符号:①a±b+c 即为x=±1 时,y3.系数a、b、ca、b 决定对称轴(x=-b/2a)的位置c决定抛物线与y 轴的交点的位置当a,b 同号,-b/2a<0,对称轴在y 轴左边;当b=0 时,-b/2a=0,对称轴为y 轴;当a,b 异号,-b/2a>0,对称轴在y 轴右边.当c>0 时,抛物线与y 轴的交点在正半轴上;当c=0 时,抛物线经过原点;当c<0 时,抛物线与y 轴的交点在负半轴上.的值;②4a±2b+c 即为x=±2 时,y 的值.③2a+b 的符号,需判断对称轴-b/2a 与1 的大小.若对称轴在直线x=1 的左边,则-b/2a>b2-4ac决定抛物线与x 轴的交点个数b2-4ac>0 时,抛物线与x 轴有2 个交点;b2-4ac=0 时,抛物线与x 轴有1 个交点;b2-4ac<0 时,抛物线与x 轴没有交点1,再根据a 的符号即可得出结果.④2a-b 的符号,需判断对称轴与-1 的大小.知识点三:二次函数的平移1失分点警示:4.平移与解y=ax2上上上上上(h上0)上上上(h上0)上上|h|上上上y=a(x上h)2上上上上上(k上0)上上上(k上0)上上|k|上上上y=a(x上h)2上k上上上抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.析式的关系注意:二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式例:将抛物线y=x2 沿x 轴向右平移2 个单位后所得抛物线的解析式是y=(x-2)2.知识点四:二次函数与一元二次方程以及不等式5.二次函数与一元二次方程二次函数y=ax2+bx+c(a≠0)的图象与x 轴交点的横坐标是一元二次方程ax2+bx+c=0 的根.当Δ=b2-4ac>0,两个不相等的实数根;当Δ=b2-4ac=0,两个相等的实数根;当Δ=b2-4ac<0,无实根例:已经二次函数y=x2-3x+m(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程6.二次函数抛物线y= ax2+bx+c=0 在x 轴上方的部分点的纵坐标都为正,所对应的x 的所有值就是不等式ax2+bx+c>0 的解集;在x 轴下方的部分点的x2-3x+m=0 的两个实数根为2,1.与不等式纵坐标均为负,所对应的x 的值就是不等式ax2+bx+c<0 的解集.2。
中考数学 二次函数知识点总结及相关题型 北师大版
![中考数学 二次函数知识点总结及相关题型 北师大版](https://img.taocdn.com/s3/m/fbb0bd0ce87101f69f319505.png)
二次函数知识点总结及相关典型题目第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. 5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121, 第二部分 典型习题1.抛物线y =x 2+2x -2的顶点坐标是 ( )A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3) 2.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A.ab >0,c >0 B.ab >0,c <0 C.ab <0,c >0 D.ab <0,c <第2,3题图 第4题图3.二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( ) A .a >0,b <0,c >0 B .a <0,b <0,c >0 C .a <0,b >0,c <0 D .a <0,b >0,c >04.如图,已知∆ABC 中,BC=8,BC 上的高h =4,D 为BC 上一点,EF BC //,交AB 于点E ,交AC 于点F (EF 不过A、B ),设E 到BC 的距离为x ,则∆DEF 的面积y 关于x 的函数的图象大致为( )DC5.抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为 .6.已知二次函数11)(2k 2--+=x kx y 与x 轴交点的横坐标为1x 、2x (21x x <),则对于下列结论:①当x =-2时,y =1;②当2x x >时,y >0;③方程011)(22=-+-x k kx 有两个不相等的实数根1x 、2x ;④11-<x ,12>-x ;⑤21x x k-=,其中所有正确的结论是 (只需填写序号). 7.已知直线()02≠+-=b b x y 与x 轴交于点A ,与y 轴交于点B ;一抛物线的解析式为()c x b x y ++-=102. (1)若该抛物线过点B ,且它的顶点P 在直线b x y +-=2上,试确定这条抛物线的解析式;(2)过点B 作直线BC ⊥AB 交x 轴交于点C ,若抛物线的对称轴恰好过C 点,试确定直线b x y +-=2的解析式.8.有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-.(1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围.第9题9.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间? ⑵第三天12时这头骆驼的体温是多少? ⑶兴趣小组又在研究中发现,图中10时到 22时的曲线是抛物线,求该抛物线的解 析式.10.已知抛物线4)334(2+++=x a ax y 与x 轴交于A 、 B 两点,与y 轴交于点C .是否存在实数a ,使得 △ABC 为直角三角形.若存在,请求出a 的值;若不存在,请说明理由.11.已知抛物线y =-x 2+mx -m +2.(1)若抛物线与x 轴的两个交点A 、B 分别在原点的两侧,并且ABm 的值;(2)设C 为抛物线与y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且 △MNC 的面积等于27,试求m 的值.12.已知:抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0). (1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式; (3)E 是第二象限内到x 轴、y 轴的距离的比为5∶2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.13.已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点M 的坐标.(2)若点N 为线段BM 上的一点,过点N 作x 轴的垂线,垂足为点Q .当点N 在线段BM 上运动时(点N 不与点B ,点M 重合),设NQ 的长为l ,四边形NQAC 的面积为S ,求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在对称轴右侧的抛物线上是否存在点P ,使△PAC 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由;(4)将△OAC 补成矩形,使△OAC 的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).14.已知二次函数22-=ax y 的图象经过点(1,-1).求这个二次函数的解析式,并判断该函数图象与x 轴交点的个数.15.卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1∶11000的比例图上,跨度AB =5 cm ,拱高OC =0.9 cm ,线段DE 表示大桥拱内桥长,DE ∥AB ,如图(1).