2015届成都一诊数学试题及答案(文科、理科)

合集下载

2015成都一诊数学理科模拟1

2015成都一诊数学理科模拟1

成都一诊模拟题1理科数学试题第一部分(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分. 1.集合2{||3|4},{|20,},M x x N x x x x Z M N =-<=+-<∈则=A .{|11}x x -≤≤B .{|27}x x ≤≤C .{2}D .{0}2.复数143ii ++的虚部是 A .125i B .125C .125-D .—125i 3.已知平面向量(1,2)a =-,(2,1)=b ,(4,2)--c =,则下列说法中错误..的是 A .c ∥b B .⊥a bC .对同一平面内的任意向量d ,都存在一对实数12,k k ,使得12k k =d b +cD .向量c 与向量-a b 的夹角为 45︒4..下列有关命题的叙述错误的是( )A .对于命题 p :∃x ∈R , 210x x ++<,则p ⌝为: ∀x ∈R ,210x x ++≥B .命题“若2x -3x + 2 = 0,则 x = 1”的逆否命题为“若 x ≠1,则2x -3x+2≠0”C .若 p ∧q 为假命题,则 p ,q 均为假命题D .“x > 2”是“ 2x -3x + 2 > 0”的充分不必要条件5.执行如图的程序框图,则输出的T 值等于 A .91 B . 55 C .54 D .306.某小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过l5m 3的住户的户数为 A .10 B .50 C .60 D .140 7.要得到函数y=3cos (2x 一4π)的图象,可以将函数3sin 2y x =的图象 A .沿x 轴向左平移8π个单位 B .沿x 向右平移8π个单位C .沿x 轴向左平移4π个单位D .沿x 向右平移4π个单位8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为 A .720 B .600 C .520 D .360 9. 已知存在正数,,a b c ,满足12,ln ln cc b a c c e a≤≤=+,则ln b a 的取值范围是A .[1,)+∞B .1[1,ln 2]2+ C .(,1]e -∞- D . [1,1]e - 10.若函数()y f x =,存在区间[],m n ,同时满足下列条件:①()[],f x m n 在内是单调的;②当[],x m n ∈时,()[][],,f x m n m n 的值域也是,则称是该函数的“和谐区间”.若函数()()110a f x a a x +=-> 有“和谐区间”,则函数()()32111532g x x ax a x =++-+的极值点12,x x 满足A. ()()120,1,1,x x ∈∈+∞B. ()()12,0,0,1x x ∈-∞∈C. ()()12,0,,0x x ∈-∞∈-∞D. ()()121,,1,x x ∈+∞∈+∞ 第二部分(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.函数y =的定义域为12.已知51()(21)ax x x+-的展开式中各项系数的和为2,则该展开式中常数项为_ .13.51cos 123πα⎛⎫+=⎪⎝⎭,且2ππα-<<-,则cos 12πα⎛⎫-= ⎪⎝⎭_ .14.若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则132+++=x y x z 的取值范围是 _ .15.设V 是全体平面向量构成的集合,若映射R V :→ f 满足对任意向量,V ),(11∈=y x a,V ),(22 ∈=y x b 以及任意R ∈λ,均有)()1()())1((b f a f b a fλλλλ-+=-+.则称映射f 具有性质P .现给出如下映射:①V y x m y x m f R V f∈=-=→),(,)(,:11; ②V y x m y x m f R V f ∈=+=→),(,)(,:222;③V y x m y x m f R V f∈=++=→),(,1)(,:33其中,具有性质P 映射的序号为 .(写出所有具有性质P 映射的序号).三、解答题:共6小题,满分75分,解答应写出必要的文字说明,证明过程或演算步骤. 16.(本小题满分12分)在等比数列14{},2,16.n a a a ==中已知 (I )求数列{}n a 的通项公式;(II )若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n n a b ⋅的通项公式及.n n S 前项和 17.(本小题满分12分)已知函数2()2sin cos .f x x x x x R =+∈ (I )求函数f (x )的周期和最小值(II )在锐角△ABC 中,若()1,2f A AB AC =⋅=,求△ABC 的面积.18.(本小题满分12分)公安部最新修订的《机动车驾驶证申领和使用规定》于2013年1月1日起正式实施,新规实施后,获取驾照要经过三个科目的考试,先考科目一(理论一),科目一过关后才能再考科目二(桩考和路考),科目二过关后还要考科目三(理论二).只有三个科目都过关后才能拿到驾驶证.某驾校现有100(Ⅰ)估计该驾校这100名新学员有多少人一次性(不补考)获取驾驶证;(Ⅱ)第一批参加考试的20人中某一学员已经通过科目一的考试,求他能通过科目二却不能通过科目三的概率;(Ⅲ)驾校为调动教官的工作积极性,规定若所教学员每通过一个科目的考试,则学校奖励教官100元.现从这20人中随机抽取1人,记X 为学校因为该学员而奖励教官的金额数,求X 的数学期望.19.(本小题满分12分)已知A B 、分别在射线CM CN 、(不含端点C )上运动,23MCN ∠=π,在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c .(Ⅰ)若a 、b 、c 依次成等差数列,且公差为2.求c 的值;(Ⅱ)若c =ABC ∠=θ,试用θ表示ABC ∆的周长,并求周长的最大值.20.(本小题满分13分)已知函数321()(0)3F x ax bx cx d a =-++≠的图像过原点, ()(),()(),(1)0f x F x g x f x f ''===,函数()()y f x y g x ==与的图像交于不同的两点A 、B .(I )()1y F x x ==-在处取得极大值2,求函数()y F x =的单调区间;(II )若使11()0[,]22g x x x =∈-的值满足,求线段AB 在x 轴上的射影长的取值范围. 21.(本小题满分14分) 已知函数(1)()x a x f x e e λλλ+-=-,其中,a λ是常数,且01λ<<.(I )求函数()f x 的极值;(II )对任意给定的正实数a ,是否存在正数x ,使不等式11x e a x--<成立?若存在,求出x ,若不存在,说明理由;(III )设12,(0,)λλ∈+∞,且121λλ+=,证明:对任意正数21,a a 都有:12121122a a a a λλ≤λ+λ. .成都一诊模拟题1理科数学试题参考答案一、选择题(每小题5分 共50分) DBCCB CABDB 二、填空题:(本大题共5小题,每小题5分,共25分) 11. (0,3] 12. 1013. 14.]11,23[; 15.①③.三、解答题:共6个题,共75分。

2015成都一诊数学理科模拟2

2015成都一诊数学理科模拟2

成都一诊模拟题2理科数学试题第I卷一、选择题(本大题10个小题,每题5分,共50分,请将答案涂在答题卷上)1、设全集U R =,{,A x y =={}2,x B y y x R ==∈,则()R C A B =( ▲ )A 、{}0x x < B 、{}01x x <≤ C 、{}12x x ≤< D 、{}2x x >2、定义两种运算:22b a b a -=⊕,2)(b a b a -=⊗,则函数2)2(2)(-⊗⊕=x xx f 为( ▲ )A 、奇函数B 、偶函数C 、既奇且偶函数D 、非奇非偶函数3、对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的( ▲)A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要4、下列4个命题:(1)若a b <,则22am bm <;(2) “2a ≤”是“对任意的实数x ,11x x a ++-≥成立”的充要条件;(3)命题“x R ∃∈,02>-x x ”的否定是:“x R ∀∈,02<-x x ”;(4)函数21()21x x f x -=+的值域为[1,1]-。

其中正确的命题个数是( ▲ )A 、1B 、2C 、3D 、05、定义在实数集R 上的函数()f x ,对一切实数x 都有)()(x f x f -=+21成立,若()f x =0仅有101个不同的实数根,那么所有实数根的和为( ▲ ) A .101 B .151 C .303 D .23036、方程083492sin sin =-+⋅+⋅a a a x x有解,则a 的取值范围( ▲ )A 、0>a 或8-≤aB 、0>aC 、3180≤<aD 、2372318≤≤a7、方程1log )11(2+=+-x xx的实根0x 在以下那个选项所在的区间范围内(▲)A.)21,85(--B.)83,21(--C.)41,83(--D.)81,41(--8、已知函数1()()2(),f x f x f x x=∈满足当[1,3],()ln f x x =,若在区间1[,3]3内,函数()()g x f x ax=-与x 轴有3个不同的交点,则实数a 的取值范围是(▲)A 、1(0,)eB 、1(0,)2eC 、ln 31[,)3e D 、ln 31[,)32e9、设1>a ,若仅有一个常数c 使得对于任意的]2,[a a y ∈,都有],[2a a x ∈满足方程c y x a a =+log log ,这时c a +的取值为( ▲ ) A .3 B .4 C .5 D .610、定义][x 表示不超过x 的最大整数,记{}][x x x -=,其中对于3160≤≤x 时,函数1}{sin ][sin )(22-+=x x x f 和函数{}13][)(--⋅=xx x x g 的零点个数分别为.,n m 则(▲) A .313,101==n m B .314,101==n m C .313,100==n m D .314,100==n m第Ⅱ卷二.填空题(本大题3个小题,每题5分,共15分,请把答案填在答题卡上)11、已知函数0≤x 时,xx f 2)(=,0>x 时,13()log f x x =,则函数1)]([-=x f f y 的零点个数有▲个.12、给定方程:1()sin 102xx +-=,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(–∞,0)内有且只有一个实数解; ④若0x 是该方程的实数解,则0x >–1。

2015年-四川省成都市锦江区中考数学一诊试卷及答案

2015年-四川省成都市锦江区中考数学一诊试卷及答案

2015年四川省成都市锦江区中考数学一诊试卷一、选择题(每小题3分,共30分)1.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体B.长方体C.圆锥体D.圆柱体2.已知,则的值为()A.B.C.D.3.如果关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,那么k的取值范围是()A.k<1 B.k≠0 C.k<1且k≠0 D.k>14.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.5.如图,点D、E分别在线段AB、AC上且∠ABC=∠AED,若DE=4,AE=5,BC=8,则AB的长为()A.B.10 C.D.6.已知反比例函数图象经过点(1,﹣1),(m,1),则m等于()A.2 B.﹣2 C.1 D.﹣17.如图,圆O是△ACD的外接圆,AB是圆O的直径,∠BAD=60°,则∠C的度数是()A.30°B.40°C.50°D.60°8.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是()A.B.C.D.9.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=910.小智将如图两水平线L1、L2的其中一条当成x轴,且向右为正向;两铅直线L3、L4的其中一条当成y轴,且向上为正向,并在此坐标平面上画出二次函数y=ax2+2ax+1的图形.关于他选择x、y轴的叙述,下列何者正确?()A.L1为x轴,L3为y轴B.L1为x轴,L4为y轴C.L2为x轴,L3为y轴D.L2为x 轴,L4为y轴二、填空题(每小题4分,共16分)11.已知y=(a﹣1)是反比例函数,则a= .12.已知α是锐角,且tan(90°﹣α)=,则α=.13.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是3m,则P到AB的距离是m.14.把二次函数y=x2向左平移1个单位,再向下平移2个单位,则平移后二次函数的解析式为.三、计算题(15小题每小题12分,16小题6分,共18分)15.(12分)(1)计算:(﹣)﹣1﹣3tan30°(1﹣)0+﹣|1﹣|(2)解方程:x(x+6)=16.16.(6分)如图,AB是圆O的直径,弦CD⊥AB于点E,点P在圆O上且∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,BE=2,求CD的长.四、解答题(每小题8分,共32分)17.(8分)小明、小颖和小凡做“石头、剪刀、布”游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同:(1)用树状图或列表法求出小凡获胜的概率;(2)你认为这个游戏对三人公平吗?为什么?18.(8分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).19.(8分)如图,经过点A(﹣2,0)的一次函数y=ax+b(a≠0)与反比例函数y=(k≠0)的图象相交于P、Q两点,过点P作PB⊥x轴于点B.已知tan∠PAB=,点B的坐标为(4,0).(1)求反比例函数和一次函数的解析式;(2)连接BQ,求△PBQ的面积.20.(8分)如图,已知在△ABC中,AB=AC=10,BC=16,点D是边BC的中点,E是线段BA上一动点(与点B、A不重合),直线DE交CA的延长线于F点.(1)当DF=DC时,求AF的值;(2)设BE=x,AF=y.①求y关于x的函数解析式,并写出x的取值范围;②当△AEF为以FA为腰的等腰三角形时,求x的值.B卷一、填空题(每小题4分,共20分)21.已知x2﹣2x﹣=0,则x3﹣2x2+(1﹣x)的值是.22.若线段AB=4cm,点C是线段AB的一个黄金分割点,则AC的长为cm.23.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= .24.如图,M为双曲线y=(x>0)上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D、C两点.若直线y=﹣x+m与y轴交于点A,与x轴交于点B,则AD?BC的值为.25.已知:如图,Rt△ABC外切于圆O,切点分别为E、F、H,∠ABC=90°,直线FE、CB交于D点,连接AO、HE.现给出以下四个结论:①∠FEH=90°﹣∠C;②DE=AE;③AB2=AO?DF;④AE?CH=S△ABC,其中正确结论的序号为.二、解答题(8分)26.(8分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?三、解答题(10分)27.(10分)如图,以BC为直径,以O为圆心的半圆交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,BC2=CF?AC,cos∠ABD=,AD=12.(1)求证:FB是圆O的切线;(2)求证:=;(3)连接AE,求AE?MN的值.四、解答题(12分)28.(12分)己知二次函数(t>1)的图象为抛物线C 1.(1)求证:无论t取何值,抛物线C1与x轴总有两个交点;(2)已知抛物线C1与x轴交于A、B两点(A在B的左侧),将抛物线C1作适当的平移,得抛物线C2:,平移后A、B的对应点分别为D(m,n),E(m+2,n),求n的值.(3)在(2)的条件下,将抛物线C2位于直线DE下方的部分沿直线DE向上翻折后,连同C2在DE上方的部分组成一个新图形,记为图形G,若直线(b<3)与图形G有且只有两个公共点,请结合图象求b的取值范围.1.D.2.C.3.C.4.D.5.B.6.D.7.A.8.C.9.B.10.D.11.﹣1.12.30°.13.1.14.y=(x+1)2﹣2.15.(1)计算:(﹣)﹣1﹣3tan30°(1﹣)0+﹣|1﹣|(2)解方程:x(x+6)=16.解:(1)原式=﹣3××1+2﹣(﹣1)=﹣2﹣++1=﹣1;(2)方程可化为x2+6x=16,移项得,x2+6x﹣16=0,(x﹣2)(x+8)=0,解得x1=2,x2=﹣8.16.如图,AB是圆O的直径,弦CD⊥AB于点E,点P在圆O上且∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,BE=2,求CD的长.(1)证明:如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD.(2)解:∵CE⊥BE,∴CE2=CB2﹣BE2,而CB=3,BE=2,∴CE=;而AB⊥CD,∴DE=CE,CD=2CE=2.17.小明、小颖和小凡做“石头、剪刀、布”游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同:(1)用树状图或列表法求出小凡获胜的概率;(2)你认为这个游戏对三人公平吗?为什么?解:(1)列出表格,如图所示:石头剪刀布石头(石头,石头)(剪刀,石头)(布,石头)剪刀(石头,剪刀)(剪刀,剪刀)(布,剪刀)布(石头,布)(剪刀,布)(布,布)所有等可能的情况有9种,其中两人的手势相同的情况有3种,则P(小凡获胜)==;(2)小明获胜的情况有3种,小颖获胜的情况有3种,∴P(小明获胜)=P(小颖获胜)==,则这个游戏对三人公平.18.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).解:如图,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3米,设DE=x,在Rt△CDE中,CE==x,在Rt△ABC中,∵=,AB=3,∴BC=3,在Rt△AFD中,DF=DE﹣EF=x﹣3,∴AF==(x﹣3),∵AF=BE=BC+CE,∴(x﹣3)=3+x,解得x=9(米).答:树高为9米.19.如图,经过点A(﹣2,0)的一次函数y=ax+b(a≠0)与反比例函数y=(k≠0)的图象相交于P、Q两点,过点P作PB⊥x轴于点B.已知tan∠PAB=,点B的坐标为(4,0).(1)求反比例函数和一次函数的解析式;(2)连接BQ,求△PBQ的面积.解:(1)∵BO=4,AO=2,∴AB=6,∵tan∠PAB==,∴PB=9,∴P点坐标为:(4,9),把P(4,9),代入反比例函数解析式y=,得k=36,∴反比例函数解析式为y=;把点A(﹣2,0),P(4,9),代入y=ax+b得:,解得:,故一次函数解析式为y=x+3.(2)过点Q作QM⊥y轴于点M,由,解得:或,∴Q点坐标为:(﹣6,﹣6),∴S△PQB=?PB?QM=×9×(6+4)=45.20.如图,已知在△ABC中,AB=AC=10,BC=16,点D是边BC的中点,E是线段BA 上一动点(与点B、A不重合),直线DE交CA的延长线于F点.(1)当DF=DC时,求AF的值;(2)设BE=x,AF=y.①求y关于x的函数解析式,并写出x的取值范围;②当△AEF为以FA为腰的等腰三角形时,求x的值.解:(1)∵AB=AC,∴∠B=∠C,∵DF=DC,∴∠B=∠C,∴∠B=∠F,∴△ABC∽△DFC,∴=,∴=,∴CF=12.8,∴AF=CF﹣AC=12.8﹣10=2.8;(2)①取AB的中点M,连接DM,如图所示,∵D是边BC的中点,∴DM∥AC,DM=AC=5,∴△AFE∽△MDE,∴=,∴=,∴y=,函数定义域为5<x<10;②当点E位于线段AB上时,如图所示:若AF=AE,即=10﹣x,解得:x=10(舍去),若AF=EF,cos∠FAE=,则有5×=?(x﹣5),解得:x=,综上所述,当△AEF为以FA腰的等腰三角形时,x=.一、填空题(每小题4分,共20分)21..22.2(﹣1)或6﹣2.23.3或﹣3.24..25.已知:如图,Rt△ABC外切于圆O,切点分别为E、F、H,∠ABC=90°,直线FE、CB交于D点,连接AO、HE.现给出以下四个结论:①∠FEH=90°﹣∠C;②DE=AE;③AB2=AO?DF;④AE?CH=S△ABC,其中正确结论的序号为①③④.解:①连接OE,OH,OF,则OE⊥AB,OH⊥BC,得出∠FOH=180°﹣∠C,根据圆周角定理得∠FEH=∠FOH=90∠C;故①正确;②由①得四边形OEBH是正方形,则圆的半径=BE,∴OF=BE,又∵∠DBE=∠AFO,∠BED=∠AEF=∠AFE,在△BDE与△FAO中,,∴△BDE≌△FAO(SAS),∴BD=AF,∵BD<DE,∴DE≠AF,故②错误;③∵Rt△ABC外切于⊙O,切点分别为E、F、H,∴BE=BH,AF=AE,根据②得BD=AF,∴BD=AE(等量代换),∴AB=DH;连接OB、FH.∵∠D=∠BAO,∠EFH=∠OBA=45°,∴△DFH∽△ABO,则DH?AB=AO?DF,又AB=DH,所以AB2=AO?DF,故③正确;④设△ABC的三边分别为a,b,c,则AE=,CH=,AE?CH===S△ABC.故S△ABC=AB?BC=AE?CH;故④正确;故答案为:①③④.二、解答题(8分)26.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?解:(1)设平均增长率为a,根据题意得:64(1+a)2=100解得:a=0.25=25%或a=﹣2.25四月份的销量为:100?(1+25%)=125(辆).答:四月份的销量为125辆.(2)设购进A型车x辆,则购进B型车辆,根据题意得:2×≤x≤2.8×解得:30≤x≤35利润W=(700﹣500)x+(1300﹣1000)=9000+50x.∵50>0,∴W随着x的增大而增大.当x=35时,不是整数,故不符合题意,∴x=34,此时=13(辆).答:为使利润最大,该商城应购进34辆A型车和13辆B型车.三、解答题(10分)27.如图,以BC为直径,以O为圆心的半圆交△CFB的边CF于点A,BM平分∠ABC 交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,BC2=CF?AC,cos∠ABD=,AD=12.(1)求证:FB是圆O的切线;(2)求证:=;(3)连接AE,求AE?MN的值.解:(1)如图,∵BC2=CF?AC,∴,而∠C=∠C,∴△BCF∽△ACB,∴∠FBC=∠BAC;而BC为半⊙O的直径,∴∠BAC=90°,∠FBC=90°,∴FB是圆O的切线.(2)由射影定理得:BF2=AF?CF,BC2=AC?CF,∴①;∵AD⊥BC,ME⊥BC,∴AD∥ME,∴②;由①②知:=.(3)如图,连接AE;∵BM平分∠ABE,且MA⊥AB,ME⊥BE,∴MA=ME,AN∥ME;设∠ABM=∠DBN=α,则∠AMN=90°﹣α,∠ANM=∠BND=90°﹣α,∴∠AMN=∠ANM,AM=AN,∴AN=ME;而AN∥ME,∴四边形AMEN为平行四边形;而AM=AN,∴四边形AMEN为菱形,AE⊥MN;∵cos∠ABD=,AD=12.∴;设BD=3λ,则AB=5λ;由勾股定理得:(5λ)2=(3λ)2+122,解得:λ=3,BD=9,AB=15;由勾股定理可证:BE=BA=15,∴DE=15﹣9=6;而BN平分∠ABD,∴,而BD=9,AB=15,AD=12,解得:AN=;由面积公式得:∴AE?MN=2××6=90.四、解答题(12分)28.己知二次函数(t>1)的图象为抛物线C1.(1)求证:无论t取何值,抛物线C1与x轴总有两个交点;(2)已知抛物线C1与x轴交于A、B两点(A在B的左侧),将抛物线C1作适当的平移,得抛物线C2:,平移后A、B的对应点分别为D(m,n),E(m+2,n),求n的值.(3)在(2)的条件下,将抛物线C2位于直线DE下方的部分沿直线DE向上翻折后,连同C2在DE上方的部分组成一个新图形,记为图形G,若直线(b<3)与图形G有且只有两个公共点,请结合图象求b的取值范围.解:(1)令y1=0,得△=(﹣2t)2﹣4(2t﹣1)=4t2﹣8t+4=4(t﹣1)2,∵t>1,∴△=4(t﹣1)2>0,∴无论t取何值,方程x2﹣2tx+(2t﹣1)=0总有两个不相等的实数根,∴无论t取何值,抛物线C1与x轴总有两个交点.(2)解方程x2﹣2tx+(2t﹣1)=0得,x1=1,x2=2t﹣1,∵t>1,∴2t﹣1>1.得A(1,0),B(2t﹣1,0),∵D(m,n),E(m+2,n),∴DE=AB=2,即2t﹣1﹣1=2,解得t=2.∴二次函数为,显然将抛物线C1向上平移1个单位可得抛物线C2:,故n=1.(3)由(2)得抛物线C 2:,D(1,1),E(3,1),翻折后,顶点F(2,0)的对应点为F'(2,2),如图,当直线经过点D(1,1)时,记为l3,此时,图形G与l3只有一个公共点;当直线经过点E(3,1)时,记为l2,此时,图形G与l2有三个公共点;当b<3时,由图象可知,只有当直线l:位于l2与l3之间时,图形G与直线l有且只有两个公共点,∴符合题意的b的取值范围是.参与本试卷答题和审题的老师有:lanchong;137-hui;mmll852;MMCH;Liuzhx;郝老师;HJJ;知足长乐;守拙;zcl5287;lbz;sks;HLing;caicl;zhjh;zcx;dbz1018;CJX;sjw666;73zzx;心若在;sd2011;王学峰;sjzx(排名不分先后)菁优网2016年12月9日2020-2-8。

成都七中2015届高三一诊模拟考试数学答案(理,word版)

成都七中2015届高三一诊模拟考试数学答案(理,word版)

成都七中2015届高中毕业班第一次诊断性检测模拟题数学(理科参考答案)一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共5小题,每小题5分,共25分.11.15; 12.[)5,7; 13.450233πππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦,,; 14.3:2:1; 15.②④. 提示:9.构造函数()()x f x g x e =,则2()()()()()()x x x xf x e e f x f x f xg x e e''--'==, ∵任意x R ∈均有()()f x f x '>,并且0x e >,∴()0g x '<,故函数()()x f x g x e=在R 上单调递减,也就是20142014(2014)(0),(2014)(0)e f f f e f -><故选C. 10. 不妨设a b ≤,122222221bcabbbb bc b +<=+≤+=⇒<≤+,,b c Z ∈,1c b ∴=+,1222b a b +∴=+1a bc ⇒==-.a b t c +∴=22c=-. ,a t Z ∈,1,2c ∴=±±,0,1,3,4t∴=,故2max 2(log )log 42t ==.15.②④由题,“可平行性”曲线的充要条件是:对域内1x ∀都21x x ∃≠使得12()()f x f x ''=成立.①错,12(2)y x x '=-+,又1212112(2)2(2)x x x x -+=-+ 1212x x ⇔=,显然12x =时不满足;②对,由()()()()f x f x f x f x ''=--⇒=-即奇函数的导函数是偶函数,对10x ∀≠都21x x ∃=-使得12()()f x f x ''=成立(可数形结合);③错,2()32f x x x a '=-+,又当时,2211223232x x a x x a -+=-+2212123()2()x x x x ⇔-=-1223x x ⇔+=,当11=3x 时不合题意;④对,当0x <时,()(0,1)xf x e '=∈,若具有“可平行性”,必要条件是:当0x >时,21()1(0,1)f x x'=-∈,解得1x >,又1x >时,分段函数具有“可平行性”,1m ∴=(可数形结合).三、解答题:本大题共6小题,共75分. 16.解:(Ⅰ)设{}n a 的公差为d ,依题意,有 52115,51020a a d S a d =+=-=+=-.联立得11551020a d a d +=-⎧⎨+=-⎩,解得161a d ⎧⎨⎩=-=.∴ 6(1)17n a n n =-+-⋅=-. n N *∈ ……………6分 (Ⅱ) 7n a n =-,∴1()(13)22n n a a n n n S +-==. 令(13)72n n n ->-,即215140n n -+> , ……………10分 解得1n <或14n >. 又*n ∈N ,∴14n >.n ∴的最小值为15. ……………12分17.解:(Ⅰ)∵asinA=(a-b)sinB+csinC ,结合0C π<<,得3C =. …………………………………………………6分(Ⅱ)由 C=π-(A+B),得sinC=sin(B+A)=sinBcosA+cosBsinA , ∵ sinC+sin(B-A)=3sin2A ,∴ sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA ,整理得sinBcosA=3sinAcosA . (8)分 若cosA=0,即A=2π时,△ABC 是直角三角形,且B=6π,于是b=ctanB=2tan6π,∴ S △ABC =12. ……………………10分 若cosA ≠0,则sinB=3sinA ,由正弦定理得b=3a .② 联立①②,结合c=2,解得,∴ S △ABC =12absinC=12.综上,△ABC 12分18.(Ⅰ)证明:连接AC 交BE 于点M ,连接FM .由//EM CD12AM AE PFMC ED FC∴===. //FM AP ∴. ………………4分 FM BEF PA BEF ⊂⊄面,面, //PA BEF ∴面.………………6分(Ⅱ)连CE ,过F 作FH CE ⊥于H .由于//FH PE ,故FH ABCD ⊥面.过H 作HM BE ⊥于M ,连FM .则FM BE ⊥,即FMH ∠为二面角F BE C --的平面角. 60,FMH FH ∴∠==.23FH PE =,1233MH BC AE ==PE ∴=.………………10分1,AE PE =∴=在Rt PBE ∆中,3BE =,tan PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 解法二:以E 为坐标原点,,,EB ED EP 为,,x y z 轴建立空间直角坐标系. (0,0,0),(3,0,0),(0,0,),(3,2,0)E B P m C2CF FP = ,22(1,,)33F m ∴.………………7分设平面BEF 的法向量1(,,)n x y z =,由n EB n EF ⎧⋅=⎪⎨⋅=⎪⎩ 得1n =(0,,1)m -. 又面ABCD 法向量为2(0,0,1)n =.由1212cos 60n n nn ⋅=⋅ , 解得m =.………………10分在Rt PBE ∆中,3BE =, tan 3PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 19.解:(Ⅰ)由直方图知:(200.015300.015400.025500.02600.015700.01)1043.5⨯+⨯+⨯+⨯+⨯+⨯⨯=∴这60人的平均月收入约为43.5百元. ………………4分(Ⅱ)根据频率分布直方图和统计表可知道:[15,25)的人数为0.01510609⨯⨯=人,其中1人不赞成.[25,35)的人数为0.01510609⨯⨯=人,其中2人不赞成. ………………6分X 的所有可能取值为0,1,2,3.338733995(0)18C C P X C C ==⋅=,23312878273333999917(1)36C C C C C P X C C C C ==⋅+⋅=, 212321827827333399992(2)9C C C C C C P X C C C C ==⋅+⋅=,21287233991(3)36C C C P X C C ==⋅=.……………10分 X∴的分布列为012311836936EX ∴=⨯+⨯+⨯+⨯=. ………………12分20.(Ⅰ)解 由e =32,得c =32a ,又b 2=a 2-c 2,所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b =1,即bx +ay -ab =0的距离d =455,得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b 2=455,解得b =1.所以a =2b =2,c = 3.所以椭圆C 的方程为x 24+y 2=1. ………………3分(Ⅱ)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2. 因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m , 与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0,所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB . 所以OA →·OB →=x 1x 2+y 1y 2=0. 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0. 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0. 整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255. ………………8分(Ⅲ)解 设直线OA 的斜率为k 0. 当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x ,联立⎩⎪⎨⎪⎧y =k 0x ,x 24+y 2=1,得⎩⎨⎧x 21=41+4k 20,y 21=4k 201+4k 20.同理可求得⎩⎨⎧x 22=4k 20k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=2(1+k 20)2(1+4k 20)(k 20+4). 令1+k 20=t (t >1),则S =2t 24t 2+9t -9=21-9t 2+9t+4,令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1),所以4<g (t )≤254.所以45≤S <1.当k 0=0时,可求得S =1,故45≤S ≤1,故S 的最小值为45. ………………13分 直线的参数方程也可以做,更简洁。