在比例图上,以直线AB 为x 轴,抛物线的对称轴为y 轴,以1 cm 作为数轴的单位长度,建立平面直角坐标系,如图(2).(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;(2)如果DE 与AB 的距离OM =0.45 cm ,求卢浦大桥拱内实际桥长(备用数据:4.12 ,计算结果精确到1米).16. 如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B .(1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N 点的坐标;若不存在,说明理由.17.如图,直线333+-=x y 分别与x 轴、y 轴交于点A 、B ,⊙E 经过原点O 及A 、B 两点. (1)C 是⊙E 上一点,连结BC 交OA 于点D ,若∠COD =∠CBO ,求点A 、B 、C 的坐标; (2)求经过O 、C 、A 三点的抛物线的解析式:(3)若延长BC 到P ,使DP =2,连结AP ,试判断直线PA 与⊙E 的位置关系,并说明理由.答案:1-4DCDD(2482,484EF xEF x y x x -=⇒=-∴=-+) 5. 4 6. ①③④ 7. 解:(1)102-=x y 或642--=x x y , 将0)b (,代入,得c b =.顶点坐标为21016100(,)24b b b +++-,由题意得21016100224b b b b +++-⨯+=-,解得1210,6b b =-=-.(2)22--=x y8. 解:(1)设所求二次函数的解析式为c bx ax y ++=2,则⎪⎪⎩⎪⎪⎨⎧-=++-=+⋅+⋅=+-+-43005)2()2(22c b a c b a c b a ,即⎪⎩⎪⎨⎧-=+=--=1423b a b ac ,解得⎪⎩⎪⎨⎧-=-==321c b a 故所求的解析式为:322--=x x y . (2)函数图象如图所示.由图象可得,当输出值y 为正数时, 输入值x 的取值范围是1-<x 或3>x .9. 解:⑴第一天中,从4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时 ⑵第三天12时这头骆驼的体温是39℃ ⑶()22102421612≤≤++-=x x x y 10. 解:依题意,得点C 的坐标为(0,4). 设点A 、B 的坐标分别为(1x ,0),(2x ,0), 由04)334(2=+++x a ax ,解得 31-=x ,a x 342-=. ∴ 点A 、B 的坐标分别为(-3,0),(a34-,0). ∴ |334|+-=aAB ,522=+=OC AO AC , =+=22OC BO BC 224|34|+-a. ∴ 9891693432916|334|2222+-=+⨯⨯-=+-=aa a a a AB , 252=AC ,1691622+=a BC . 〈ⅰ〉当222BC AC AB +=时,∠ACB =90°.由222BC AC AB +=,得)16916(259891622++=+-a a a . 解得 41-=a . ∴ 当41-=a 时,点B 的坐标为(316,0),96252=AB ,252=AC ,94002=BC .于是222BC AC AB +=. ∴ 当41-=a 时,△ABC 为直角三角形.〈ⅱ〉当222BC AB AC +=时,∠ABC =90°.由222BC AB AC +=,得)16916()98916(2522+++-=a a a . 解 94=a .当94=a 时,3943434-=⨯=-a ,点B (-3,0)与点A 重合,不合题意.〈ⅲ〉当222AB AC BC +=时,∠BAC =90°. 由222AB AC BC +=,得)98916(251691622+-+=+a aa . 解得 94=a .不合题意. 综合〈ⅰ〉、〈ⅱ〉、〈ⅲ〉,当41-=a 时,△ABC 为直角三角形.11. 解: (1)A(x 1,0),B(x 2,0) . 则x 1 ,x 2是方程 x 2-mx +m -2=0的两根.∵x 1 + x 2 =m , x 1²x 2 =m -2 <0 即m <2 ;又AB =∣x 1 — x 2=∴m 2-4m +3=0 解得:m=1或m=3(舍去) , ∴m 的值为1 .(2)M(a ,b),则N(-a ,-b) . ∵M 、N 是抛物线上的两点∴222,2.a ma m b a ma m b ⎧-+-+=⎪⎨---+=-⎪⎩ ①②①+②得:-2a 2-2m +4=0 . ∴a 2=-m +2 . ∴当m <2时,才存在满足条件中的两点M 、N.∴a = .这时M 、N 到y , 又点C 坐标为(0,2-m ),而S △M N C = 27 ,∴2³12³(2-m =27∴解得m=-7 . 12. 解法一: (1)依题意,抛物线的对称轴为x =-2. ∵ 抛物线与x 轴的一个交点为A (-1,0),∴ 由抛物线的对称性,可得抛物线与x 轴的另一个交点B 的坐标为(-3,0).(2)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1, 0), ∴ 0)1(4)1(2=+-+-t a a .∴ t =3a .∴ a ax ax y 342++=.∴ D (0,3a ).∴ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++= 上, ∵ C (-4,3a ).∴ AB =2,CD =4. ∵ 梯形ABCD 的面积为9,∴9)(21=OD CD AB ⋅+.∴ 93)42(21=+a . ∴ a ±1. ∴ 所求抛物线的解析式为342++=x x y 或342---ax x y =.(3)设点E 坐标为(0x ,0y ).依题意,00<x ,00<y ,且2500=x y .∴ 0025x y =-. ①设点E 在抛物线342++=x x y 上,∴340200++=x x y . 解方程组⎪⎩⎪⎨⎧34,25020000++==-x x y x y 得⎩⎨⎧-;=,=15600y x ⎪⎪⎩⎪⎪⎨⎧'-'.=,=452100y x ∵ 点E 与点A 在对称轴x =-2的同侧,∴ 点E 坐标为(21-,45). 设在抛物线的对称轴x =-2上存在一点P ,使△APE 的周长最小. ∵ AE 长为定值,∴ 要使△APE 的周长最小,只须PA +PE 最小.∴ 点A 关于对称轴x =-2的对称点是B (-3,0), ∴ 由几何知识可知,P 是直线BE 与对称轴x =-2的交点. 设过点E 、B 的直线的解析式为n mx y +=,∴ ⎪⎩⎪⎨⎧-.03,4521=+-=+n m n m 解得⎪⎪⎩⎪⎪⎨⎧.23,21==n m ∴ 直线BE 的解析式为2321+=x y .∴ 把x =-2代入上式,得21=y . ∴ 点P 坐标为(-2,21). ②设点E 在抛物线342---x x y =上,∴ 340200---x x y =.解方程组⎪⎩⎪⎨⎧---.34,25020000x x y x y ==- 消去0y ,得03x 23x 020=++.∴ △<0 . ∴ 此方程无实数根. 综上,在抛物线的对称轴上存在点P (-2,21),使△APE 的周长最小.解法二: (1)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0), ∴ 0)1(4)1(2=+-+-t a a .∴ t =3a .∴ a ax ax y 342++=. 令 y =0,即0342=++a ax ax .解得 11=-x ,32=-x . ∴ 抛物线与x 轴的另一个交点B 的坐标为(-3,0).