四川省成都市青羊区2015届中考数学一诊试题(含解析)汇总

四川省成都市青羊区2015届中考数学一诊试题(含解析)汇总

四川省成都市青羊区2015届中考数学一诊试题一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的平方根是()A.±2B.2 C.±D.2.已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(﹣3,2)B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)3.今年3月5日,温家宝总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了细部地区和部分中部地区农村义务教育阶段约52 000 000名学生的学杂费.这个数据保留三个有效数字用科学记数法表示为()A.5.2×107B.52×108C.5.2×108D.5.20×1074.如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.5.如图,已知a∥b,∠1=40°,则∠2=()A.140°B.120°C.40° D.50°6.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.87.不等式组的解集的情况为()A.x<﹣1 B.x<C.﹣1<x<D.无解8.在Rt△ABC中,∠C=90°,BC=2,AB=4,则cosA=()A.B.C.D.9.如图,图中正方形ABCD的边长为4,则图中阴影部分的面积为()A.16﹣4πB.32﹣8πC.8π﹣16 D.无法确定|10.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.4二、填空题(本大题共4个小题,每小题4分,共16分)11.如图,AB是⊙O的直径,点C在⊙O上,OD∥BC,若OD=1,则BC的长为.12.某班开展为班上捐书活动.共捐得科技、文学、教辅、传记四类图书,分别用A、B、C、D表示,如图是未制作完的捐书数量y(单位:百本)与种类x(单位:类)关系的条形统计图,若D类图书占全部捐书的10%,则D类图书的数量(单位:百本)是.13.写出一个图象位于二、四象限的反比例函数的表达式,y= .14.如图,AD是△ABC的高,AD=h,点R在AC边上,点S在AB边上,SR⊥AD,垂足为E.当SR=BC 时,则DE= .三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.)15.(1)计算:(2)解方程:.16.先化简,后求值:,其中x=﹣.17.过原点的直线交反比例函数y=图象于A、B两点,BD⊥x轴于点D,AE⊥y轴于点E.问:(1)直线AB与直线ED的位置关系是什么?并说明理由.(2)四边形ABDE的面积等于多少?18.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.19.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=8m.(1)求∠CAE的度数;(2)求这棵大树折断前的高度?(结果精确到个位,参考数据: =1.4, =1.7, =2.4).20.在△ABC中,∠BAC=90°,AB<AC,∠PMQ是直角,且直角顶点M是BC边的中点,MN⊥BC交AC 于点N.PM边上动点P从点B出发沿射线BA以每秒2cm的速度运动,同时,MQ边上动点Q从点N 出发沿射线NC运动,设运动时间为t秒(t>0).(1)求证:△PBM∽△QNM;(2)探求BP2、PQ2、CQ2三者之间的数量关系,并说明理由.(3)若∠ABC=60°,BC=8cm.①求动点Q的运动速度;②设△APQ的面积为S(平方厘米),求S与t的函数关系式;一、填空(本大题5个小题,每小题4分,共20分.)21.如果关于x的一元二次方程x2﹣4x+3m=0有两个不相等的实数根,则m的取值范围是.22.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED 的最小值是.23.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为(保留根号).24.如图,已知A(2,0)、B(0,5),⊙C的圆心坐标为C(﹣1,0),半径为1,若D是⊙C上一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是.25.用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第2015个图形需根火柴棒.二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.据我们调查,成都市某家电商场今年一月至六月份销售型号为“JSQ20﹣H”的海尔牌热水器的(2)由于此型号的海尔牌热水器的价格适中,消费者满意度很高,商场计划八月份销售此型号的热水器72台,与上半年平均月销售量相比,七、八月销售此型号的热水器平均每月的增长率是多少?27.如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点G,连接CO 并延长交AD于点F,且CF⊥AD.(1)试问:CG是⊙O的切线吗?说明理由;(2)求证:E为OB的中点;(3)若AB=10,求CD的长.28.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OB=6,tan∠ABO=,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,若△CEF∽△COD,求t的值;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.2015年四川省成都市青羊区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的平方根是()A.±2B.2 C.±D.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(﹣3,2)B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称的两点,横坐标相同,纵坐标互为相反数的性质来求解.【解答】解:根据轴对称的性质,得点P(3,﹣2)关于x轴对称的点的坐标为(3,2).故选:C.【点评】熟记关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,横坐标互为相反数,纵坐标相同,关于原点对称的两点,横坐标和纵坐标均互为相反数.3.今年3月5日,温家宝总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了细部地区和部分中部地区农村义务教育阶段约52 000 000名学生的学杂费.这个数据保留三个有效数字用科学记数法表示为()A.5.2×107B.52×108C.5.2×108D.5.20×107【考点】科学记数法与有效数字.【专题】应用题.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.而保留三个有效数字,要观察第4个有效数字,四舍五入,不足的补0.【解答】解:52 000 000=5.20×107.故选D.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分是大于或等于1,而小于10,小数点向左移动7位,应该为5.20×107.4.如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上面看到的图形.【解答】解:从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.【点评】本题考查了三视图的知识,关键是找准俯视图所看的方向.5.如图,已知a∥b,∠1=40°,则∠2=()A.140°B.120°C.40° D.50°【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】如图:由a∥b,根据两直线平行,同位角相等,可得∠1=∠3;又根据邻补角的定义,可得∠2+∠3=180°,所以可以求得∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=40°;∵∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故选A.【点评】此题考查了平行线的性质:两直线平行,同位角相等以及邻补角互补.6.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:C.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.7.不等式组的解集的情况为()A.x<﹣1 B.x<C.﹣1<x<D.无解【考点】解一元一次不等式组.【分析】由题意分别解出不等式组中的两个不等式,再根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)来求出不等式的解集.【解答】解:由移项整理,得x<﹣1,由3x﹣2<0移项,得3x<2,∴x<,∴不等式的解集:x<﹣1,故选A.【点评】主要考查了一元一次不等式组解集的求法,考不等式组解集的口诀,还考查学生的计算能力.8.在Rt△ABC中,∠C=90°,BC=2,AB=4,则cosA=()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理求出AC,根据余弦的定义计算即可.【解答】解:∵∠C=90°,BC=2,AB=4,∴AC==2,∴cosA===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9.如图,图中正方形ABCD的边长为4,则图中阴影部分的面积为()A.16﹣4πB.32﹣8πC.8π﹣16 D.无法确定|【考点】扇形面积的计算.【专题】压轴题.【分析】根据图形,知阴影部分的面积即为直径为4的圆面积的2倍减去边长为4的正方形的面积.【解答】解:根据图形,得阴影部分的面积=2×π×22﹣4×4=8π﹣16.故选C.【点评】此题关键是能够看出阴影部分的面积的整体计算方法.10.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.4【考点】切线的性质.【专题】压轴题.【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F 在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD 上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【解答】解:如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴F C+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选:B.【点评】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.二、填空题(本大题共4个小题,每小题4分,共16分)11.如图,AB是⊙O的直径,点C在⊙O上,OD∥BC,若OD=1,则BC的长为 2 .【考点】三角形中位线定理;圆的认识.【分析】首先证明OD是△ABC的中位线,根据三角形的中位线定理即可求解.【解答】解:∵OD∥BC,且O是AB的中点.∴OD是△ABC的中位线.∴BC=2OD=2.故答案是:2.【点评】本题主要考查了三角形的中位线定理,正确证明OD是中位线是解题的关键.12.某班开展为班上捐书活动.共捐得科技、文学、教辅、传记四类图书,分别用A、B、C、D表示,如图是未制作完的捐书数量y(单位:百本)与种类x(单位:类)关系的条形统计图,若D类图书占全部捐书的10%,则D类图书的数量(单位:百本)是10本.【考点】条形统计图.【分析】首先设D地车票有x张,根据去D地的车票占全部车票的10%列方程即可求得去D地的车票的数量.【解答】解:设D类图书数量为x,则x=(x+20+40+30)×10%,解得x=10.即D类书有10本.故答案为:10本.【点评】此题考查条形统计图,关键是读懂统计图,会分析数据进行解答问题.13.写出一个图象位于二、四象限的反比例函数的表达式,y= 答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.14.如图,AD是△ABC的高,AD=h,点R在AC边上,点S在AB边上,SR⊥AD,垂足为E.当SR=BC时,则DE= h .【考点】相似三角形的判定与性质.【分析】根据AD⊥BC,SR⊥AD可得出SR∥BC,故△ASR∽△ABC,再由相似三角形的性质可得出AE 的长,进而可得出结论.【解答】解:∵AD⊥BC,SR⊥AD,SR=BC,AD=h,∴SR∥BC,∴△ASR∽△ABC,∴=,即=,解得AE=h,∴DE=AD﹣AE=h﹣h=h.故答案为: h.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形对应高的比等于相似比是解答此题的关键.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.)15.(1)计算:(2)解方程:.【考点】实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值.【专题】实数;分式方程及应用.【分析】(1)原式第一项利用负整数指数幂法则计算,第二项利用二次根式性质化简,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=4﹣3+1﹣2×=4﹣3+1﹣2=0;(2)原方程可化为: =+,去分母得:1=3x﹣1+43x﹣1=﹣3,解得:x=﹣,经检验x=﹣是原方程的解.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.先化简,后求值:,其中x=﹣.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=+•=+•=+=,当x=﹣时原式==﹣=﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.过原点的直线交反比例函数y=图象于A、B两点,BD⊥x轴于点D,AE⊥y轴于点E.问:(1)直线AB与直线ED的位置关系是什么?并说明理由.(2)四边形ABDE的面积等于多少?【考点】反比例函数与一次函数的交点问题.【分析】(1)根据题意得出A、B关于原点对称,得出AE=OD,AE∥OD,从而证得四边形OAED是平行四边形,即可证得AB∥ED.(2)根据反比例函数系数k的几何意义即可求得.【解答】解:(1)AB∥ED;理由如下:∵过原点的直线交反比例函数y=图象于A、B两点,∴A、B关于原点对称,∴AE=OD,∵AE⊥y轴于点E.∴AE∥x轴,∴AE∥OD,∴四边形OAED是平行四边形,∴AB∥ED.(2)∵四边形OAED是平行四边形,∴S△AOE=S△EOD,根据反比例函数系数k的几何意义:S△AOE=S△BOD=×12=6,∴四边形ABDE的面积=3×6=18.【点评】本题考查了反比例函数和一次函数的交点问题,平行四边形的判定和性质以及反比例函数系数k的几何意义.18.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图可求得小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图:则共有9种等可能的结果;(2)∵由树状图或表可知,所有可能的结果共有9种,其中笔试题和上机题的题签代码下标为一奇一偶的有4种,∴题签代码下标为一奇一偶的概率是.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=8m.(1)求∠CAE的度数;(2)求这棵大树折断前的高度?(结果精确到个位,参考数据: =1.4, =1.7, =2.4).【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)延长BA交EF于点G.根据三角形内角和定理求出∠CAE的度数;(2)过点A作AE⊥CD,根据余弦和正弦的概念分别求出DH和AH的长,根据等腰直角三角形的性质计算即可.【解答】解:(1)延长BA交EF于点G.在Rt△AGE中,∠E=23°,∴∠GAE=67°,又∵∠BAC=38°,∴∠CAE=180°﹣67°﹣38°=75°.(2)过点A作AE⊥CD,垂足为H.在△ADH中,∠ADC=60°,AD=8,cos∠ADC=,∴DH=4,sin∠ADC=,∴.在Rt△ACH中,∠C=180°﹣75°﹣60°=45°,∴,.∴(米).答:这棵大树折断前高约20米.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,正确标注坡角、倾斜角、灵活运用锐角三角函数的概念是解题的关键,注意特殊角的三角函数值的应用.20.在△ABC中,∠BAC=90°,AB<AC,∠PMQ是直角,且直角顶点M是BC边的中点,MN⊥BC交AC 于点N.PM边上动点P从点B出发沿射线BA以每秒2cm的速度运动,同时,MQ边上动点Q从点N 出发沿射线NC运动,设运动时间为t秒(t>0).(1)求证:△PBM∽△QNM;(2)探求BP2、PQ2、CQ2三者之间的数量关系,并说明理由.(3)若∠ABC=60°,BC=8cm.①求动点Q的运动速度;②设△APQ的面积为S(平方厘米),求S与t的函数关系式;【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)根据MQ垂直于MP,MN垂直于BC,利用等式的性质得到一对角相等,再利用同角的余角相等得到一对角相等,利用两角相等的三角形相似即可得证;(2)PQ2=BP2+CQ2,理由如下:如图1,延长QM至D,使MD=MQ,连结BD、PD,利用SAS得到三角形BDM与三角形CQM全等,利用全等三角形的对应角相等,对应边相等得到一对内错角相等,进而确定出BD与CQ平行且相等,利用两直线平行同旁内角互补,得到∠PBD为直角,利用勾股定理列出关系式,等量代换即可得证;(3)由M为BC中点,求出CM的长,在直角三角形MNC中,利用锐角三角函数定义求出MN的长,①设Q点的运动速度为vcm/s,如图1,当0≤t<2时,由(1)知△PBM∽△QNM,由相似得比例求出Q速度,如图2,易知当t≥2时,Q的速度;②由AC﹣NC表示出AN,如图1,当0≤t<2时,根据AP,AQ,表示出S;如图2,当t≥2时,同理表示出AP,AQ,进而表示出S即可.【解答】(1)证明:如图1,∵MQ⊥MP,MN⊥BC,∴∠PMB+∠PMN=90°,∠QMN+∠PMN=90°,∴∠PMB=QMN,∵∠PBM+∠C=90°,∠QNM+∠C=90°,∴∠PBM=∠QNM,∴△PBM∽△QNM;(2)解:PQ2=BP2+CQ2,理由如下:如图1,延长QM至D,使MD=MQ,连结BD、PD,∵BC、DQ互相平分,∴BM=CM,DM=QM,在△BDM和△CQM中,,∴△BDM≌△CQM(SAS),∴∠CQM=∠BDM,BD=CQ,∴BD∥CQ,∵∠BAC=90°,∴∠PBD=90°,∴PD2=BP2+BD2=BP2+CQ2,∵PM垂直平分DQ,∴PQ=PD,则PQ2=BP2+CQ2;(3)解:∵BC=8c m,M为BC的中点,∴BM=CM=4cm,∵∠ABC=60°,∠C=30°,∴MN=CM=cm;①设Q点的运动速度为vcm/s,如图1,当0≤t<2cm时,由(1)知△PBM∽△QNM,∴=,即=,∴v=cm/s;如图2,易知当t≥2时,v=cm/s,综上所述,Q点运动速度为cm/s;②∵BC=8cm,AB=4cm,AC=4cm,NC=cm,∴AN=AC﹣NC=4﹣=cm,∴如图1,当0≤t<2cm时,AP=(4﹣2t)cm,AQ=AN+NQ=(+t)cm,∴S=AP•AQ=(4﹣2t)(+t)=(﹣t2+)cm2;如图2,当t≥2cm时,AP=(2t﹣4)cm,AQ=AN+NQ=(+t)cm,∴S=AP•AQ=(2t﹣4)(+t)=(t2﹣)cm2.【点评】此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,以及勾股定理,利用了分类讨论的思想,熟练掌握相似三角形的判定与性质是解本题的关键.一、填空(本大题5个小题,每小题4分,共20分.)21.如果关于x的一元二次方程x2﹣4x+3m=0有两个不相等的实数根,则m的取值范围是m<.【考点】根的判别式.【分析】根据题意一元二次方程有两不相等实根,则有△=b2﹣4ac=16﹣12m>0,然后解得m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣4x+3m=0有两个不相等的实数根,∴△>0,即△=16﹣12m>0,∴m<,故答案为:m<.【点评】本题主要考查了利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.22.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是.【考点】轴对称-最短路线问题.【专题】压轴题;动点型.【分析】首先确定DC′=DE+EC′=DE+CE的值最小.然后根据勾股定理计算.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于E,连接CE,此时DE+CE=DE+EC′=DC′的值最小.连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=2,∵D是BC边的中点,∴BD=1,根据勾股定理可得DC′==.故答案为:.【点评】此题考查了线路最短的问题,确定动点E何位置时,使EC+ED的值最小是关键.23.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为(保留根号).【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;勾股定理.【专题】压轴题.【分析】由于△AOB的面积为1,根据反比例函数的比例系数k的几何意义可知k=2,解由y=x+1与联立起来的方程组,得出A点坐标,又易求点C的坐标,从而利用勾股定理求出AC的长.【解答】解:∵点A在反比例函数的图象上,AB⊥x轴于点B,△AOB的面积为1,∴k=2.解方程组,得,.∴A(1,2);在y=x+1中,令y=0,得x=﹣1.∴C(﹣1,0).∴AB=2,BC=2,∴AC==2.【点评】本题考查函数图象交点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.24.如图,已知A(2,0)、B(0,5),⊙C的圆心坐标为C(﹣1,0),半径为1,若D是⊙C上一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是5﹣.【考点】一次函数综合题.【分析】△ABE的BE边上高为OA=2,当AD与⊙C相切时,BE最短,此时,△ABE的面积最小,由勾股定理求相切时,AD的长,利用三角形相似求OE,再求BE,由三角形面积公式求面积的最小值.【解答】解:如图,当AD与⊙C相切于D点时,△ABE的面积最小,连接CD,则△ACD为直角三角形,由勾股定理,得AD===2,∵∠CDA=∠EOA=90°,∠CAD=∠EAO,∴△CAD∽△EAO,∴=,即=,解得OE=,BE=OB﹣OE=5﹣,S△ABE=×(5﹣)×2=5﹣.故答案为:5﹣.【点评】本题考查了一次函数的综合运用.关键是根据动点的变化情况,找出使△ABE的面积最小时,D点的位置,利用相似比求OE.25.用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第2015个图形需12096 根火柴棒.【考点】规律型:图形的变化类.【分析】由图可知:第一个图形用了12根火柴;即12=6×(1+1);第二个图形用了18根火柴;即18=6(2+1);…由此得出搭第n个图形需6n+6根火柴.进一步代入求得答案即可.【解答】解:∵搭第1个图形需12根火柴;搭第2个图形需12+6×1=18根;搭第3个图形需12+6×2=24根;…∴搭第n个图形需12+6(n﹣1)=6n+6根;∴搭第2015个图形需2015×6+6=12096根火柴棒.故答案为:12096.【点评】此题考查图形的变化规律,找出图形的变化规律:后面的图形总比前面的图形多6根火柴棒,由此规律解决问题.二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.据我们调查,成都市某家电商场今年一月至六月份销售型号为“JSQ20﹣H”的海尔牌热水器的(2)由于此型号的海尔牌热水器的价格适中,消费者满意度很高,商场计划八月份销售此型号的热水器72台,与上半年平均月销售量相比,七、八月销售此型号的热水器平均每月的增长率是多少?【考点】一元二次方程的应用;算术平均数;中位数;众数.【专题】增长率问题.【分析】(1)根据平均数、中位数、众数的概念求解;(2)根据增长率问题的公式:6月份生产台数×(1+增长率)n=72,列方程求解.【解答】解:(1),中位数为:,众数为:50;(2)设七、八月份销售量的平均增长率为x,依题意,得:50(1+x)2=72,解得:x1=0.2,x2=﹣(不合题意,舍去).答:七、八月销售此型号的热水器平均每月的增长率是20%.【点评】考查了一元二次方程的应用及有关统计量的意义,解题的关键是能够了解增长率问题的解法,难度不大.27.如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点G,连接CO并延长交AD于点F,且CF⊥AD.(1)试问:CG是⊙O的切线吗?说明理由;(2)求证:E为OB的中点;(3)若AB=10,求CD的长.【考点】切线的判定;勾股定理;相似三角形的判定与性质.【分析】(1)由CG∥AD,CF⊥AD,易得CF⊥CG,即可证得CG是⊙O的切线;(2)首先连接BD,易证得△BDE∽△OCE,然后由相似三角形的对应边成比例,证得E为OB的中点;(3)首先由E为OB的中点,AB=10,求得OE的长,然后由勾股定理求得CE的长,继而求得答案.【解答】(1)解:CG是⊙O的切线.理由:∵CG∥AD,∴∠FCG+∠CFD=180°,∵CF⊥AD,∴∠CFD=90°,∴∠FCG=90°,即OC⊥CG,又∵OC为⊙O的半径,∴CG是⊙O的切线;(2)证明:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,又∵∠AFO=90°,∴∠ADB=∠AFO,∴CF∥BD,∴△BDE∽△OCE,∴,∵AE⊥CD,且AE过圆心O,∴CE=DE,∴BE=OE,∴点E为OB的中点;(3)解:∵AB=10,∴OC=AB=5,又∵BE=OE,∴OE=,∵AB⊥CD,∴CE=,∴CD=2CE=.【点评】此题考查了切线的性质与判定、勾股定理、垂径定理以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.28.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OB=6,tan∠ABO=,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,若△CEF∽△COD,求t的值;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题.。

四川省成都市高考数学一诊试卷(文科)含答案解析

四川省成都市高考数学一诊试卷(文科)含答案解析

四川省成都市高考数学一诊试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U=R,A={x|(x+l)(x﹣2)<0},则∁U A=()A.(一∞,﹣1)∪(2,+∞) B.[﹣l,2]C.(一∞,﹣1]∪[2,+∞)D.(一1,2)2.命题“若a>b,则a+c>b+c”的逆命题是()A.若a>b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a≤b,则a+c≤b+c3.双曲线的离心率为()A.4 B.C.D.4.已知α为锐角,且sinα=,则cos(π+α)=()A.一B.C.﹣D.5.执行如图所示的程序框图,如果输出的结果为0,那么输入的x为()A.B.﹣1或1 C.﹣l D.l6.已知x与y之间的一组数据:x1234y m 3.2 4.87.5若y关于x的线性回归方程为=2.1x﹣1.25,则m的值为()A.l B.0.85 C.0.7 D.0.57.已知定义在R上的奇函数f(x)满足f(x+3)=f(x),且当x∈[0,)时,f(x)=一x3.则f()=()A.﹣B.C.﹣D.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的所有棱中,最长的棱的长度为()A.B.C.5 D.39.将函数f(x)=sin2x+cos2x图象上所有点向右平移个单位长度,得到函数g (x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)10.在直三棱柱ABC﹣A1B l C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有()A.①②B.②③C.①③D.①②③11.已知A,B是圆O:x2+y2=4上的两个动点,||=2,=﹣,若M是线段AB的中点,则•的值为()A.3 B.2C.2 D.﹣312.已知曲线C1:y2=tx (y>0,t>0)在点M(,2)处的切线与曲线C2:y=e x+l﹣1也相切,则t的值为()A.4e2B.4e C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.复数z=(i为虚数单位)的虚部为.14.我国南北朝时代的数学家祖暅提出体积的计算原理(组暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处裁得两几何体的裁面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个矩形,且当实数t取[0,4]上的任意值时,直线y=t被图1和图2所截得的线段始终相等,则图1的面积为.15.若实数x,y满足约束条件,则3x﹣y的最大值为.16.已知△ABC中,AC=,BC=,△ABC的面积为,若线段BA的延长线上存在点D,使∠BDC=,则CD=.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.某省高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知甲,乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为C,D的所有数据的茎叶图如图2所示.(I)求图中x的值,并根据样本数据比较甲乙两校的合格率;(Ⅱ)在乙校的样本中,从成绩等级为C,D的学生中随机抽取两名学生进行调研,求抽出的两名学生中至少有一名学生成绩等级为D的概率.18.在等比数列{a n}中,已知a4=8a1,且a1,a2+1,a3成等差数列.(I)求数列{a n}的通项公式;(Ⅱ)求数列{|a n﹣4|}的前n项和S n.19.如图l,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且=.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示,(I)求证:GR⊥平面PEF;(Ⅱ)若正方形ABCD的边长为4,求三棱锥P﹣DEF的内切球的半径.20.已知椭圆的右焦点为F,设直线l:x=5与x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于A,B两点,M为线段EF的中点.(I)若直线l1的倾斜角为,|AB|的值;(Ⅱ)设直线AM交直线l于点N,证明:直线BN⊥l.21.已知函数f(x)=xlnx+(l﹣k)x+k,k∈R.(I)当k=l时,求函数f(x)的单调区间;(Ⅱ)当x>1时,求使不等式f(x)>0恒成立的最大整数k的值.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,倾斜角为α(α≠)的直线l的参数方程为(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρcos2θ﹣4sinθ=0.(I)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)已知点P(1,0).若点M的极坐标为(1,),直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.[选修4-5:不等式选讲]23.已知函数f(x)=x+1+|3﹣x|,x≥﹣1.(I)求不等式f(x)≤6的解集;(Ⅱ)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.四川省成都市高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U=R,A={x|(x+l)(x﹣2)<0},则∁U A=()A.(一∞,﹣1)∪(2,+∞) B.[﹣l,2]C.(一∞,﹣1]∪[2,+∞)D.(一1,2)【考点】补集及其运算.【分析】解不等式求出集合A,根据补集的定义写出∁U A.【解答】解:集合U=R,A={x|(x+l)(x﹣2)<0}={x|﹣1<x<2},则∁U A={x|x≤﹣1或x≥2}=(﹣∞,﹣1]∪[2,+∞).故选:C.2.命题“若a>b,则a+c>b+c”的逆命题是()A.若a>b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a≤b,则a+c≤b+c【考点】四种命题.【分析】根据命题“若p,则q”的逆命题是“若q,则p”,写出即可.【解答】解:命题“若a>b,则a+c>b+c”的逆命题是“若a+c>b+c,则a>b”.故选:C.3.双曲线的离心率为()A.4 B.C.D.【考点】双曲线的标准方程.【分析】通过双曲线方程求出a,b,c的值然后求出离心率即可.【解答】解:因为双曲线,所以a=,b=2,所以c=3,所以双曲线的离心率为:e==.故选B.4.已知α为锐角,且sinα=,则cos(π+α)=()A.一B.C.﹣D.【考点】三角函数的化简求值.【分析】根据α为锐角,且sinα=,可得cosα=,利用诱导公式化简cos(π+α)=﹣cosα可得答案.【解答】解:∵α为锐角,sinα=,∴cosα=,那么cos(π+α)=﹣cosα=﹣.故选A.5.执行如图所示的程序框图,如果输出的结果为0,那么输入的x为()A.B.﹣1或1 C.﹣l D.l【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,根据输出的结果为0,得出输入的x.【解答】解:根据题意,模拟程序框图的运行过程,x≤0,y=﹣x2+1=0,∴x=﹣1,x>0,y=3x+2=0,无解,故选:C.6.已知x与y之间的一组数据:x1234y m 3.2 4.87.5若y关于x的线性回归方程为=2.1x﹣1.25,则m的值为()A.l B.0.85 C.0.7 D.0.5【考点】线性回归方程.【分析】根据回归直线经过样本数据中心点,求出y的平均数,进而可求出m 值.【解答】解:∵=2.5,=2.1x﹣1.25,∴=4,∴m+3.2+4.8+7.5=16,解得m=0.5,故选:D.7.已知定义在R上的奇函数f(x)满足f(x+3)=f(x),且当x∈[0,)时,f(x)=一x3.则f()=()A.﹣B.C.﹣D.【考点】函数奇偶性的性质.【分析】根据函数奇偶性和条件求出函数是周期为3的周期函数,利用函数周期性和奇偶性的关系进行转化即可得到结论.【解答】解:∵奇函数f(x)满足f(x+3)=f(x),∴函数f(x)是周期为3的函数,∵当x∈[0,)时,f(x)=﹣x3,∴f()=f(﹣6)=f(﹣)=﹣f()=,故选:B.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的所有棱中,最长的棱的长度为()A.B.C.5 D.3【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为四棱锥P﹣ABCD,其中PA⊥底面ABCD,底面是边长为3的正方形,高PA=4.可得最长的棱长为PC.【解答】解:由三视图可知:该几何体为四棱锥P﹣ABCD,其中PA⊥底面ABCD,底面是边长为3的正方形,高PA=4.连接AC,则最长的棱长为PC===.故选:B.9.将函数f(x)=sin2x+cos2x图象上所有点向右平移个单位长度,得到函数g (x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的图象的对称性,求得g(x)图象的一个对称中心.【解答】解:将函数f(x)=sin2x+cos2x=2(sin2x+sin2x)=2sin(2x+)图象上所有点向右平移个单位长度,得到函数g (x)=2sin2x的图象,令2x=kπ,求得x=,k∈Z,令k=1,可得g(x)图象的一个对称中心为(,0),故选:D.10.在直三棱柱ABC﹣A1B l C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有()A.①②B.②③C.①③D.①②③【考点】棱柱的结构特征.【分析】在①中,由AA1EH GF,知四边形EFGH是平行四边形;在②中,平面α与平面BCC1B1平行或相交;在③中,EH⊥平面BCEF,从而平面α⊥平面BCFE.【解答】解:如图,∵在直三棱柱ABC﹣A1B l C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.∴AA1EH GF,∴四边形EFGH是平行四边形,故①正确;∵EF与BC不一定平行,∴平面α与平面BCC1B1平行或相交,故②错误;∵AA1EH GF,且AA1⊥平面BCEF,∴EH⊥平面BCEF,∵EH⊂平面α,∴平面α⊥平面BCFE,故③正确.故选:C.11.已知A,B是圆O:x2+y2=4上的两个动点,||=2,=﹣,若M是线段AB的中点,则•的值为()A.3 B.2C.2 D.﹣3【考点】平面向量数量积的运算.【分析】由A,B是圆O:x2+y2=4上的两个动点,||=2,得到与的夹角为,再根据向量的几何意义和向量的数量积公式计算即可.【解答】解:A,B是圆O:x2+y2=4上的两个动点,||=2,∴与的夹角为,∴•=||•||•cos=2×2×=2,∵M是线段AB的中点,∴=(+),∵=﹣,∴•=(+)•(﹣)=(5||2+3••﹣2||2)=(20+6﹣8)=3,故选:A12.已知曲线C1:y2=tx (y>0,t>0)在点M(,2)处的切线与曲线C2:y=e x+l﹣1也相切,则t的值为()A.4e2B.4e C.D.【考点】利用导数研究曲线上某点切线方程.【分析】求出y=的导数,求出斜率,由点斜式方程可得切线的方程,设切点为(m,n),求出y=e x+1﹣1的导数,可得切线的斜率,得到t的方程,解方程可得.【解答】解:曲线C1:y2=tx(y>0,t>0),即有y=,y′=•,在点M(,2)处的切线斜率为•=,可得切线方程为y﹣2=(x﹣),即y=x+1,设切点为(m,n),则曲线C2:y=e x+1﹣1,y′=e x+1,e m+1=,∴m=ln﹣1,n=m•﹣1,n=e m+1﹣1,可得(ln﹣1)•﹣1=e﹣1,即有(ln﹣1)•=,可得=e2,即有t=4e2.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.复数z=(i为虚数单位)的虚部为1.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:z==i+1的虚部为1.故答案为:1.14.我国南北朝时代的数学家祖暅提出体积的计算原理(组暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处裁得两几何体的裁面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个矩形,且当实数t取[0,4]上的任意值时,直线y=t被图1和图2所截得的线段始终相等,则图1的面积为8.【考点】函数模型的选择与应用.【分析】根据祖暅原理,可得图1的面积=矩形的面积,即可得出结论.【解答】解:根据祖暅原理,可得图1的面积为4×2=8.故答案为8.15.若实数x,y满足约束条件,则3x﹣y的最大值为6.【考点】简单线性规划.【分析】作出可行域,变形目标函数,平移直线y=2x可得结论.【解答】解:作出约束条件,所对应的可行域如图,变形目标函数可得y=3x﹣z,平移直线y=3x可知当直线经过点A(2,0)时,直线的截距最小,z取最大值,代值计算可得z=3x﹣y的最大值为6,故答案为:616.已知△ABC中,AC=,BC=,△ABC的面积为,若线段BA的延长线上存在点D,使∠BDC=,则CD=.【考点】正弦定理.【分析】由已知利用三角形面积公式可求sin∠ACB=,从而可求∠ACB=,在△ABC中,由余弦定理可得AB,进而可求∠B,在△BCD中,由正弦定理可得CD的值.【解答】解:∵AC=,BC=,△ABC的面积为=AC•BC•sin∠ACB=sin∠ACB,∴sin∠ACB=,∴∠ACB=,或,∵若∠ACB=,∠BDC=<∠BAC,可得:∠BAC+∠ACB>+>π,与三角形内角和定理矛盾,∴∠ACB=,∴在△ABC中,由余弦定理可得:AB===,∴∠B=,∴在△BCD中,由正弦定理可得:CD===.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.某省高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知甲,乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为C,D的所有数据的茎叶图如图2所示.(I)求图中x的值,并根据样本数据比较甲乙两校的合格率;(Ⅱ)在乙校的样本中,从成绩等级为C,D的学生中随机抽取两名学生进行调研,求抽出的两名学生中至少有一名学生成绩等级为D的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)由频率分布直方图中小矩形面积之和为1,能求出x=0.004,从而得到甲学校的合格率,由此能求出结果.(Ⅱ)由题意,将乙校样本中成绩等级为C,D的6名学生记为C1,C2,C3,C4,D1,D2,由此利用列举法能求出随机抽取2名学生,抽出的两名学生中至少有一名学生成绩等级为D的概率.【解答】解:(Ⅰ)由题意知10x+0.012×10+0.056×10+0.018×10+0.010×10=1,解得x=0.004,∴甲学校的合格率为1﹣10×0.004=0.96,而乙学校的合格率为:1﹣=0.96,故甲乙两校的合格率相同.(Ⅱ)由题意,将乙校样本中成绩等级为C,D的6名学生记为C1,C2,C3,C4,D1,D2,则随机抽取2名学生的基本事件有:{C1,C2},{C1,C3},{C1,C4},{C1,D1},{C1,D2},{C2,C3},{C2,C4},{C2,D1},{C2,D2},{C3,C4},{C3,D1},{C3,D2},{C4,D1},{C4,D2},{D1,D2},共15个,其中“抽出的两名学生中至少有一名学生成绩等级为D”包含的基本事件有9个,∴抽出的两名学生中至少有一名学生成绩等级为D的概率p=.18.在等比数列{a n}中,已知a4=8a1,且a1,a2+1,a3成等差数列.(I)求数列{a n}的通项公式;(Ⅱ)求数列{|a n﹣4|}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(I)设等比数列{a n}的公比为q,a4=8a1,可得=8a1,解得q.又a1,a2+1,a3成等差数列,可得2(a2+1)=a1+a3,当然解得a1,利用等比数列的通项公式即可得出.(II)n=1时,a1﹣4=﹣2<0,可得S1=2.当n≥2时,a n﹣4≥0.数列{|a n﹣4|}的前n项和S n=2+(a2﹣4)+(a3﹣4)+…+(a n﹣4),再利用等比数列的求和公式即可得出.【解答】解:(I)设等比数列{a n}的公比为q,∵a4=8a1,∴=8a1,a1≠0,解得q=2.又a1,a2+1,a3成等差数列,∴2(a2+1)=a1+a3,∴2(2a1+1)=a1(1+22),解得a1=2.∴a n=2n.(II)n=1时,a1﹣4=﹣2<0,∴S1=2.当n≥2时,a n﹣4≥0.∴数列{|a n﹣4|}的前n项和S n=2+(a2﹣4)+(a3﹣4)+…+(a n﹣4)=2+22+23+…+2n﹣4(n﹣1)=﹣4(n﹣1)=2n+1﹣4n+2.∴S n=.19.如图l,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且=.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示,(I)求证:GR⊥平面PEF;(Ⅱ)若正方形ABCD的边长为4,求三棱锥P﹣DEF的内切球的半径.【考点】球的体积和表面积;直线与平面垂直的判定.【分析】(Ⅰ)推导出PD⊥平面PEF,RG∥PD,由此能证明GR⊥平面PEF.(Ⅱ)设三棱锥P﹣DEF的内切球半径为r,由三棱锥的体积V=,能求出棱锥P﹣DEF的内切球的半径.【解答】证明:(Ⅰ)在正方形ABCD中,∠A、∠B、∠C均为直角,∴在三棱锥P﹣DEF中,PE,PF,PD三条线段两两垂直,∴PD ⊥平面PEF , ∵=,即,∴在△PDH 中,RG ∥PD ,∴GR ⊥平面PEF .解:(Ⅱ)正方形ABCD 边长为4, 由题意PE=PF=2,PD=4,EF=2,DF=2,∴S △PDF =2,S △DEF =S △DPE =4,=6,设三棱锥P ﹣DEF 的内切球半径为r , 则三棱锥的体积:=,解得r=,∴三棱锥P ﹣DEF 的内切球的半径为.20.已知椭圆的右焦点为F ,设直线l :x=5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点. (I )若直线l 1的倾斜角为,|AB |的值;(Ⅱ)设直线AM 交直线l 于点N ,证明:直线BN ⊥l .【考点】直线与椭圆的位置关系.【分析】(I )设直线l 的方程,代入椭圆方程,利用韦达定理及弦长公式即可求得|AB |的值;(Ⅱ)设直线l 1的方程为y=k (x ﹣1),代入椭圆方程,由A ,M ,N 三点共线,求得N点坐标,y0﹣y2=﹣y2=﹣k(x2﹣1),代入,利用韦达定理即可求得y0=y2,则直线BN⊥l.【解答】解:(I)由题意可知:椭圆,a=,b=2,c=1,则F(1,0),E(5,0),M(3,0),由直线l1的倾斜角为,则k=1,直线l的方程y=x﹣1,设A(x1,y1),B(x2,y2),则,整理得:9x2﹣10x﹣15=0,则x1+x2=,x1x2=﹣,则丨AB丨=•=,|AB|的值;(Ⅱ)设直线l1的方程为y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:(4+5k2)x2﹣10k2x+5k2﹣20=0,则x1+x2=,x1x2=,设N(5,y0),由A,M,N三点共线,有=,则y0=,由y0﹣y2=﹣y2=﹣k(x2﹣1)=,==0,∴直线BN∥x轴,∴BN⊥l.21.已知函数f(x)=xlnx+(l﹣k)x+k,k∈R.(I)当k=l时,求函数f(x)的单调区间;(Ⅱ)当x>1时,求使不等式f(x)>0恒成立的最大整数k的值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)当k=1时,f(x)=xlnx+1,f′(x)=lnx+1,由此利用导数性质能求出f(x)的单调区间.(Ⅱ)由f(x)>0恒成立,得xlnx+(1﹣k)x+k>0,推导出k<恒成立,设g(x)=,则g′(x)=,令μ(x)=﹣lnx+x﹣2,则,由此利用导数秘技能求出k的最大整数值.【解答】解:(Ⅰ)当k=1时,f(x)=xlnx+1,∴f′(x)=lnx+1,由f′(x)>0,得x>;由f′(x)<0,得0<x<,∴f(x)的单调递增区间为(,+∞),单调减区间为(0,).(Ⅱ)由f(x)>0恒成立,得xlnx+(1﹣k)x+k>0,∴(x﹣1)k<xlnx+x,∵x>1,∴k<恒成立,设g(x)=,则g′(x)=,令μ(x)=﹣lnx+x﹣2,则,∵x>0,∴μ′(x)>0,μ(x)在(1,+∞)上单调递增,而μ(3)=1﹣ln3<0,μ(4)=2﹣ln4>0,∴存在x0∈(3,4),使μ(x0)=0,即x0﹣2=lnx0,∴当x∈(x0,+∞)时,g′(x)<0,此时函数g(x)单调递减,当x∈(x0,+∞)时,g′(x0)>0,此时函数g(x)单调递增,∴g(x)在x=x0处有极小值(也是最小值),∴==x0∈(3,4),又由k<g(x)恒成立,即k<g(x)min=x0,∴k的最大整数值为3.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,倾斜角为α(α≠)的直线l的参数方程为(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρcos2θ﹣4sinθ=0.(I)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)已知点P(1,0).若点M的极坐标为(1,),直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)直线l的参数方程消去参数t,能求出直线l的普通方程;由曲线C的极坐标方程能求出曲线C的直角坐标方程.(Ⅱ)求出点M的直角坐标为(0,1),从而直线l的倾斜角为,由此能求出直线l的参数方程,代入x2=4y,得,由此利用韦达定理和两点间距离公式能求出|PQ|.【解答】解:(Ⅰ)∵直线l的参数方程为(t为参数).∴直线l的普通方程为y=tanα•(x﹣1),由曲线C的极坐标方程是ρcos2θ﹣4sinθ=0,得ρ2cos2θ﹣4ρsinθ=0,∴x2﹣4y=0,∴曲线C的直角坐标方程为x2=4y.(Ⅱ)∵点M的极坐标为(1,),∴点M的直角坐标为(0,1),∴tanα=﹣1,直线l的倾斜角为,∴直线l的参数方程为,代入x2=4y,得,设A,B两点对应的参数为t1,t2,∵Q为线段AB的中点,∴点Q对应的参数值为,又P(1,0),则|PQ|=||=3.[选修4-5:不等式选讲]23.已知函数f(x)=x+1+|3﹣x|,x≥﹣1.(I)求不等式f(x)≤6的解集;(Ⅱ)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)根据题意,由绝对值的性质可以将f(x)≤6转化可得或,解可得x的范围,即可得答案;(Ⅱ)根据题意,由函数f(x)的解析式分析可得f(x)的最小值为4,即n=4;进而可得正数a,b满足8ab=a+2b,即+=8,将2a+b变形可得2a+b=(++5),由基本不等式的性质可得2a+b的最小值,即可得答案.【解答】解:(Ⅰ)根据题意,函数f(x)=x+1+|3﹣x|,x≥﹣1.若f(x)≤6,则有或,解可得﹣1≤x≤4,故原不等式的解集为{x|﹣1≤x≤4};(Ⅱ)函数f(x)=x+1+|3﹣x|=,分析可得f(x)的最小值为4,即n=4;则正数a,b满足8ab=a+2b,即+=8,2a+b=(+)(2a+b)=(++5)≥(5+2)=;即2a+b的最小值为.4月5日。