(2)由a ax ax y 342++=,得D (0,3a ). ∵ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++=上, ∴ C (-4,3a ).∴ AB =2,CD =4. ∵ 梯形ABCD 的面积为9,∴9)(21=+OD CD AB ⋅.解得OD =3. ∴ 33=a .∴ a ±1. ∴ 所求抛物线的解析式为342++=x x y 或342--=-x x y .(3)同解法一得,P 是直线BE 与对称轴x =-2的交点.∴ 如图,过点E 作EQ ⊥x 轴于点Q .设对称轴与x 轴的交点为F . 由PF ∥EQ ,可得EQPF BQ BF =.∴ 45251PF=.∴ 21=PF . ∴ 点P 坐标为(-2,21). 13. 解:(1)设抛物线的解析式)2)(1(-+=x x a y ,∴ )2(12-⨯⨯=-a .∴ 1=a .∴ 22--=x x y . 其顶点M 的坐标是⎪⎭⎫ ⎝⎛-4921,. (2)设线段BM 所在的直线的解析式为b kx y +=,点N 的坐标为N (t ,h ),∴ ⎪⎩⎪⎨⎧+=-+=.214920b k b k ,.解得23=k ,3-=b . ∴ 线段BM 所在的直线的解析式为323-=x y .∴ 323-=t h ,其中221<<t .∴ t t s )3322(212121-++⨯⨯=121432+-=t t ∴ s 与t 间的函数关系式是121432+-=t t S ,自变量t 的取值范围是221<<t .(3)存在符合条件的点P ,且坐标是1P ⎪⎭⎫⎝⎛4725,,⎪⎭⎫ ⎝⎛-45232,P . 设点P 的坐标为P )(n m ,,则22--=m m n .222)1(n m PA ++=,5)2(2222=++=AC n m PC ,. 分以下几种情况讨论:i )若∠PAC =90°,则222AC PA PC +=. ∴ ⎪⎩⎪⎨⎧+++=++--=.5)1()2(222222n m n m m m n , 解得:251=m ,12-=m (舍去). ∴ 点⎪⎭⎫ ⎝⎛47251,P . ii )若∠PCA =90°,则222AC PC PA +=. ∴⎪⎩⎪⎨⎧+++=++--=.5)2()1(222222n m n m m m n ,解得:02343==m m ,(舍去).∴ 点⎪⎭⎫ ⎝⎛45232,-P . iii )由图象观察得,当点P 在对称轴右侧时,AC PA >,所以边AC 的对角∠APC 不可能是直角. (4)以点O ,点A (或点O ,点C )为矩形的两个顶点,第三个顶点落在矩形这边OA (或边OC )的对边上,如图a ,此时未知顶点坐标是点D (-1,-2), 以点A ,点C 为矩形的两个顶点,第三个顶点落在矩形这一边AC 的对边上,如图b ,此时未知顶点坐标是E ⎪⎭⎫⎝⎛-5251,,F ⎪⎭⎫ ⎝⎛-5854,.14. 解:根据题意,得a -2=-1.∴ a =1. ∴ 这个二次函数解析式是22-x y =.因为这个二次函数图象的开口向上,顶点坐标是(0,-2),所以该函数图象与x 轴有两个交点. 15. 解:(1)由于顶点C 在y 轴上,所以设以这部分抛物线为图象的函数解析式为 1092+=ax y . 因为点A (25-,0)(或B (25,0))在抛物线上, 所以109)25(02+=-⋅a ,得12518=-a .因此所求函数解析式为)2525(109125182≤≤-x x y +=-. (2)因为点D 、E 的纵坐标为209, 所以109125182092+-x =,得245±=x .所以点D 的坐标为(245-,209),点E 的坐标为(245,209).所以225)245(245=-=-DE . 因此卢浦大桥拱内实际桥长为385227501.011000225≈⨯⨯=(米). 16. 答案:(1)由题意,可设抛物线的解析式为2(2)1y a x =-+,∵抛物线过原点, ∴2(02)10a -+=, 14a =-. ∴抛物线的解析式为21(2)14y x =--+214x x =-+. (2)AOB △和所求MOB △同底不等高,3MOB AOB S S =△△且,∴MOB △的高是AOB △高的3倍,即M 点的纵坐标是3-. ∴2134x x -=-+,即24120x x --=. 解之,得 16x =,22x =-.∴满足条件的点有两个:1(63)M -,,2(23)M --,. (3)不存在.由抛物线的对称性,知AO AB =,AOB ABO ∠=∠.如图,若OBN △与OAB △相似,必有BON BOA BNO ∠=∠=∠.设ON 交抛物线的对称轴于A '点,显然(21)A '-,. ∴直线ON 的解析式为12y x =-.由21124x x x -=-+,得10x =,26x =.∴ (63)N -,. 过N 作NE x ⊥轴,垂足为E .在Rt BEN △中,2BE =,3NE =,∴NB = 又OB =4,∴NB OB ≠,BON BNO ∠≠∠,OBN △与OAB △不相似. 同理,在对称轴左边的抛物线上也不存在符合条件的N 点.所以在该抛物线上不存在点N ,使OBN △与OAB △相似. 17. 解:(1)连结EC 交x 轴于点N (如图).∵ A 、B 是直线333+-=x y 分别与x 轴、y 轴的交点.∴ A (3,0),B )3,0(. 又∠COD =∠CBO . ∴ ∠CBO =∠ABC .∴ C 是的中点. ∴ EC ⊥OA .∴ 232,2321====OB EN OA ON . 连结OE .∴ 3==OE EC . ∴ 23=-=EN EC NC .∴ C 点的坐标为(23,23-). (2)设经过O 、C 、A 三点的抛物线的解析式为()3-=x ax y . ∵ C (23,23-). ∴)323(2323-⋅=-a .∴ 392=a .∴ x x y 8329322-=为所求. (3)∵ 33tan =∠BAO , ∴ ∠BAO =30°,∠ABO =50°. 由(1)知∠OBD =∠ABD .∴ ︒=︒⨯-∠=∠30602121ABO OBD .∴ OD =OB ²tan30°-1.∴ DA =2. ∵ ∠ADC =∠BDO =60°,PD =AD =2. ∴ △ADP 是等边三角形.∴ ∠DAP =60°.∴ ∠BAP =∠BAO +∠DAP =30°+60°=90°.即 PA ⊥AB . 即直线PA 是⊙E 的切线.。
数学北师大版九年级下册二次函数的定义
![数学北师大版九年级下册二次函数的定义](https://img.taocdn.com/s3/m/5b221fda700abb68a982fb43.png)
想一想P35
4
生活问题数学化
(600-5x ) (100+ x ) 果园共有 棵树,平均每棵树结 个 橙子,因此果园橙子的总产量
y =(100+ x)(600-5 x)=-5 x ² +100 x +60000. 在上述问题中,种多少棵橙子树,可以使果园橙子的总产 量最多? x y …… …… 6
2 y ( m 1 ) x 4 x 1 ( m 为常数 ) 5. 当m______时,函数 是二次函பைடு நூலகம் .
( m m ) x 6.当m______时,函数 y
2
2 m 2 m 1
2 x 1 ( m 为常数 )
是二次函数 .
小结
拓展
回味无穷
• 定义中应该注意的几个问题:
1.定义:一般地,形如y=ax² +bx+c(a,b,c是常数,a≠0)的 函数叫做x的二次函数. y=ax² +bx+c(a,b,c是常数,a≠0)的几种不同表示形式: (1)y=ax² (a≠0,b=0,c=0,). (2)y=ax² +c(a≠0,b=0,c≠0). (3)y=ax² +bx (a≠0,b≠0,c=0). 2.定义的实质是:ax² +bx+c是整式,自变量x的最高次数 是二次,自变量x的取值范围是全体实数.
独立 作业
知识的升华
P36 习题2.1 1,2,3题;
祝你成功!