四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷

四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷

四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( )A 、),1(+∞-B 、)2,1[-C 、)2,1(-D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”. 3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( ) A 、()0,1 B 、()1,2 C 、()2,e D 、()3,4 4、执行上图所示的程序框图,则输出的结果是( ) A 、5B 、7C 、9D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(x x +展开式中的常数项是( ) A 、180 B 、90 C 、45 D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A 、2a b =B 、//a bC 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则 OA OM+的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( ) A 、54 B 、53 C 、43 D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1B .2C .3D .4 二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ; 12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。

2015年普通高等学校招生全国统一考试文科数学(四川卷)(含答案全解析)

2015年普通高等学校招生全国统一考试文科数学(四川卷)(含答案全解析)

2015年普通高等学校招生全国统一考试(四川卷)数学(文史类)第Ⅰ卷(选择题共50分)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑.第Ⅰ卷共10小题.一、选择题:本大题共10个小题,每小题5分,共50分,在每个小题给出的四个选项中,只有一个是符合题目要求的.1.(2015四川,文1)设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}答案:A解析:如图所示,把集合A,B在数轴上表示出来.所以A∪B={x|-1<x<3}.2.(2015四川,文2)设向量a=(2,4)与向量b=(x,6)共线,则实数x=()A.2B.3C.4D.6答案:B解析:由a=(2,4),b=(x,6)共线,可得4x=12,即x=3.3.(2015四川,文3)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法答案:C解析:根据调查的目的,为了解三个年级之间的学生视力是否存在差异,故最合理的抽样方法应是分层抽样.4.(2015四川,文4)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:A解析:因为函数y=log2x在(0,+∞)上是增函数.故a>b>1⇒log2a>log2b>log21=0.且log2a>log2b>0⇒a>b>1.故a>b>1是log2a>log2b>0的充要条件.5.(2015四川,文5)下列函数中,最小正周期为π的奇函数是()A.y=sin 2x+πB.y=cos 2x+πC.y=sin 2x+cos 2xD.y=sin x+cos x答案:B解析:对于A,y=sin 2x+π2=cos 2x,是最小正周期为π的偶函数;对于B,y=cos 2x+π2=-sin 2x,是最小正周期为π的奇函数;对于C,y=sin 2x+cos 2x=sin 2x+π,是最小正周期为π的非奇非偶函数;对于D,y=sin x+cos x=2sin x+π4,是最小正周期为2π的非奇非偶函数,故选B.6.(2015四川,文6)执行如图所示的程序框图,输出S的值为()A.- 3B. 3C.-1D.1答案:D解析:这是一个循环结构,每次循环的结果依次为:k=2,不满足k>4;k=3,不满足k>4;k=4,不满足k>4;k=5,满足k>4,此时S=sin 56π=sin π6=12.7.(2015四川,文7)过双曲线x 2-y 2=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB|=( ) A.4 3B.2C.6D.4 答案:D 解析:双曲线x2-y 2=1的两条渐近线方程为y=± 3x ,右焦点为F (2,0)如图所示.根据题意,由y = 3x ,x =2,得A (2,2 3). 同理可得B (2,-2 3). 所以|AB|=4 3,故选D .8.(2015四川,文8)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y=e kx+b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( ) A.16小时 B.20小时 C.24小时 D.28小时 答案:C解析:由题意,得(0,192)和(22,48)是函数y=e kx+b 图象上的两个点.所以 192=e b ,48=e 22k +b. ①②由②得,48=e 22k ·e b, ③把①代入③得e 22k =48192=14,即(e 11k )2=14,所以e 11k =12.所以当储藏温度为33 ℃时,保鲜时间y=e 33k+b =(e 11k )3·e b =1×192=24(小时).9.(2015四川,文9)设实数x ,y 满足 2x +y ≤10,x +2y ≤14,x +y ≥6,则xy 的最大值为( )A.252B.492C.12D.16 答案:A解析:作出可行域,如图所示.令t=xy ,则y=t,由图可知,当曲线y=t与线段AB 相切时,t 最大,由 x +2y =14,2x +y =10,得A (2,6), 由 x +y =6,2x +y =10,得B (4,2), 由y=t ,得y'=-t2.设切点坐标为(x 0,y 0),则 2x 0+y 0=10,y 0=t 0,−tx 02=−2, 解得x 0=5∈[2,4],y 0=5,t=25. 所以xy 的最大值为252.10.(2015四川,文10)设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x-5)2+y 2=r 2(r>0)相切于点M.且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( ) A.(1,3) B.(1,4) C.(2,3) D.(2,4) 答案:D解析:如图所示,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则 y 12=4x 1,y 22=4x 2,两式相减,得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).当l 的斜率不存在,即x 1=x 2时,符合条件的直线l 必有两条. 当l 的斜率k 存在,即x 1≠x 2时,有2y 0(y 1-y 2)=4(x 1-x 2),即k=20. 由CM ⊥AB ,得k CM =y 00=-y0,即x 0=3.因为点M 在抛物线内部,所以y 02<4x 0=12, 又x 1≠x 2,所以y 1+y 2≠0,即0<y 02<12.因为点M 在圆上,所以(x 0-5)2+y 02=r 2,即r 2=y 02+4.所以4<r 2<16,即2<r<4,故选D .第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.11.(2015四川,文11)设i 是虚数单位,则复数i-1= . 答案:2i解析:i-1i=i-(-i)=2i.12.(2015四川,文12)lg 0.01+log 216的值是 .答案:2解析:lg 0.01+log 216=lg 10-2+log 224=-2+4=2.13.(2015四川,文13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是 . 答案:-1解析:由sin α+2cos α=0,得tan α=-2.所以原式=2sin αcos α−cos 2α22=2tan α−12=2×(−2)−1(−2)2+1=−5=-1. 14.(2015四川,文14)在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P-A 1MN 的体积是 . 答案:1解析:由题意,可得直三棱柱ABC-A 1B 1C 1如图所示.其中AB=AC=AA 1=BB 1=CC 1=A 1B 1=A 1C 1=1. ∵M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,∴MN=12,NP=1.∴S △MNP =1×1×1=1.∵点A 1到平面MNP 的距离为AM=1,∴V P−A 1MN =V A 1−MNP =13×14×12=124.15.(2015四川,文15)已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ). 对于不相等的实数x 1,x 2,设m=f (x 1)−f (x 2)x 1−x 2,n=g (x 1)−g (x 2)x 1−x 2.现有如下命题:①对于任意不相等的实数x 1,x 2,都有m>0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n>0; ③对于任意的a ,存在不相等的实数x 1,x 2,使得m=n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m=-n. 其中的真命题有 (写出所有真命题的序号). 答案:①④解析:对于①,因为函数f (x )=2x 单调递增,所以m=f (x 1)−f (x 2)x 1−x 2>0,故该命题正确;对于②,函数g (x )=x 2+ax 的对称轴为x=-a 2,故函数在 −∞,−a 上单调递减,在 −a ,+∞ 上单调递增. 所以当x 1,x 2∈ −∞,−a 时,n=g (x 1)−g (x 2)12<0.所以该命题错误.对于③,若存在不相等的实数x 1,x 2,使得m=n ,即f (x 1)−f (x 2)12=g (x 1)−g (x 2)12,整理得f (x 1)-g (x 1)=f (x 2)-g (x 2), 设函数h (x )=f (x )-g (x ),则h (x )=f (x )-g (x )=2x -x 2-ax 的图象与平行于x 轴的直线可能有两个交点. h'(x )=2x ln 2-2x-a ,记p (x )=h'(x ),则p'(x )=2x (ln 2)2-2, 令p'(x )=0,解得2x =2(ln2)2,故x=log 22(ln2)2=1-2log 2(ln 2),记为x 0.当x ∈(-∞,x 0)时,p'(x )<0,函数单调递减;当x ∈(x 0,+∞)时,p'(x )>0,函数单调递增,所以p (x )≥p (x 0).显然当p (x 0)≥0时,h'(x )≥p (x 0)≥0,此时函数h (x )在R 上单调,函数h (x )=f (x )-g (x )=2x -x 2-ax 的图象与平行于x 轴的直线只有一个交点,即此时h (x )的图象与平行于x 轴的直线不可能有两个交点.所以该命题错误.对于④,若存在不相等的实数x 1,x 2,使得m=-n ,即f (x 1)−f (x 2)12=-g (x 1)−g (x 2)12,整理得f (x 1)+g (x 1)=f (x 2)+g (x 2),设函数h (x )=f (x )+g (x ),则q (x )=f (x )+g (x )=2x +x 2+ax 的图象与平行于x 轴的直线可能有两个交点.q'(x )=2x ln 2+2x+a ,显然q'(x )在R 上单调,设q'(x )=0的解为t ,则当x ∈(-∞,t )时,q'(x )<0,函数q (x )单调递减,x ∈(t ,+∞)时,q'(x )>0,函数q (x )单调递增.所以函数q (x )=2x +x 2+ax 的图象与平行于x 轴的直线可能有两个交点.所以该命题正确. 综上,正确的命题为①④.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)(2015四川,文16)设数列{a n }(n=1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设数列 1n的前n 项和为T n ,求T n .解:(1)由已知S n =2a n -a 1,有a n =S n -S n-1=2a n -2a n-1(n ≥2),即a n =2a n-1(n ≥2).从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1). 所以a 1+4a 1=2(a 1+1),解得a 1=2.所以,数列{a n }是首项为2,公比为2的等比数列. 故a n =2n .(2)由(1)得1a n =12n. 所以T n =12+122+…+12n=12 1− 12n 1−12=1-12n . 17.(本小题满分12分)(2015四川,文17)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客P 1,P 2,P 3,P 4,P 5的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车,乘客P 1因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中任意选择座位.(1)若乘客P 1坐到了3号座位,其他乘客按规则就坐,则此时共有4种坐法.下表给出了其中两种坐法.请填入余下两种坐法(将乘客就座的座位号填入表中空格处);(2)若乘客P 1坐到了2号座位,5号座位的概率.解:(1)余下两种坐法如下表所示:(2)若乘客P 1坐到了2号座位,其他乘客按规则就坐, 则所有可能的坐法可用下表表示为:于是,所有可能的坐法共8种.设“乘客P5坐到5号座位”为事件A,则事件A中的基本事件的个数为4.所以P(A)=4=1.答:乘客P5坐到5号座位的概率是1.18.(本小题满分12分)(2015四川,文18)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.(1)解:点F,G,H的位置如图所示.(2)解:平面BEG∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是BCHE为平行四边形.所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.19.(本小题满分12分)(2015四川,文19)已知A,B,C为△ABC的内角,tan A,tan B是关于x的方程x2+px-p+1=0(p∈R)的两实根.(1)求C的大小;(2)若AB=3,AC=6,求p的值.解:(1)由已知,方程x2+3px-p+1=0的判别式Δ=(3p)2-4(-p+1)=3p2+4p-4≥0.所以p≤-2,或p≥2.由韦达定理,有tan A+tan B=- 3p ,tan A tan B=1-p. 于是1-tan A tan B=1-(1-p )=p ≠0, 从而tan (A+B )=tan A +tan B=- 3p =- 3.所以tan C=-tan (A+B )= 所以C=60°.(2)由正弦定理,得 sin B=AC sin C=6sin60°=2,解得B=45°,或B=135°(舍去). 于是A=180°-B-C=75°. 则tan A=tan 75°=tan (45°+30°)=tan45°+tan30°1−tan45°tan30°=1+ 33− 33=2+所以p=-13(tan A+tan B )=-13(2+ 3+1)=-1- 3.20.(本小题满分13分)(2015四川,文20)如图,椭圆E :x 22+y 2b2=1(a>b>0)的离心率是2,点P (0,1)在短轴CD 上,且PC ·PD =-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA ·OB +λPA ·PB 为定值?若存在,求λ的值;若不存在,请说明理由.解:(1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ).又点P 的坐标为(0,1),且PC ·PD =-1,于是 1−b 2=−1,c = 2,a 2−b 2=c 2.解得a=2,b= 2. 所以椭圆E 方程为x 24+y 22=1. (2)当直线AB 的斜率存在时,设直线AB 的方程为y=kx+1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立 x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx-2=0.其判别式Δ=(4k )2+8(2k 2+1)>0, 所以,x 1+x 2=-4k2k 2+1,x 1x 2=-22k 2+1.从而,OA ·OB +λPA ·PB =x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(−2λ−4)k 2+(−2λ−1)2k 2+1=-λ−12k 2+1-λ-2.所以,当λ=1时,-λ−12k 2+1-λ-2=-3.此时,OA ·OB +λPA ·PB =-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD.此时,OA ·OB +λPA ·PB =OC ·OD +PC ·PD =-2-1=-3.故存在常数λ=1,使得OA ·OB +λPA ·PB 为定值-3.21.(本小题满分14分)(2015四川,文21)已知函数f (x )=-2x ln x+x 2-2ax+a 2,其中a>0. (1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解. (1)解:由已知,函数f (x )的定义域为(0,+∞),g (x )=f'(x )=2(x-1-ln x-a ),所以g'(x )=2-2x=2(x−1)x.当x∈(0,1)时,g'(x)<0,g(x)单调递减;当x∈(1,+∞)时,g'(x)>0,g(x)单调递增.(2)证明:由f'(x)=2(x-1-ln x-a)=0,解得a=x-1-ln x.令φ(x)=-2x ln x+x2-2x(x-1-ln x)+(x-1-ln x)2=(1+ln x)2-2x ln x,则φ(1)=1>0,φ(e)=2(2-e)<0.于是,存在x0∈(1,e),使得φ(x0)=0.令a0=x0-1-ln x0=u(x0),其中u(x)=x-1-ln x(x≥1).由u'(x)=1-1≥0知,函数u(x)在区间(1,+∞)上单调递增.故0=u(1)<a0=u(x0)<u(e)=e-2<1.即a0∈(0,1).当a=a0时,有f'(x0)=0,f(x0)=φ(x0)=0.再由(1)知,f'(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f'(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时,f'(x)>0,从而f(x)>f(x0)=0;又当x∈(0,1]时,f(x)=(x-a0)2-2x ln x>0.故x∈(0,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.。

成都七中2015级高三“一诊”模拟考试数学答案

成都七中2015级高三“一诊”模拟考试数学答案

C D OBE'AH成都七中2015级高三“一诊”模拟考试数学试题参考答案一、选择题:(本大题共10小题,每小题5分,共50分) BAADB ACBAD 二、填空题:(本大题共5小题,每小题5分,共25分) 11. 180 12.12 13. - 14. (-7, 3) 15. ①②③⑤ 三、解答题:本大题共6小题,共75分。

解答应写出文字说明,证明过程或演算步骤。

16、(本小题满分12分)【解析】(I )由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒ (II )1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A ==25sin sin 47bc B C R ∴==.17、(本小题满分12分) 解答:(1)331328()327p C ==,22232128()33327p C =⋅=,222342114()()33227p C =⋅=(2)由题意可知X 的可能取值为:0, 1, 2, 3. 乙队得分X 的分布列为:乙队得分X 的数学期望:1644170123.27272799EX =⨯+⨯+⨯+⨯=18、(本小题满分12分)【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.3210X P2742742719结合图1可知,H 为AC 中点,故2OH =,从而A H '==所以cos 5OH A HO A H '∠==',所以二面角A CD B '--的平面角的余弦值为5.向量法:以O 点为原点,建立空间直角坐标系O xyz -如图所示, 则(A ',()0,3,0C -,()1,2,0D -所以(CA '= ,(1,DA '=-设(),,n x y z = 为平面A CD '的法向量,则 00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩令1x =,得(1,n =-由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦19、(本小题满分12分)(1)解:由222(1)()0n n S n n S n n -+--+=,得2[()](1)0.n n S n n S -++=由于{a n }是正项数列,所以20,.n n S S n n >=+于是112,2a S n ==≥时,221(1)(1)2.n n n a S S n n n n n -=-=+----= 综上,数列{a n }的通项2.n a n = (2)证明:由于2,n a n =221(2)n nn b n a +=+, 则22221111[4(2)16(2)n n b n n n n +==-++.2222222221111111111[11632435(1)(1)(2)n T n n n n =-+-+-++-+--++ 2221111[1]162(1)(2)n n =+--++2115(1).16264<+=【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.。

2015年四川省成都市高考数学一诊试卷(理科)

2015年四川省成都市高考数学一诊试卷(理科)