九年级数学(下)第二章 二次函数
1. 二次函数的定义
有的放矢 1
函数知多少
变量之间的关系 函数
一次函数 y=kx+b (k≠0) 正比例函数 y=kx(k≠0)
九年级数学下册 2.1《二次函数》知识点解读素材 (新版
![九年级数学下册 2.1《二次函数》知识点解读素材 (新版](https://img.taocdn.com/s3/m/d114eaae6bec0975f465e297.png)
《二次函数》知识点解读知识点1 二次函数的概念二次函数的概念:形如y=ax 2+bx+c (a ≠0,a,b,c 为常数)的函数是二次函数。
若b=0,则y=ax 2+c ;若c=0,则y=ax 2+bx ;若b=c=0,则y=ax 2。
以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c 是二次函数的一般式。
在二次函数y=ax 2+bx+c (a ≠0,a,b,c 为常数)中,其中ax 2叫做二次项,a 叫做二次项的系数;bx 叫做一次项,b 叫做一次项的系数;c 叫做常数项。
为什么要规定二次项的系数a ≠0?当a=0时,函数为y=bx+c 是一次函数,由此可见,一次函数是二次函数的特例。
1)a ≠0是保证y 是x 的二次函数的重要条件,不能缺少。
b 、c 可以为0.(2)因为解析式是整式,所以自变量x 的取值范围是全体实数。
(3)确定二次函数的解析式就是确定待定系数a ,b ,c ,一般需要三个条件。
(4)识别二次函数的条件:必须是整式,自变量的最高次数为2,即必须有二次项。
例1 下列函数中,哪些是二次函数?(1)y=2+5x 2 (2)322+=x y (3)y=3x (x+5) (4)225x y = (5)y=x 2-4(4-x )2分析:二次函数y=ax 2+bx+c (a ≠0,a,b,c 为常数)是整式函数,二次函数不一定是一般式,通过化简变形可以化成一般式,注意隐含条件a ≠0。
解:(1)(3)(4)(5)是二次函数;(2)不是。
例2 已知,函数22)2(-+=k x k y 是关于x 的二次函数,你能确定k 的值吗?请说明理由。
分析:要想确定k 的值,可由二次函数的定义来求解。
解:由题意,得{22022=-≠+k k解得k=2。
所以,当k=2时,函数22)2(-+=k x k y 是关于x 的二次函数。
知识点2 二次函数在实际问题中的应用例3 某商场第一个月销售额为50万元,第三个月的销售额y (万元)与月平均增长率x 之间的函数关系如何表示?解析:函数关系式是y=50(1+x )2,即y=50x 2+100x+50。
新北师大版九年级数学二次函数的相关概念梳理
![新北师大版九年级数学二次函数的相关概念梳理](https://img.taocdn.com/s3/m/4e1fd627cbaedd3383c4bb4cf7ec4afe04a1b18e.png)
新北师大版九年级数学二次函数的相关概
念梳理
本文主要介绍新北师大版九年级数学中关于二次函数的相关概念。
二次函数的定义
二次函数是指自变量的二次多项式函数,通常表达式为
$f(x)=ax^2+bx+c$,其中 $a\ne0$。
二次函数的图像
二次函数的图像通常是一个开口朝上或朝下的抛物线。
当$a>0$ 时,抛物线开口朝上;当 $a<0$ 时,抛物线开口朝下。
二次函数的顶点
当 $a>0$ 时,二次函数的最小值(即顶点)为 $f\left(-
\dfrac{b}{2a}\right)$;当 $a<0$ 时,二次函数的最大值(即顶点)
为 $f\left(-\dfrac{b}{2a}\right)$。
轴对称
二次函数的图像关于垂直于 $x$ 轴的直线 $x=-
\dfrac{b}{2a}$ 对称。
零点
二次函数的零点是指函数值等于$0$ 时,对应的自变量的取值。
二次函数的零点可以通过求解二次方程 $ax^2+bx+c=0$ 来确定。
总结
二次函数是初中数学中非常重要的一个概念,在应用数学、高
中数学以及大学数学中都有广泛的应用。
通过本文的梳理,相信读
者可以更深入地理解和掌握二次函数的相关概念。
专题07 二次函数 (7大考点)九年级数学上学期期末考点(北师大版)
![专题07 二次函数 (7大考点)九年级数学上学期期末考点(北师大版)](https://img.taocdn.com/s3/m/00212a3ca55177232f60ddccda38376baf1fe00e.png)
2a
2a
y最小值
4ac b2 4a
最大值,
y最大值
4ac 4a
b2
期末复习
【典例 1】(2022•绍兴)已知函数 y=﹣x2+bx+c(b,c 为常数)的图象经过点(0,﹣3),(﹣6,﹣3).
(1)求 b,c 的值.
(2)当﹣4≤x≤0 时,求 y 的最大值.
(3)当 m≤x≤0 时,若 y 的最大值与最小值之和为 2,求 m 的值.
变式 3:(2023•神木市一模)把抛物线 y=x2+bx+c 向右平移 4 个单位,再向下平移 3 个单位,得到抛物 线 y=x2﹣4x+3,则 b、c 的值分别为 ( ) A.b=﹣12,c=32B.b=4,c=﹣3 C.b=0,c=6 D.b=4,c=6
【解答】解:将抛物线 y=x2﹣4x+3 化成顶点式为 y=(x﹣2)2﹣1, 将抛物线 y=x2﹣4x+3 向左平移 4 个单位,再向上平移 3 个单位得新抛物线解析式为 y=(x﹣2+4)2 ﹣1+3,即 y=x2+4x+6,即抛物线 y=x2+bx+c 的解析式为 y=x2+4x+6,∴b=4,c=6,故选:D.
∴﹣ =1,∴b=﹣2a<0,∵抛物线与 y 轴交点在 x 轴下方,
∴c<0,∴abc>0,故①错误;∵x=﹣1 时,y>0,∴a﹣b+c>0, ∵a>0,∴2a﹣b+c>0,故②错误;∵b=﹣2a,∴a=﹣ ,
由图象可得 x=﹣1 时,y=a﹣b+c=﹣ b+c>0,∴3b﹣2c<0,故③正确;
由 x=1 时函数取最小值可得 am2+bm+c≥a+b+c,∴am2+bm≥a+b, ∵a=﹣ ,∴am2+bm≥ ,∴2am2+2bm﹣b≥0,故④正确.故选:D.
初中数学北师大九年级下册(2023年新编) 二次函数二次函数回顾与思考
![初中数学北师大九年级下册(2023年新编) 二次函数二次函数回顾与思考](https://img.taocdn.com/s3/m/3fc3f51382c4bb4cf7ec4afe04a1b0717fd5b3df.png)
二次函数图象和性质一.知识回顾1二次函数的定义:一般地,形如__________(a 、 b 、 c 是常数,a___ 0)的函数叫做x 的二次函数. 2形如y = a (x-h) 2 +k (a ≠0) 的二次函数图像和性质 二次函数 开口方向 对称轴 顶点坐标 y = a (x-h) 2+ka>0a<0 二次函数y=a(x-h)²+k 与y=ax²的关系(1)、平移关系(2)、顶点变化3二次函数解析式的三种表示方式(1)、已知抛物线上的三点,通常设解析式为________________(2)、已知抛物线顶点坐标(h, k ),通常设抛物线解析式为_______________(3)、已知抛物线与x 轴的两个交点(x 1,0)、 (x 2,0),通常设解析式为_____________二.双基自测(1)抛物线y = x 2的开口向 ,对称轴是 ,顶点坐标是 ,图象过第 象限 ;(2)已知y = - nx 2 (n >0) , 则图象 ( )(填“可能”或“不可能”)过点A (-2,3)。
(3)已知抛物线y = ax 2+k 的图象过点A (0,-2) 和B (2,0) ,则a = ,k = ;函数关系式是y = 。
三.实践探究例 二次函数y=ax 2+bx+c 的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6),求a 、b 、c 。
例 已知抛物线y=ax 2+bx+c 与x 轴正、负半轴分别交于A 、B 两点,与y 轴负半轴交于点C 。
若OA=4,OB=1,∠ACB=90°,①求抛物线解析式。
②在抛物线上是否存在一点P ,使以P 、A 、B 为顶点的三角形与 ABC 面积相等,若存在,求出点P 的坐标,不存在,请说明理由。
四.能力训练1.若无论x 取何实数,二次函数y=ax 2+bx+c 的值总为负,那么a 、b 、 c 应满足的条件是( ) >0且b 2-4ac ≥0 >0且b 2-4ac>0<0且b 2-4ac<0 <0且b 2-4ac ≤02.已知二次函数y=ax 2+bx+c 的图象如图所示,请根据图象判断下列各式的符号:a 0 ,b 0, A BxyO Cc 0 ,∆0 , a-b+c 0,a+b+c 03.已知抛物线过点A(―1,0)、B(3,0)、C(0, -6)(1)求抛物线对应的函数关系式及对称轴;(2)点C′是点C关于抛物线对称轴的对称点,证明直线y=x-8必经过点C′.2a>0a<0开口方向顶点对称轴最值2二次函数解析式的三种表示方式六.课外作业1.已知二次函数图象的顶点坐标是(-1, 2),且过点(0, ) 。
北师大版九年级下册第二章二次函数课本知识点
![北师大版九年级下册第二章二次函数课本知识点](https://img.taocdn.com/s3/m/933b1021bed5b9f3f90f1c46.png)
北师大版九年级下册
第二章 二次函数
1、二次函数
一般地,若两个变量y x ,之间的对应关系可以表示成c bx ax y ++=2()0,,≠a c b a 是常数,的形式,则称y 是x 的二次函数。
2、二次函数的图像与性质
二次函数2x y =的图象是一条抛物线,它的开口向上,且关于y 轴对称。
对称轴与抛物线的交点是抛物线的顶点,它是图象的最低点。
一般地,平移二次函数2x y =的图象便可得到二次函数()k h x a y +-=2的图象。
因此,二次函数()k h x a y +-=2
的图象是一条抛物线。
当0>a 时,开口向上,当0<a 时,开口向下,对称轴是直线h x =,顶点坐标为()k h ,。
3、确定二次函数的表达式(略)
4、二次函数的应用(略)
5、二次函数与一元二次方程
二次函数c bx ax y ++=2的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点。
与此相对应,一元二次方程02=++c bx ax 的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、没有实数根。
二次函数c bx ax y ++=2的图象与x 轴交点的横坐标就是一元二次方程02=++c bx ax 的根。
北师大版九年级下册数学《二次函数的图象与性质》二次函数说课教学复习课件巩固
![北师大版九年级下册数学《二次函数的图象与性质》二次函数说课教学复习课件巩固](https://img.taocdn.com/s3/m/1a966b4759fb770bf78a6529647d27284a73376d.png)
原点 (0,0).