2015年四川省成都市高考数学一诊试卷(理科)一.选择题:(本大题共10小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•成都模拟)设集合,,则M∩N=()A.(﹣1,+∞)B.[﹣1,2)C.(﹣1,2)D.[﹣1,2]2.(5分)(2015•成都模拟)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x>2”是“x2﹣3x+2>0”的必要不充分条件C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.命题“∃x∈R使得x2+x+1<0”的否定是:“∀x∈R均有x2+x+1<0”3.(5分)(2015•成都模拟)方程ln(x+1)﹣=0,(x>0)的根存在的大致区间是()A.(0,1)B.(1,2)C.(2,e)D.(3,4)4.(5分)(2015•成都模拟)执行如图所示的程序框图,则输出的结果是()A.5 B.7 C.9 D.115.(5分)(2015•余杭区模拟)设m、n是两条不同的直线,α、β是两个不同的平面,下列命题中错误的是()A.若m⊥α,m∥n,n∥β,则α⊥βB.若α⊥β,m⊄α,m⊥β,则m∥αC.若m⊥β,m⊂α,则α⊥βD.若α⊥β,m⊂α,n⊂β,则m⊥n6.(5分)(2015•成都模拟)二项式(+)10展开式中的常数项是()A.180 B.90 C.45 D.3607.(5分)(2015•成都模拟)设、都是非零向量,下列四个条件中,一定能使+=成立的是()A.=2B.∥C.=﹣D.⊥8.(5分)(2015•成都模拟)已知O是坐标原点,点A(﹣1,0),若M(x,y)为平面区域上的一个动点,则|+|的取值范围是()A.[1,]B.[2,]C.[1,2]D.[0,]9.(5分)(2015•成都模拟)已知抛物线C:x2=4y的焦点为F,直线x﹣2y+4=0与C交于A、B两点,则sin∠AFB=()A.B.C.D.10.(5分)(2015•成都模拟)已知函数y=f(x)是定义在R上的偶函数,对于任意x∈R都f(x+6)=f(x)+f(3)成立;当x1,x2∈[0,3],且x1≠x2时,都有>0.给出下列四个命题:①f(3)=0;②直线x=﹣6是函数y=f(x)图象的一条对称轴;③函数y=f(x)在[﹣9,﹣6]上为增函数;④函数y=f(x)在[0,2014]上有335个零点.其中正确命题的个数为()A.1 B.2 C.3 D.4二、填空题:(本大题共5小题,每小题5分,共25分.)11.(5分)(2015•南海区校级模拟)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为.12.(5分)(2015•成都模拟)已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为.13.(5分)(2015•岳阳模拟)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有种不同的填报专业志愿的方法(用数字作答).14.(5分)(2013春•衡水校级月考)若实数a、b、c成等差数列,点P(﹣1,0)在动直线l:ax+by+c=0上的射影为M,点N(0,3),则线段MN长度的最小值是:.15.(5分)(2015•成都模拟)给出下列命题:①函数y=cos(2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为(写出所有正确命题的序号).三、解答题:(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)(2015•成都模拟)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如下表:x x1x2x3ωx+ϕ0 π2πAsin(ωx+ϕ)0 0 ﹣0(Ⅰ)请写出上表的x1、x2、x3,并直接写出函数的解析式;(Ⅱ)将f(x)的图象沿x轴向右平移个单位得到函数g(x)的图象,P、Q分别为函数g(x)图象的最高点和最低点(如图),求∠OQP的大小.17.(12分)(2015•成都模拟)每年5月17日为国际电信日,某市电信公司每年在电信日当天对办理应用套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元.根据以往的统计结果绘出电信日当天参与活动的统计图,现将频率视为概率.(1)求某两人选择同一套餐的概率;(2)若用随机变量X表示某两人所获优惠金额的总和,求X的分布列和数学期望.18.(12分)(2015•衡阳校级模拟)如图,在四棱柱ABCD﹣A1B1C1D1中,侧面A1ADD1⊥底面ABCD,D1A=D1D=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:A1O∥平面AB1C;(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.19.(12分)(2015•成都模拟)已知各项均为正数的数列{a n}的前n项和为S n,且a2n+a n=2S n (1)求a1(2)求数列{a n}的通项;(3)若b n=(n∈N*),T n=b1+b2+…b n,求证:T n<.20.(13分)(2015•成都模拟)已知椭圆=1(a>b>0)经过点(,﹣),且椭圆的离心率e=.(1)求椭圆的方程;(2)过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A,C及B,D,设线段AC,BD的中点分别为P,Q.求证:直线PQ恒过一个定点.21.(14分)(2015•成都模拟)已知函数f(x)=lnx+x2.(1)若函数g(x)=f(x)﹣ax在定义域内为增函数,求实数a的取值范围;(2)在(1)的条件下,且a>1,h(x)=e3x﹣3ae x,x∈[0,ln2],求h(x)的极小值;(3)设F(x)=2f(x)﹣3x2﹣k(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且满足2x0=m+n,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.2015年四川省成都市高考数学一诊试卷(理科)参考答案与试题解析一.选择题:(本大题共10小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•成都模拟)设集合,,则M∩N=()A.(﹣1,+∞)B.[﹣1,2)C.(﹣1,2)D.[﹣1,2]【考点】指数函数的单调性与特殊点;交集及其运算;其他不等式的解法.【专题】计算题.【分析】由题意,可先化简两个集合,得,,再由交集的运算求出交集,即可选出正确答案.【解答】解:由题意,,∴M∩N={x|﹣1≤x<2}∩{x|x>﹣1}=(﹣1,2),故选C.【点评】本题考查求集合的交,解分式不等式,指数不等式,解题的关键是正确化简两个集合及理解交的运算.2.(5分)(2015•成都模拟)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x>2”是“x2﹣3x+2>0”的必要不充分条件C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.命题“∃x∈R使得x2+x+1<0”的否定是:“∀x∈R均有x2+x+1<0”【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】分别根据四种命题之间的关系以及充分条件和必要条件的定义即可得到结论.【解答】解:A.命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,则A错误.B.由x2﹣3x+2>0,解得x>2或x<1,则“x>2”是“x2﹣3x+2>0”的充分不必要条件,故B 错误.C.命题“若x=y,则sinx=siny”为真命题,则根据逆否命题的等价性可知命题“若x=y,则sinx=siny”的逆否命题为真命题,故C正确.D.命题“∃x∈R使得x2+x+1<0”的否定是:“∀x∈R均有x2+x+1≥0”,故D错误.故选:C【点评】本题主要考查命题的真假判断,要求熟练掌握四种命题,充分条件和必要条件,含有量词的题目的真假判断.3.(5分)(2015•成都模拟)方程ln(x+1)﹣=0,(x>0)的根存在的大致区间是()A.(0,1)B.(1,2)C.(2,e)D.(3,4)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】令f(x)=ln(x+1)﹣,得出f(1)f(2)<0,从而得出答案.【解答】解:令f(x)=ln(x+1)﹣,而f(1)=ln2﹣2<0,f(2)=ln3﹣1>0,∴方程ln(x+1)﹣=0,(x>0)的根存在的大致区间是(1,2),故选:B.【点评】他考查了函数的零点问题,特殊值代入是方法之一,本题属于基础题.4.(5分)(2015•成都模拟)执行如图所示的程序框图,则输出的结果是()A.5 B.7 C.9 D.11【考点】程序框图.【专题】空间位置关系与距离.【分析】根据框图的流程依次计算运行的结果,直到不满足条件S<20,计算输出k的值.【解答】解:由程序框图知:第一次运行S=1+2=3,k=1+2=3;第二次运行S=1+2+6=9.k=3+2=5;第三次运行S=1+2+6+10=19,k=5+2=7;第四次运行S=1+2+6+10+14=33,k=7+2=9;此时不满足条件S<20,程序运行终止,输出k=9.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程依次计算运行的结果是解答此类问题的常用方法.5.(5分)(2015•余杭区模拟)设m、n是两条不同的直线,α、β是两个不同的平面,下列命题中错误的是()A.若m⊥α,m∥n,n∥β,则α⊥βB.若α⊥β,m⊄α,m⊥β,则m∥αC.若m⊥β,m⊂α,则α⊥βD.若α⊥β,m⊂α,n⊂β,则m⊥n【考点】空间中直线与平面之间的位置关系.【分析】利用空间中线线、线面、面面间的位置关系求解.【解答】解:若m⊥α,m∥n,n∥β,则由平面与平面垂直的判定定理得α⊥β,故A正确;若α⊥β,m⊄α,m⊥β,则由直线与平面平行的判定定理得m∥α,故B正确;若m⊥β,m⊂α,则由平面与平面垂直的判定定理得α⊥β,故C正确;若α⊥β,m⊂α,n⊂β,则m与n相交、平行或异面,故D错误.故选:D.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.6.(5分)(2015•成都模拟)二项式(+)10展开式中的常数项是()A.180 B.90 C.45 D.360【考点】二项式定理的应用.【专题】二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.【解答】解:二项式(+)10展开式的通项公式为T r+1=•2r•,令5﹣=0,求得r=2,可得展开式中的常数项是•22=180,故选:A.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.7.(5分)(2015•成都模拟)设、都是非零向量,下列四个条件中,一定能使+=成立的是()A.=2B.∥C.=﹣D.⊥【考点】平面向量的基本定理及其意义.【专题】平面向量及应用.【分析】根据向量共线定理,可得若+=成立,则向量,共线且方向相反,对照各个选项并结合数乘向量的含义,可得本题答案.【解答】解:由+=,得若=﹣≠,即有=﹣,则,共线且方向相反,因此当因此当向量、共线且方向相反时,能使+=成立.对照各个选项,可得A项中向量、的方向相同,B项中向量,共线,方向相同或相反,C项中向量、的方向相反,D项中向量、的方向互相垂直故选:C.【点评】本题考查了数乘向量的含义与向量共线定理等知识,属于基础题.8.(5分)(2015•成都模拟)已知O是坐标原点,点A(﹣1,0),若M(x,y)为平面区域上的一个动点,则|+|的取值范围是()A.[1,]B.[2,]C.[1,2]D.[0,]【考点】简单线性规划.【专题】不等式的解法及应用.【分析】由题意作出可行域,由向量的坐标加法运算求得+的坐标,把||转化为可行域内的点M(x,y)到定点N(1,0)的距离,数形结合可得答案.【解答】解:+=(﹣1,0)+(x,y)=(x﹣1,y),则|+|=,设z=|+|=,则z的几何意义为M到定点D(1,0)的距离,由约束条件作平面区域如图,由图象可知当M位于A(0,2)时,z取得最大值z=,当M位于C(1,1)时,z取得最小值z=1,1≤z≤,即|+|的取值范围是[1,],故选:A【点评】本题考查了简单的线性规划,考查了数形结合、转化与化归等解题思想方法,考查了向量模的求法,是中档题.9.(5分)(2015•成都模拟)已知抛物线C:x2=4y的焦点为F,直线x﹣2y+4=0与C交于A、B两点,则sin∠AFB=()A.B.C.D.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】先有抛物线方程求得F的坐标,进而直线方程与抛物线方程联立求得A,B的坐标,利用两点间的距离公式分别求得|AB|,|AF|,|BF|,利用余弦定理求得cos∠AFB,进而求得sin∠AFB.【解答】解:由抛物线方程可知,2p=4,p=2,∴焦点F的坐标为(0,1),联立直线与抛物线方程,求得x=﹣2,y=1或x=4,y=4,令A坐标为(﹣2,1),则B坐标为(4,4),∴|AB|==3,|AF|==2,|BF|==5,∴在△ABF中cos∠AFB===,∴sin∠AFB==,故选:B.【点评】本题主要考查抛物线的简单性质,直线与抛物线的关系,余弦定理的应用等知识.考查了学生综合运用基础知识解决问题的能力.10.(5分)(2015•成都模拟)已知函数y=f(x)是定义在R上的偶函数,对于任意x∈R都f(x+6)=f(x)+f(3)成立;当x1,x2∈[0,3],且x1≠x2时,都有>0.给出下列四个命题:①f(3)=0;②直线x=﹣6是函数y=f(x)图象的一条对称轴;③函数y=f(x)在[﹣9,﹣6]上为增函数;④函数y=f(x)在[0,2014]上有335个零点.其中正确命题的个数为()A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【专题】综合题;函数的性质及应用.【分析】①在f(x+6)=f (x)+f (3)中,令x=﹣3,可得f(﹣3)=0,f(x)是R上的偶函数,从而可判断①;②由(1)知f(x+6)=f (x),所以f(x)的周期为6,再利用f(x)是R上的偶函数,可得f(﹣6﹣x)=f(﹣6+x),从而可判断②;③依题意知,函数y=f(x)在[0,3]上为增函数,利用f(x)的周期为6,且f(x)是R 上的偶函数,可判断函数y=f(x)在[﹣9,﹣6]上为减函数,从而可判断③;④由题意可知,y=f(x)在[0,6]上只有一个零点3,而2014=335×6+3,从而可判断④.【解答】解:①:对于任意x∈R,都有f(x+6)=f (x)+f (3)成立,令x=﹣3,则f(﹣3+6)=f(﹣3)+f (3),即f(﹣3)=0,又因为f(x)是R上的偶函数,所以f(3)=0,即①正确;②:由(1)知f(x+6)=f (x),所以f(x)的周期为6,又因为f(x)是R上的偶函数,所以f(x+6)=f(﹣x),而f(x)的周期为6,所以f(x+6)=f(﹣6+x),f(﹣x)=f(﹣x﹣6),所以:f(﹣6﹣x)=f(﹣6+x),所以直线x=﹣6是函数y=f(x)的图象的一条对称轴,即②正确;③:当x1,x2∈[0,3],且x1≠x2时,都有>0,所以函数y=f(x)在[0,3]上为增函数,因为f(x)是R上的偶函数,所以函数y=f(x)在[﹣3,0]上为减函数而f(x)的周期为6,所以函数y=f(x)在[﹣9,﹣6]上为减函数,故③错误;④:f(3)=0,f(x)的周期为6,函数y=f(x)在[0,3]上为增函数,在[3,6]上为减函数,所以:y=f(x)在[0,6]上只有一个零点3,而2014=335×6+4,所以,函数y=f(x)在[0,2014]上有335+1=336个零点,故④错误.故正确命题的个数为2个,故选:B.【点评】本题考查命题的真假判断与应用,着重考查函数的奇偶性、周期性、对称性及零点的确定的综合应用,属于难题.二、填空题:(本大题共5小题,每小题5分,共25分.)11.(5分)(2015•南海区校级模拟)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为.【考点】复数代数形式的乘除运算.【专题】计算题.【分析】首先求出|4+3i|,代入后直接利用复数的除法运算求解.【解答】解:∵|4+3i|=.由(3﹣4i)z=|4+3i|,得(3﹣4i)z=5,即z=.∴z的虚部为.故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.12.(5分)(2015•成都模拟)已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】根据四棱锥的俯视图得到四棱锥的特征,根据四棱锥的左视图为直角三角形,得到四棱锥的高即可求出它的体积【解答】解:由四棱锥的俯视图可知,该四棱锥底面为ABCD为正方形,PO垂直于BC于点O,其中O为BC的中点,若该四棱锥的左视图为直角三角形,则△BPC为直角三角形,且为等腰直角三角形,∵B0=1,∴PO=BO=1,则它的体积为.故答案为:.【点评】本题主要考查三视图的识别和应用以及锥体的体积的计算,考查线面垂直和面面垂直的判断,考查学生的推理能力.13.(5分)(2015•岳阳模拟)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有180种不同的填报专业志愿的方法(用数字作答).【考点】计数原理的应用.【专题】应用题;排列组合.【分析】分类讨论,分别求出甲、乙都不选、甲、乙两个专业选1个时的报名方法,根据分类计数原理,可得结论.【解答】解:甲、乙都不选时,有=60种;甲、乙两个专业选1个时,有=120种,根据分类计数原理,可得共有60+120=180种不同的填报专业志愿的方法.故答案为:180.【点评】本题考查计数原理的运用,考查排列组合知识,考查学生分析解决问题的能力,正确分类是关键.14.(5分)(2013春•衡水校级月考)若实数a、b、c成等差数列,点P(﹣1,0)在动直线l:ax+by+c=0上的射影为M,点N(0,3),则线段MN长度的最小值是:4﹣.【考点】等差数列的性质;点到直线的距离公式.【专题】等差数列与等比数列.【分析】由题意可得动直线l:ax+by+c=0过定点Q(1,﹣2),PMQ=90°,点M在以PQ为直径的圆上,求出圆心为PQ的中点C(0,﹣1),且半径为.求得点N到圆心C的距离,再减去半径,即得所求.【解答】解:因为a,b,c成等差数列,故有2b=a+c,即a﹣2b+c=0,对比方程ax+by+c=0可知,动直线恒过定点Q(1,﹣2).由于点P(﹣1,0)在动直线ax+by+c=0上的射影为M,即∠PMQ=90°,所以点M在以PQ为直径的圆上,该圆的圆心为PQ的中点C(0,﹣1),且半径为=,再由点N到圆心C的距离为NC=4,所以线段MN的最小值为NC﹣r=4﹣,故答案为:4﹣.【点评】本题主要考查等差数列的性质,直线过定点问题、圆的定义,以及点与圆的位置关系,属于中档题.15.(5分)(2015•成都模拟)给出下列命题:①函数y=cos(2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为①②(写出所有正确命题的序号).【考点】命题的真假判断与应用.【专题】计算题;简易逻辑.【分析】①由x=时,y=﹣1,可得结论;②利用函数图象,求解;③根据图象的平移规律可得结论;④根据sinx+cosx=sin(x+)≤<,可以判断.【解答】解:①函数y=cos(2x﹣),x=时,y=﹣1,所以函数y=cos(2x﹣)图象的一条对称轴是x=,正确;②在同一坐标系中,画出函数y=sinx和y=lgx的图象,所以结合图象易知这两个函数的图象有3交点,正确;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin[2(x﹣)+],即y=sin(2x﹣)的图象,故不正确;④sinx+cosx=sin(x+)≤<,故不存在实数x,使得等式sinx+cosx=成立;故答案为:①②.【点评】本题利用三角函数图象与性质,考查命题的真假判断与应用,考查学生分析解决问题的能力,属于中档题.三、解答题:(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)(2015•成都模拟)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如下表:x x1x2x3ωx+ϕ0 π2πAsin(ωx+ϕ)0 0 ﹣0(Ⅰ)请写出上表的x1、x2、x3,并直接写出函数的解析式;(Ⅱ)将f(x)的图象沿x轴向右平移个单位得到函数g(x)的图象,P、Q分别为函数g(x)图象的最高点和最低点(如图),求∠OQP的大小.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】(Ⅰ)由表中数据列关于ω、φ的二元一次方程组,求得ω、φ的值,得到函数解析式,进一步求得x1、x2、x3;(Ⅱ)由函数图象平移求得,求出最高点和最低点的坐标,进一步求出三角形OPQ的边长,由余弦定理求得∠OQP的大小.【解答】解:(Ⅰ)由表可知,+φ=,+φ=,解得,ω=,φ=.由x1+=0、x2+=π、x3+=2π,得,,.∴;(Ⅱ)将f(x)的图象沿x轴向右平移个单位得到函数,∵P、Q分别为该图象的最高点和最低点,∴.∴OP=2,PQ=4,,∴.∴.【点评】本题考查了由y=Asin(ωx+φ)的部分图象求解函数解析式,考查了y=Asin(ωx+φ)的性质,考查了余弦定理的应用,训练了五点作图法,是中档题.17.(12分)(2015•成都模拟)每年5月17日为国际电信日,某市电信公司每年在电信日当天对办理应用套餐的客户进行优惠,优惠方案如下:选择套餐一的客户可获得优惠200元,选择套餐二的客户可获得优惠500元,选择套餐三的客户可获得优惠300元.根据以往的统计结果绘出电信日当天参与活动的统计图,现将频率视为概率.(1)求某两人选择同一套餐的概率;(2)若用随机变量X表示某两人所获优惠金额的总和,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【专题】概率与统计.【分析】(1)由题意利用互斥事件加法公式能求出某两人选择同一套餐的概率.(2)由题意知某两人可获得优惠金额X的可能取值为400,500,600,700,800,1000.分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)由题意可得某两人选择同一套餐的概率为:.(2)由题意知某两人可获得优惠金额X的可能取值为400,500,600,700,800,1000.,,,,,,综上可得X的分布列为:X 400 500 600 700 800 1000PX的数学期望.【点评】本小题主要考查学生对概率知识的理解,通过分布列的计算,考查学生的数据处理能力.18.(12分)(2015•衡阳校级模拟)如图,在四棱柱ABCD﹣A1B1C1D1中,侧面A1ADD1⊥底面ABCD,D1A=D1D=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:A1O∥平面AB1C;(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.【考点】直线与平面平行的判定;用空间向量求平面间的夹角.【专题】计算题;证明题.【分析】(Ⅰ)欲证A1O∥平面AB1C,根据直线与平面平行的判定定理可知只需证A1O与平面AB1C内一直线平行,连接CO、A1O、AC、AB1,利用平行四边形可证A1O∥B1C,又A1O⊄平面AB1C,B1C⊆平面AB1C,满足定理所需条件;(Ⅱ)根据面面垂直的性质可知D1O⊥底面ABCD,以O为原点,OC、OD、OD1所在直线分别为x轴、y轴、z轴建立坐标系,求出平面C1CDD1的一个法向量,以及平面AC1D1的一个法向量,然后求出两个法向量夹角的余弦值即可求出锐二面角A﹣C1D1﹣C的余弦值.【解答】解:(Ⅰ)证明:如图(1),连接CO、A1O、AC、AB1,(1分)则四边形ABCO为正方形,所以OC=AB=A1B1,所以,四边形A1B1CO为平行四边形,(3分)所以A1O∥B1C,又A1O⊄平面AB1C,B1C⊆平面AB1C所以A1O∥平面AB1C(6分)(Ⅱ)因为D1A=D1D,O为AD中点,所以D1O⊥AD又侧面A1ADD1⊥底面ABCD,所以D1O⊥底面ABCD,(7分)以O为原点,OC、OD、OD1所在直线分别为x轴、y轴、z轴建立如图(2)所示的坐标系,则C(1,0,0),D(0,1,0),D1(0,0,1),A(0,﹣1,0).(8分)所以,(9分)设为平面C1CDD1的一个法向量,由,得,令z=1,则y=1,x=1,∴.(10分)又设为平面AC1D1的一个法向量,由,得,令z1=1,则y1=﹣1,x1=﹣1,∴,(11分)则,故所求锐二面角A﹣C1D1﹣C的余弦值为(12分)【点评】本题主要考查了线面平行的判定,以及利用空间向量的方法求解二面角等有关知识,同时考查了空间想象能力、转化与划归的思想,属于中档题.19.(12分)(2015•成都模拟)已知各项均为正数的数列{a n}的前n项和为S n,且a2n+a n=2S n (1)求a1(2)求数列{a n}的通项;(3)若b n=(n∈N*),T n=b1+b2+…b n,求证:T n<.【考点】数列的求和.【专题】计算题;等差数列与等比数列.【分析】(1)a2n+a n=2S n中令n=1求a1(2)又a2n+a n=2S n有a2n+1+a n+1=2S n+1,两式相减得并整理得(a n+1+a n)(a n+1﹣a n﹣1)=0,数列{a n}是以a1=1,公差为1的等差数列,以此求数列{a n}的通项;(3)由(2)得出a n=n,利用放缩法求证:T n<.【解答】解:(1)令n=1,得a12+a1=2S1=2a1,∵a1>0,∴a1=1,(2)又a2n+a n=2S n,有a2n+1+a n+1=2S n+1,两式相减得并整理得(a n+1+a n)(a n+1﹣a n﹣1)=0,∵a n>0,∴a n+1﹣a n=1,∴数列{a n}是以a1=1,公差为1的等差数列,通项公式为a n=1+(n﹣1)×1=n;(3)n=1时b1=1<符合…(9分)n≥2时,因为==2(﹣)所以T n=b1+b2+…b n<1+2(++…+﹣)=1=∴T n<.【点评】本题考查等差数列的判定与通项公式求解,不等式的证明,是数列与不等式的结合.20.(13分)(2015•成都模拟)已知椭圆=1(a>b>0)经过点(,﹣),且椭圆的离心率e=.(1)求椭圆的方程;(2)过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A,C及B,D,设线段AC,BD的中点分别为P,Q.求证:直线PQ恒过一个定点.【考点】直线与圆锥曲线的综合问题.【专题】圆锥曲线中的最值与范围问题.【分析】(1)由已知得,,由此能求出椭圆的方程.(2)当直线AC的斜率不存在时,AC:x=1,则BD:y=0.直线PQ恒过一个定点;当直线AC的斜率存在时,设AC:y=k(x﹣1)(k≠0),BD:.联立方程组,得(4k2+3)x2﹣8k2x+4k2﹣12=0,由此利用韦达定理结合已知条件能证明直线PQ恒过一个定点.【解答】(1)解:由,得,即a2=4c2=4(a2﹣b2),即3a2=4b2.…(1分)由椭圆过点知,.…(2分)联立(1)、(2)式解得a2=4,b2=3.…(3分)故椭圆的方程是.…(4分)(2)证明:直线PQ恒过一个定点.…(5分)椭圆的右焦点为F(1,0),分两种情况.1°当直线AC的斜率不存在时,AC:x=1,则BD:y=0.由椭圆的通径得P(1,0),又Q(0,0),此时直线PQ恒过一个定点.…(6分)2°当直线AC的斜率存在时,设AC:y=k(x﹣1)(k≠0),则BD:.又设点A(x1,y1),C(x2,y2).联立方程组,消去y并化简得(4k2+3)x2﹣8k2x+4k2﹣12=0,…(8分)所以...…(10分)由题知,直线BD的斜率为﹣,同理可得点.…(11分).,…(12分)即4yk2+(7x﹣4)k﹣4y=0.令4y=0,7x﹣4=0,﹣4y=0,解得.故直线PQ恒过一个定点;…(13分)综上可知,直线PQ恒过一个定点.…(14分)【点评】本题考查椭圆方程的求法,考查直线恒过一个定点的证明,解题时要认真审题,注意函数与方程思想的合理运用.21.(14分)(2015•成都模拟)已知函数f(x)=lnx+x2.(1)若函数g(x)=f(x)﹣ax在定义域内为增函数,求实数a的取值范围;(2)在(1)的条件下,且a>1,h(x)=e3x﹣3ae x,x∈[0,ln2],求h(x)的极小值;(3)设F(x)=2f(x)﹣3x2﹣k(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且满足2x0=m+n,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】计算题;分类讨论;导数的概念及应用;导数的综合应用.【分析】(1)求出g(x)的导数,函数g(x)=f(x)﹣ax在定义域内为增函数即为g′(x)≥0,x>0恒成立,运用分离参数,运用基本不等式求得函数的最小值即可;(2)令e x=t,则t∈[1,2],则h(x)=H(t)=t3﹣3at,求出H′(t),由H′(t)=0,得t=,讨论①若1<t,②若<t≤2,函数的单调性,即可得到极小值;(3)即证是否存在,使F'(x0)=0,因为x>0时y=F'(x)单调递减,且F'(1)=0,所以即证是否存在使x0=1.即证是否存在m,n使m=2﹣n.求F(x)的导数,求得单调区间,构造函数G(x)=F(x)﹣F(2﹣x),其中0<x<1,求出导数,求得单调性,运用单调性即可得证.【解答】解:(1)g(x)=f(x)﹣ax=lnx+x2﹣ax,g′(x)=+2x﹣a由题意,知g′(x)≥0,x>0恒成立,即a≤(2x+)min.又x>0,2x+,当且仅当x=时等号成立.故(2x+)min=2,所以a.(2)由(Ⅰ)知,1<a,令e x=t,则t∈[1,2],则h(x)=H(t)=t3﹣3atH′(t)=3t2﹣3a=3(t﹣)(t),由H′(t)=0,得t=,由于1<a,则∈[1,],①若1<t,则H′(t)<0,H(t)单调递减;h(x)在(0,ln]也单调递减;②若<t≤2,则H′(t)>0,H(t)单调递增.h(x)在[ln,ln2]也单调递增;故h(x)的极小值为h(ln)=﹣2a.(3)即证是否存在,使F'(x0)=0,因为x>0时y=F'(x)单调递减,且F'(1)=0,所以即证是否存在使x0=1.即证是否存在m,n使m=2﹣n.证明:F(x)=2lnx﹣x2﹣k.x、F'(x)、F(x)的变化如下:x (0,1) 1 (1,+∞)F'(x)+ 0 ﹣F(x)↗↘即y=F(x)在(0,1)单调递增,在(1,+∞)单调递减.又F(m)=F(n)=0且0<m<n所以0<m<1<n.构造函数G(x)=F(x)﹣F(2﹣x),其中0<x<1,即G(x)=(2lnx﹣x2)﹣[2ln(2﹣x)﹣(2﹣x)2]=2lnx﹣2ln(2﹣x)﹣4x+4,=,当且仅当x=1时G'(x)=0,故y=G(x)在(0,1)单调增,所以G(x)<G(1)=0.所以0<x<1时,F(x)<F(2﹣x).又0<m<1<n,所以F(m)<F(2﹣m),所以F(n)=F(m)<F(2﹣m).因为n、2﹣m∈(1,+∞),所以根据y=F(x)的单调性知n>2﹣m,即.又在(0,+∞)单调递减,所以.即函数F(x)在(x0,F(x0))处的切线不能平行于x轴.【点评】本题考查导数的综合应用:求切线方程和极值、最值,考查分类讨论的思想方法,以及构造函数求导数,运用单调性解题,考查运算能力,属于中档题.参与本试卷答题和审题的老师有:xintrl;maths;1619495736;清风慕竹;zlzhan;caoqz;双曲线;wsj1012;wfy814;sxs123;刘长柏;minqi5;zwx097(排名不分先后)菁优网2016年2月2日。