8
问题4 当x取何值时,y的值最小?
6
最小值是什么?
4
x=0时,ymin=0.
2
问题5 当x<0时,随着x值的增大,-4 -2 y值如何变化?当x>0时呢?
当x<0时,y随x的增大而减小;
当x>0时,y随x的增大而增大.
y 2x2
24
讲授新课 y=ax2
图象
位置开
口方向 课件
课件
问题3
函数
y 1 (x 2)2 的图象,能否也可以由函数 y 1 x2
2
2
平移得到?
应该可以.
讲授新课
一 二次函数y=a(x-h)2的图象和性质
例1 画出二次函数 y 1 x 12 , y 1 x 12
2
2
的图象,并考虑它们的开口方向、对称轴和顶点.
x ··· -3 -2 -1 0 1 2 3 ···
当堂练习
6.在平面直角坐标系xOy中,函数y=2x2的图象 经过点M(x1,y1),N(x2,y2)两点,若-4 <x1<-2,0<x2<2,则y1与y2的大小关系是 ___y_1_>__y_2__.
当堂练习
7.在同一直角坐标系中,一次函数y=ax+c和二次函数 y=ax2+c的图象大致为( D )
a<0
开口方向
向上
向下
对称轴
直线x=0
直线x=0
顶点坐标
(0,c)
(0,c)
最值
当x=0时,y最小值=c 当x=0时,y最大值=c
增减性
当x<0时,y随x的增 当x>0时,y随x的增 大而减小;x>0时, 大而减小;x<0时, y随x的增大而增大. y随x的增大而增大.
北师大版数学九年级下册:二次函数知识点总结
![北师大版数学九年级下册:二次函数知识点总结](https://img.taocdn.com/s3/m/c683f4266d175f0e7cd184254b35eefdc8d31514.png)
北师大版数学九年级下册:二次函数知识点总结二次函数知识点总结一、二次函数概念:二次函数是指形如y=ax^2+bx+c(a、b、c为常数,a≠0)的函数。
需要注意的是,和一元二次方程类似,二次项系数a≠0,而b、c可以为零。
二次函数的定义域是全体实数。
二、二次函数的基本形式1.二次函数基本形式:y=ax^2的性质:a的绝对值越大,抛物线的开口越小,a的符号决定开口方向,顶点坐标在对称轴上方(a>0)或下方(a<0)。
性质:当x增大时,y随之增大,当x减小时,y随之减小,当x等于顶点时,y有最小值(a>0)。
当x增大时,y随之减小,当x减小时,y随之增大,当x等于顶点时,y有最大值(a<0)。
2.y=ax^2+c的性质:上加下减,a的符号决定开口方向,顶点坐标在对称轴上方(a>0)或下方(a<0)。
性质:当x增大时,y随之增大,当x减小时,y随之减小,当x等于顶点时,y有最小值c(a>0)。
当x增大时,y随之减小,当x减小时,y随之增大,当x等于顶点时,y有最大值c(a<0)。
3.y=a(x-h)^2的性质:左加右减,a的符号决定开口方向,顶点坐标为(h,k)。
性质:当x大于h时,y随之增大,当x小于h时,y随之减小,当x等于h时,y有最小值k。
当x大于h时,y随之减小,当x小于h时,y随之增大,当x等于h时,y有最大值k。
4.y=a(x-h)^2+k的性质:a的符号决定开口方向,顶点坐标为(h,k)。
性质:当x大于h时,y随之增大,当x小于h时,y随之减小,当x等于h时,y有最小值k。
当x大于h时,y随之减小,当x小于h时,y随之增大,当x等于h时,y有最大值k。
三、二次函数图象的平移平移步骤:方法一:将抛物线解析式转化成顶点式y=a(x-h)^2+k,确定其顶点坐标(h,k)处,具体平移方法如下:保持抛物线y=ax^2的形状不变,将其顶点平移到(h,k),向上(k>0)或向下(k<0)平移|k|个单位。
北师大版九年级数学下册 第12讲 二次函数的图象与性质 知识点梳理
![北师大版九年级数学下册 第12讲 二次函数的图象与性质 知识点梳理](https://img.taocdn.com/s3/m/c30787152f60ddccda38a088.png)
抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.
知识点四:二次函数与一元二次方程以及不等式
5.二次函数与一元二次方程
二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.
b2-4ac
决定抛物线与x轴的交点个数
b2-4ac>0时,抛物线与x轴有2个交点;
b2-4ac=0时,抛物线与x轴有1个交点;
b2-4ac<0时,抛物线与x轴没有交点
知识点三:二次函数的平移
4.平移与解析式的关系注意:二函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式
a、b
决定对称轴(x=-b/2a)的位置
当a,b同号,-b/2a<0,对称轴在y轴左边;
当b=0时,-b/2a=0,对称轴为y轴;
当a,b异号,-b/2a>0,对称轴在y轴右边.
c
决定抛物线与y轴的交点的位置
当c>0时,抛物线与y轴的交点在正半轴上;
当c=0时,抛物线经过原点;
当c<0时,抛物线与y轴的交点在负半轴上.
(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.
若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.
知识点二:二次函数的图象与性质
当a>0时,抛物线开口向上;
当a<0时,抛物线开口向下.
某些特殊形式代数式的符号:
第二章 二次函数-2022-2023学年九年级数学下册教材配套教学课件(北师大版)
![第二章 二次函数-2022-2023学年九年级数学下册教材配套教学课件(北师大版)](https://img.taocdn.com/s3/m/a3cda00e3069a45177232f60ddccda38376be1e9.png)
【答案】-4≤x≤1
【点睛】本题考查了二次函数与不等式的关系,
主要利用了数形结合的思想,解题关键在于对图
像的理解,谁大谁的图象在上面.
典例精析
12.仙桃市大力推进义务教育均衡发展,加强学校
标准化建设,计划用三年时间对全市学校的设施和
设备进行全面改造,2020年市政府已投资7.5亿元人
D.2≤m≤3或m≥6
【答案】D
【详解】解:∵抛物线解析式为y=x2-4x+3,
∴对称轴为x=2,由二次函数的对称性可知,
当x=-1和x=5时,函数值y相等,
当x=1和x=3时,函数值y相等,
即当满足-1<x<1和3<x<5的函数值相同,
当-1<x1<1,存在一个正数m,当m-1<x2<m
时,都有y1≠y2,
知识点7 二次函数的应用
知识点总结
知识点一、二次函数的定义
1.一般地,如果y=ax2+bx+c(a,b,c是常数,
a≠0),那么y叫做x的二次函数.特别地,当a≠0,b=
c=0时,y=ax2是二次函数的特殊形式.
2.二次函数的三种基本形式
(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0);
B,若点B关于( ,0)的对称点C恰好落在抛物线上,
则a值为_____.
【答案】−
【分析】先根据二次函数的性质及题意求出点B的
坐标,再根据对称的性质求出点C的坐标,最后将
点C的坐标代入二次函数解析式求解即可.
典例精析
11.如图,已知抛物线y=ax2+c与直线y=kx+m交
于A(-4,y1),B(1,y2)两点,则关于x的不等式
北师大版九年级下册数学第5讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理(1)
![北师大版九年级下册数学第5讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理(1)](https://img.taocdn.com/s3/m/99e251e40408763231126edb6f1aff00bed5702e.png)
北师大版九年级下册数学第 5 讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理【学习目标】1.经历探索二次函数y=ax2 和y=ax2+c 的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.2.会作出y=ax2 和y=ax2+c 的图象,并能比较它们与y=x2 的异同,理解a 与c 对二次函数图象的影响.3.能说出y=ax2+c 与y=ax2 图象的开口方向、对称轴和顶点坐标.4.体会二次函数是某些实际问题的数学模型.【要点梳理】要点一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=a x2(a≠0)的图象二次函数y=ax2的图象(如图),是一条关于y 轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y 轴,它的顶点是坐标原点.当a>0 时,抛物线的开口向上,顶点是它的最低点;当a<0 时,抛物线的开口向下,顶点是它的最高点.2.二次函数y=a x2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x 的值,求出相应的y 值,填入表中.(自变量x 的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x 和y 的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来.要点诠释:(1)用描点法画二次函数y=ax2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值.(2)二次函数y=ax2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.3.二次函数y=a x2(a≠0)的图象的性质二次函数y=ax2(a≠0)的图象的性质,见下表:要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a│相同,抛物线的开口大小、形状相同.│a│越大,开口越小,图象两边越靠近y 轴,│a│越小,开口越大,图象两边越靠近x 轴.要点二、二次函数y=a x2+c(a≠0)的图象与性质1.二次函数y=a x2+c(a≠0)的图象(1)a 0yy = ax 2+ c (c > 0)c Oxyy = ax 2 + c (c < 0) Oc x(2) a < 0yc OxyOcx2.二次函数 y =a x 2+c (a ≠0)的图象的性质y = ax 2 + c (c > 0)y = ax 2 + c (关c < 0于) 二 次 函 数y = ax 2 + c (a ≠ 0) 的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:函数y= ax 2 + c (a > 0, c > 0)y = ax 2 + c (a < 0, c > 0)图象开口方向 向上 向下 顶点坐标 (0,c) (0,c) 对称轴y 轴y 轴函数变化当 x > 0 时,y 随 x 的增大而增大; 当 x < 0 时,y 随 x 的增大而减小.当 x > 0 时,y 随 x 的增大而减小; 当 x < 0 时,y 随 x 的增大而增大.最大(小)当x = 0 时,y最小值=c当x = 0 时,y最大值=c 值【典型例题】类型一、二次函数y=ax2(a≠0)的图象与性质1.(2014 秋•青海校级月考)二次函数y=ax2与直线y=2x﹣1 的图象交于点P(1,m)(1)求a,m 的值;(2)写出二次函数的表达式,并指出x取何值时该表达式y随x的增大而增大?(3)写出该抛物线的顶点坐标和对称轴.【思路点拨】(1)把点P(1,m)分别代入二次函数y=ax2与直线y=2x﹣1 即可求出未知数的值;(2)把a 代入二次函数y=ax2与即可求出二次函数表达式;根据二次函数的对称轴及增减性判断出x 的取值.(3)根据二次函数的性质直接写出即可.【答案与解析】解:(1)点P(1,m)在y=2x﹣1 的图象上∴m=2×1﹣1=1 代入y=ax2∴a=1(2)二次函数表达式:y=x2因为函数y=x2的开口向上,对称轴为y 轴,当x>0 时,y 随x 的增大而增大;(3)y=x2的顶点坐标为(0,0),对称轴为y 轴.【总结升华】本题考查了用待定系数法求函数解析式的方法,及二次函数的增减性.举一反三:【变式1】二次函数y =ax2与y =-2x2的形状相同,开口大小一样,开口方向相反,则a=.【答案】2.【变式2】(2015•山西模拟)抛物线y=﹣x2不具有的性质是().A.开口向上B. 对称轴是y 轴C. 在对称轴的左侧,y 随x 的增大而增大D. 最高点是原点【答案】A.2.已知y=(m+1)x m2+m 是二次函数且其图象开口向上,求m 的值和函数解析式.【思路点拨】根据二次函数的定义以及函数y=ax2(a≠0)的图象性质来解答.【答案与解析】⎩⎧m 2 + m = 2由题意, ⎨m +1>0 ,解得 m=1,∴二次函数的解析式为:y= 2x 2 .【总结升华】本题中二次函数还应该有 m+1≠0 的限制条件,但当 m +1>0 时,一定存在 m+1≠0,所以就不再考虑了.类型二、二次函数 y =a x 2+c (a ≠0)的图象与性质3. 求下列抛物线的解析式:(1) 与抛物线 y = - 1 x 2+ 3 形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线; 2(2) 顶点为(0,1),经过点(3,-2)并且关于 y 轴对称的抛物线.【思路点拨】抛物线形状相同则| a | 相同,再由开口方向可确定 a 的符号,由顶点坐标可确定 c 的值,从而确定抛物线的解析式 y = ax 2 + c .【答案与解析】(1) 由于待求抛物线 y = -1x 2 + 3 21形状相同,开口方向相反,可知二次项系数为 , 2又顶点坐标是(0,-5),故常数项 k = -5 ,所以所求抛物线为 y = 1x 2 - 5 .2(2) 因为抛物线的顶点为(0,1),所以其解析式可设为 y = ax 2 +1 ,又∵该抛物线过点(3,-2),∴ 9a +1 = -2 ,解得 a = - 1.3∴所求抛物线为 y = - 1x 2 +1.3【总结升华】本题考察函数 y = ax 2 + c (a ≠ 0) 的基本性质,并考察待定系数法求简单函数的解析式.4. 在同一直角坐标系中,画出 y = -x 2 和 y = -x 2 +1的图象,并根据图象回答下列问题.(1)抛物线y =-x2+1向平移个单位得到抛物线y =-x2;(2)抛物线y =-x2+1开口方向是,对称轴为,顶点坐标为;(3)抛物线y =-x2+1,当x时,随x 的增大而减小;当x时,函数y 有最值,其最值是.【思路点拨】利用描点法画出函数图象,根据图象进行解答.【答案与解析】函数y =-x2与y =-x2+1的图象如图所示:(1)下;l ;(2)向下;y 轴;(0,1);(3)>0;=0;大;大; 1.【总结升华】本例题把函数y =-x2+1与函数y =-x2的图象放在同一直角坐标系中进行对比,易得出二次函数y =ax2+c(a ≠ 0) 与y =ax2 (a ≠ 0) 的图象形状相同,只是位置上下平移的结论.y =ax2+c(a ≠ 0) 可以看作是把y =ax2 (a ≠ 0) 的图象向上(k > 0) 或向下(k < 0) 平移| k | 个单位得到的.举一反三:【变式】函数y = 3x2可以由y = 3x2-1 怎样平移得到?【答案】向上平移1 个单位.。
北师大版数学九年级下册第二章 2.2二次函数的图象和性质
![北师大版数学九年级下册第二章 2.2二次函数的图象和性质](https://img.taocdn.com/s3/m/9230ba2bb94ae45c3b3567ec102de2bd9605de3a.png)
北师大版数学九年级下册第二章 2.2二次函数的图象和性质1. 二次函数的定义在初中数学中,我们已经学过了线性函数,即一次函数。
而二次函数是指函数表达式的最高次项是二次的多项式函数。
二次函数的一般形式如下:y=ax2+bx+c其中,a、b、c是常数,且a eq0。
2. 二次函数的图象二次函数的图象通常是一个抛物线。
具体来说,当二次函数的系数a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
这是因为二次函数中的x2项的系数a决定了抛物线的开口方向。
另外,抛物线的对称轴是垂直于x轴的一条直线。
对称轴的方程可以通过以下公式来求得:$$ x = -\\frac{b}{2a} $$对称轴的方程告诉我们,抛物线关于y轴对称,也就是说,如果抛物线上的点(x,y),那么关于对称轴,对应的点为(−x,y)。
3. 二次函数的顶点对于二次函数y=ax2+bx+c,它的顶点坐标可以通过以下公式来求得:$$ (h, k) = \\left(-\\frac{b}{2a}, \\frac{4ac-b^2}{4a} \\right) $$其中,ℎ和k分别表示顶点的横坐标和纵坐标。
通过顶点的坐标,我们可以确定二次函数的顶点位置。
顶点是抛物线上最高(或最低)的点,它也是对称轴上的一个点。
如果a>0,那么顶点是抛物线的最低点;如果a<0,那么顶点是抛物线的最高点。
4. 二次函数的导数和凸性对于二次函数y=ax2+bx+c,它的导数可以通过以下公式来求得:y′=2ax+b导数表示了函数在每个点上的变化率。
对于二次函数来说,其导数是一个一次函数,也就是一条直线。
它的斜率是2a,表示了函数的变化速率。
通过导数的符号可以确定二次函数所对应的抛物线的凸性。
当导数y′大于零时,即2ax+b>0,函数在该点上是递增的,对应的抛物线是开口向上的;当导数y′小于零时,即2ax+b<0,函数在该点上是递减的,对应的抛物线是开口向下的。
(完整版)新北师大版九年级数学二次函数知识点归纳总结
![(完整版)新北师大版九年级数学二次函数知识点归纳总结](https://img.taocdn.com/s3/m/1a6c40185b8102d276a20029bd64783e09127d64.png)
二次函数知识点归纳1.定义:一般地,如果y =ax +bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.2.二次函数y =ax 的性质(1)抛物线y =ax 的顶点是坐标原点,对称轴是y 轴.(2)函数y =ax 的图像与a 的符号关系.①当a >0时⇔抛物线开口向上⇔顶点为其最低点;②当a <0时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为y =ax (a ≠0).3.二次函数y =ax +bx +c 的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数y =ax +bx +c 用配方法可化成:y =a (x -h )22222222b 4ac -b 2+k 的形式,其中h =-,k =.2a 4a22225.二次函数由特殊到一般,可分为以下几种形式:①y =ax ;②y =ax +k ;③y =a (x -h );④y =a (x -h )+k ;2⑤y =ax +bx +c .6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当a >0时,开口向上;当a <0时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作x =h .特别地,y 轴记作直线x =0.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法b 4ac -b 2b b ⎫4ac -b 2⎛2(-,)(1)公式法:y =ax +bx +c =a x +,∴顶点是,对称轴是直线x =-.⎪+2a 4a 2a 2a 4a ⎝⎭(2)配方法:运用配方的方法,将抛物线的解析式化为y =a (x -h )+k 的形式,得到顶点为(h ,k ),对称轴是直线22x =h .(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线y =ax +bx +c 中,a ,b ,c 的作用(1)a 决定开口方向及开口大小,这与y =ax 中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线y =ax +bx +c 的对称轴是直线222x =-b b b ,故:①b =0时,对称轴为y 轴;②>0(即a 、b 同号)时,对称轴在y 轴左侧;③<0(即a 、2a a a b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线y =ax +bx +c 与y 轴交点的位置.当x =0时,y =c ,∴抛物线y =ax +bx +c 与y 轴有且只有一个交点(0,c ):①c =0,抛物线经过原点;②c >0,与y 轴交于正半轴;③c <0,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则10.几种特殊的二次函数的图像特征如下:函数解析式开口方向当a >0时开口向上对称轴顶点坐标(0,0)(0,k )(h ,0)(h ,k )22b <0.ay =ax 2y =ax +k y =a (x -h )2x =0(y 轴)x =0(y 轴)x =h x =hx =-b 2a 22y =a (x -h )+k 当a <0时开口向下y =ax +bx +c 2b 4ac -b 2,(-)2a 4a11.用待定系数法求二次函数的解析式(1)一般式:y =ax +bx +c .已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:y =a (x -h )+k .已知图像的顶点或对称轴,通常选择顶点式.22(3)交点式:已知图像与x 轴的交点坐标x 1、x 2,通常选用交点式:y =a (x -x 1)(x -x 2).12.直线与抛物线的交点(1)y 轴与抛物线y =ax +bx +c 得交点为(0,c ).2(2)与y 轴平行的直线x =h 与抛物线y =ax +bx +c 有且只有一个交点(h ,ah +bh +c ).22(3)抛物线与x 轴的交点2二次函数y =ax +bx +c 的图像与x 轴的两个交点的横坐标x 1、x 2,是对应一元二次方程ax +bx +c =0的两2个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔∆>0⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔∆=0⇔抛物线与x 轴相切;③没有交点⇔∆<0⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax +bx +c =k 的两个实数根.(5)一次函数y =kx +n (k ≠0)的图像l 与二次函数y =ax +bx +c (a ≠0)的图像G 的交点,由方程组22y =kx +ny =ax +bx +c 2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.0),B (x 2,0),由于x 1、x 2是(6)抛物线与x 轴两交点之间的距离:若抛物线y =ax +bx +c 与x 轴两交点为A (x 1,2方程ax +bx +c =0的两个根,故2b c x 1+x 2=-,x 1⋅x 2=a aAB =x 1-x 2=(x 1-x 2)2=(x 1-x 2)24c b 2-4ac ∆⎛b ⎫-4x 1x 2= -⎪-==a a a ⎝a ⎭2。
北师大版2020九年级数学:二次函数知识点总结
![北师大版2020九年级数学:二次函数知识点总结](https://img.taocdn.com/s3/m/d9db6c6252ea551811a68734.png)
【文库独家】二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)22-32十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
北师大版九年级下册数学知识点
![北师大版九年级下册数学知识点](https://img.taocdn.com/s3/m/c96471860129bd64783e0912a216147917117e8b.png)
北师大版九年级下册数学知识点北师大版九年级下册数学知识点1 二次函数及其图像二次函数(quadratic function)是指未知数的次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:一般式y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;顶点式y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线] ;重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。
a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x 3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。
由此可引导出交点式的系数a=y1/(x1x2) (y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
求根公式x是自变量,y是x的二次函数x1,x2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)(如右图)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
新北师大版九年级数学二次函数知识点归纳总结
![新北师大版九年级数学二次函数知识点归纳总结](https://img.taocdn.com/s3/m/a77f269ec0c708a1284ac850ad02de80d4d80633.png)
九年级数学中的二次函数是一个非常重要的内容,主要包括函数定义、图像和性质、解析式、根与系数之间的关系、应用等方面的知识。
下面对这些知识点进行归纳总结。
1. 二次函数的定义:二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
2.二次函数的图像和性质:-当a>0时,二次函数的图像是一个开口向上的抛物线,顶点在最低点;当a<0时,二次函数的图像是一个开口向下的抛物线,顶点在最高点。
-顶点坐标为(-b/2a,f(-b/2a)),其中-b/2a为对称轴的横坐标,f(-b/2a)为对称轴上的纵坐标。
-当函数的a值较大时,抛物线开口越大,图像越扁平;当a值较小时,抛物线开口越小,图像越瘦高。
-当函数的c值为正时,图像在y轴上方;当c值为负时,图像在y轴下方。
-二次函数的对称轴与x轴交点为顶点坐标的x坐标。
-二次函数的图像关于对称轴对称。
3. 二次函数的解析式:二次函数的一般形式是f(x) = ax^2 + bx + c,其中a、b、c为常数,可以用来表示二次函数的解析式。
4.根与系数之间的关系:- 二次函数的根是函数f(x) = ax^2 + bx + c的解,即使得f(x) = 0的x值。
二次函数的根可能有两个、一个或没有。
-当二次函数有两个根时,即存在两个解x1和x2,那么二次函数可以表示为f(x)=a(x-x1)(x-x2)。
-二次函数的根与系数之间的关系可由韦达定理得到。
设二次函数的两个根为x1和x2,则有以下关系:-x1+x2=-b/a-x1*x2=c/a5.二次函数的应用:-二次函数可以应用于描述各类抛物线问题,如求抛物线的顶点、根、对称轴等。
-二次函数可以用来表示抛物线轨迹的运动问题,如抛物线运动的高度、时间等。
总结:二次函数是九年级数学中的重要内容,掌握二次函数的定义、图像和性质、解析式、根与系数之间的关系以及应用可以帮助我们更好地理解和解决与抛物线相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数知识点归纳
1. 定义:一般地,如果 y ax 2 bx c (a,b,c 是常数,a 0),那么y 叫做x 的二次函数.
2. 二次函数y ax 2的性质
(1) 抛物线y ax 2的顶点是坐标原点,对称轴是 y 轴.
(2) 函数y ax 2的图像与a 的符号关系.
① 当a 0时 抛物线开口向上 顶点为其最低点; ② 当a 0时
抛物线开口向下
顶点为其最高点.
(3) 顶点是坐标原点,对称轴是 y 轴的抛物线的解析式形式为 y ax 2(a 0).
3. 二次函数 y ax 2 bx c 的图像是对称轴平行于(包括重合)
y 轴的抛物线.
4. 二次函数y ax 2 bx c 用配方法可化成:
y ax h 2 k 的形式,其中h —, k 4ac _ .
2a
4a
2 2 2 2
5. 二次函数由特殊到一般, 可分为以下几种形式: ①y ax 2 :②y ax 2 k :③y a x h 二④y a x h k ;
2
⑤ y ax bx c .
6. 抛物线的三要素:开口方向、对称轴、顶点 ① a 的符号决定抛物线的开口方向:当
a 0时,开口向上;当 a 0时,开口向下;
a 相等,抛物线的开口大小、形状相同
.
② 平行于y 轴(或重合)的直线记作 x h .特别地,y 轴记作直线x 0.
如果二次项系数 a 相同,那么抛物线的开口方向、开口大小完全相同, 只是顶点的位置不同.
8.求抛物线的顶点、对称轴的方法
(2)配方法:运用配方的方法,将抛物线的解析式化为 y a x h 2 k 的形式,得到顶点为(h , k ),对称轴是直线
x h .
(3 )运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对
称轴,对称轴与抛物线的交点是顶点
.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失
7.顶点决定抛物线的位置.几个不同的二次函数, (1 )公式法:y ax 2 bx c
b a x
2a
2 2
4ac b
b 4a
c b
,•••顶点是( ,- ),对称轴是直线x
4a 2a 4a b
2a
9.抛物线y ax 2 bx c 中,a,b,c 的作用
(1) a 决定开口方向及开口大小,这与 y ax 2中的a 完全一样.
(2) b 和a 共同决定抛物线对称轴的位置 .由于抛物线y ax 2 bx c 的对称轴是直线
x
——,故:①b 0时,对称轴为y 轴;②- 0 (即a 、b 同号)时,对称轴在 y 轴左侧;③一 0 (即a 、
2a a a
b 异号)时,对称轴在 y 轴右侧.
(3)c 的大小决定抛物线 y ax 2 bx c 与y 轴交点的位置
②c 0,与y 轴交于正半轴;③ c 0,与y 轴交于负半轴
以上三点中,当结论和条件互换时,仍成立
.如抛物线的对称轴在 y 轴右侧,则 - 0.
a
(1 )一般式:y ax bx c .已知图像上三点或三对 x 、y 的值,通常选择一般式. (2 )顶点式:y a x h 2 k .已知图像的顶点或对称轴,通常选择顶点式 (3)交点式:已知图像与
x 轴的交点坐标X 1、X 2,通常选用交点式:
y a x 为x X 2
12.直线与抛物线的交点
(1) y 轴与抛物线y
ax 2 bx c 得交点为(0, c ).
(2)与y 轴平行的直线x h 与抛物线y ax 2 bx c 有且只有一个交点(h , ah 2 bh c ). (3 )抛物线与x 轴的交点
当x 0时,y c ,二抛物线y
ax 2 bx c 与y 轴有且只有一个交点(
0, c ):
①c 0,抛物线经过原点
二次函数y ax 2 bx c 的图像与x 轴的两个交点的横坐标 x 1、x 2,是对应一元二次方程 ax 2 bx c 0的两 个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:
① 有两个交点
0 抛物线与x 轴相交;
② 有一个交点(顶点在 x 轴上) 0
抛物线与x 轴相切;
③ 没有交点
0 抛物线与x 轴相离.
(4) 平行于x 轴的直线与抛物线的交点
同(3) —样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为 k ,则横
坐标是ax 2 bx c k 的两个实数根.
(5) —次函数y kxnk 0的图像I 与二次函数y ax bx c a 0的图像G 的交点,由方程组 y kx n
2
訥勺解的数目来确定:①方程组有两组不同的解时
I 与G 有两个交点;②方程组只有一组解时
y ax bx c I
I 与G 只有一个交点;③方程组无解时
I 与G 没有交点.
(6) 抛物线与x 轴两交点之间的距离:若抛物线
y ax 2 bx c 与x 轴两交点为A x 1?0 , B x 2,0,由于x 1
、x 2
是 方程ax 2 bx c 0
的两个根,故
b
c x 1
x 2
, x-i x 2
a
a
1 2
A
-
2
:
2
[ b 4c AB x 1
x 2
v
x-i x 2
斗 x 1 x 2
4x-i x 2
J
V a a
、b 2 4ac
l a a。