四川省成都市第七中学2015届高三一诊模拟数学(理)试题(纯word版)

四川省成都市第七中学2015届高三一诊模拟数学(理)试题(纯word版)

成都七中2015届高中毕业班第一次诊断性检测模拟题数学(理工类)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.1.已知集合{}{}234,log 1A x R x B x R x =∈-≤≤=∈≥,则A B =(A )[)4,+∞(B )()4,+∞(C )[)2,4 (D )[]2,42.复数1i2iZ -=+在复平面上对应的点的坐标为 (A )(1,3)- (B )13(,)55- (C )(3,3)- (D )33(,)55-3.对某杂志社一个月内每天收到稿件数量进行了统计,得到 样本的茎叶图(如图所示),则该样本的中位数、众数分别是 (A )47,45 (B )45,47 (C )46,45(D )45,464.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的体积为 (A )13(B )16(C )43(D )835.已知双曲线)0,0(12222>>=-b a by a x 的左顶点与抛物线px y 22=的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则双曲线的焦距为 (A )2(B )(C )4 (D )46.函数()sin()f x A x ωϕ=+(0,0,2A πωϕ>><其中)的部分图像如图所示,为了得到函数()sin 2g x x =的图象,则只需将()f x 的图象(A )向右平移6π个长度单位 (B )向右平移12π个长度单位(C )向左平移6π个长度单位 (D )向左平移12π个长度单位7.已知不等式组42ln x y x y y x +≤⎧⎪-≤⎨⎪≤⎩,则目标函数2z x y =-的最小值是(A )8 (B )5(C )4 (D )1ln 2+8.将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设任意投掷两次使两 条不重合直线12:2,:22l ax by l x y +=+=平行的概率为1P ,相交的概率为2P ,若点()12,P P 在圆()22137144x m y -+=的内部,则实数m 的取值范围是 正(主)视图侧(左)视图俯视图2222(A )5(,)18-+∞ (B ) 7(,)18-∞ (C )75(,)1818- (D )57(,)1818- 9. 已知()f x 为R 上的可导函数,且对任意x R ∈均有()()f x f x '>,则以下说法正确的是 (A )20142014(2014)(0),(2014)(0)e f f f e f -<> (B )20142014(2014)(0),(2014)(0)e f f f e f -<<(C )20142014(2014)(0),(2014)(0)e f f f e f ->< (D )20142014(2014)(0),(2014)(0)e f f f e f ->>10.已知整数,,,a b c t 满足:222a b c+=,a bt c+=,则2log t 的最大值是 (A )0 (B )2log 3 (C )2 (D )3第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.二项式261()x x-展开式中的常数项是 . 12.在如图所示的程序框图中,若输出37S =, 则判断框内实数p 的取值范围是 . 13.已知{}n a 是递增数列,且对任意的n N *∈都有[]()20,2n a n n θθπ=+⋅∈恒成立,则角θ的取值范围是 .14.已知点O 为ABC ∆内一点,且230OA OB OC ++=,则AOB ∆、AOC ∆、BOC ∆的面积之比等于 .15.若以曲线()y f x =上任意一点11(,)M x y 为切点作切线1l ,曲线上总存在异于M 的点22(,)N x y ,以点N 为切点作切线2l ,且1l ∥2l ,则称曲线()y f x =具有“可平行性”.现有下列命题: ①函数2(2)ln y x x =-+的图象具有“可平行性”; ②定义在(,0)(0,)-∞+∞的奇函数()y f x =的图象都具有“可平行性”;③三次函数32()f x x x ax b =-++具有“可平行性”,且对应的两切点11(,)M x y ,22(,)N x y 的横坐标满足1223x x +=; ④要使得分段函数1()()1(0)x x m x f x xe x ⎧+<⎪=⎨⎪-<⎩的图象具有“可平行性”,当且仅当实数1m =. 其中的真命题是 .(写出所有真命题的序号)三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且25a =-,520S =-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求使不等式n n S a >成立的n 的最小值.17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若()sin sin sin a A a b B c C =-+. (Ⅰ)求角C 的值;(Ⅱ)若2c =,且()sin sin 3sin 2C B A A +-=,求ABC ∆的面积.18.(本小题满分12分)如图,在四棱锥P ABCD -中, E 为AD 上一点,PE ⊥平面A B C D .//AD BC ,AD CD ⊥,22BC ED AE ===,3EB =,F 为PC 上一点,且2CF FP =.(Ⅰ)求证://PA BEF 平面;(Ⅱ)若二面角F BE C --为60,求直线PB 与平面ABCD 所成角的大小.19.(本小题满分12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如下表): (Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X ,求随机变量X 的分布列及数学期望. 20.(本小题满分13分)0.010.02设椭圆()2222:10x y C a b a b +=>>的离心率2e =,左顶点M 到直线1x y a b +=的距离5d =,O 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 相交于,A B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值;(Ⅲ)在(Ⅱ)的条件下,试求△AOB 的面积S 的最小值.21.(本小题满分14分)已知向量(ln ,1ln )m x a x =-,(,())n x f x =,m n //(a 为常数). (Ⅰ) 若函数()f x 在(1,)+∞上是减函数,求实数a 的最小值;(Ⅱ)若存在212,,x x e e ⎡⎤∈⎣⎦,使12()()f x f x a '≤+,求实数a 的取值范围.成都七中2015届高中毕业班第一次诊断性检测模拟题数学(理科参考答案)提示:9.构造函数()()x f x g x e =,则2()()()()()()x x x xf x e e f x f x f xg x e e ''--'==, ∵任意x R ∈均有()()f x f x '>,并且0x e >,∴()0g x '<,故函数()()x f x g x e=在R 上单调递减,也就是20142014(2014)(0),(2014)(0)e f f f e f -><故选C. 10. 不妨设a b ≤,122222221bcabbbb bc b +<=+≤+=⇒<≤+,,b c Z ∈,1c b ∴=+,1222b a b +∴=+1a b c ⇒==-.a b t c +∴=22c=-. ,a t Z ∈,1,2c ∴=±±,0,1,3,4t ∴=,故2max 2(log )log 42t ==.15.②④由题,“可平行性”曲线的充要条件是:对域内1x ∀都21x x ∃≠使得12()()f x f x ''=成立.①错,12(2)y x x '=-+,又1212112(2)2(2)x x x x -+=-+ 1212x x ⇔=,显然1x =时不满足;②对,由()()()()f x f x f x f x ''=--⇒=-即奇函数的导函数是偶函数,对10x ∀≠都21x x ∃=-使得12()()f x f x ''=成立(可数形结合);③错,2()32f x x x a '=-+,又当时,2211223232x x a x x a -+=-+2212123()2()x x x x ⇔-=-1223x x ⇔+=,当11=3x 时不合题意;④对,当0x <时,()(0,1)x f x e '=∈,若具有“可平行性”,必要条件是:当0x >时,21()1(0,1)f x x'=-∈,解得1x >,又1x >时,分段函数具有“可平行性”,1m ∴=(可数形结合).三、解答题:本大题共6小题,共75分. 16.解:(Ⅰ)设{}n a 的公差为d ,依题意,有 52115,51020a a d S a d =+=-=+=-.联立得11551020a d a d +=-⎧⎨+=-⎩,解得161a d ⎧⎨⎩=-=.∴ 6(1)17n a n n =-+-⋅=-. n N *∈ ……………6分 (Ⅱ) 7n a n =-,∴1()(13)22n n a a n n n S +-== . 令(13)72n n n ->-,即215140n n -+> , ……………10分 解得1n <或14n >. 又*n ∈N ,∴14n >.n ∴的最小值为15. ……………12分17.解:(Ⅰ)∵asinA=(a-b)sinB+csinC ,结合0C π<<,得3C =. …………………………………………………6分(Ⅱ)由 C=π-(A+B),得sinC=sin(B+A)=sinBcosA+cosBsinA , ∵ sinC+sin(B-A)=3sin2A ,∴ sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA ,整理得sinBcosA=3sinAcosA . ………………………………………………8分 若cosA=0,即A=2π时,△ABC 是直角三角形,且B=6π,于是b=ctanB=2tan6π,∴ S △ABC =12. ……………………10分 若cosA ≠0,则sinB=3sinA ,由正弦定理得b=3a .②联立①②,结合c=2,解得,∴ S △ABC =12absinC=12.综上,△ABC 12分(Ⅱ)连CE ,过F 作FH CE ⊥于H .由于//FH PE ,故FH ABCD ⊥面.过H 作HM BE ⊥于M ,连FM .则FM BE ⊥,即FMH ∠为二面角F BE C --的平面角. 60,FMH FH ∴∠==.23FH PE =,1233MH BC AE == PE ∴=.………………10分1,AE PE =∴=在Rt PBE ∆中,3BE =, tan PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 解法二:以E 为坐标原点,,,EB ED EP 为,,x y z 轴建立空间直角坐标系. (0,0,0),(3,0,0),(0,0,),(3,2,0)E B P m C2CF FP = ,22(1,,)33F m ∴.………………7分设平面BEF 的法向量1(,,)n x y z =,由n EB n EF ⎧⋅=⎪⎨⋅=⎪⎩ 得1n =(0,,1)m -. 又面ABCD 法向量为2(0,0,1)n =.由1212cos 60n n n n⋅=⋅ , 解得m =.………………10分在Rt PBE ∆中,3BE =, tan PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 19.解:(Ⅰ)由直方图知:(200.015300.015400.025500.02600.015700.01)1043.5⨯+⨯+⨯+⨯+⨯+⨯⨯=∴这60人的平均月收入约为43.5百元. ………………4分(Ⅱ)根据频率分布直方图和统计表可知道:[15,25)的人数为0.01510609⨯⨯=人,其中1人不赞成.[25,35)的人数为0.01510609⨯⨯=人,其中2人不赞成. ………………6分X 的所有可能取值为0,1,2,3.338733995(0)18C C P X C C ==⋅=,23312878273333999917(1)36C C C C C P X C C C C ==⋅+⋅=, 212321827827333399992(2)9C C C C C C P X C C C C ==⋅+⋅=,21287233991(3)36C C C P X C C ==⋅=.……………10分 X∴的分布列为012311836936EX ∴=⨯+⨯+⨯+⨯=. ………………12分20.(Ⅰ)解 由e =32,得c =32a ,又b 2=a 2-c 2,所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b =1,即bx +ay -ab =0的距离d =455,得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b 2=455,解得b =1.所以a =2b =2,c = 3.所以椭圆C 的方程为x 24+y 2=1. ………………3分(Ⅱ)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2. 因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m ,所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255. ………………8分(Ⅲ)解 设直线OA 的斜率为k 0.当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x ,联立⎩⎪⎨⎪⎧y =k 0x ,x 24+y 2=1,得⎩⎨⎧x 21=41+4k 20,y 21=4k 201+4k 20.同理可求得⎩⎨⎧x 22=4k 20k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=2(1+k 20)2(1+4k 20)(k 20+4). 令1+k 20=t (t >1),则S =2t 24t 2+9t -9=21-9t 2+9t+4,令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1),所以4<g (t )≤254.所以45≤S <1.当k 0=0时,可求得S =1,故45≤S ≤1,故S 的最小值为45. ………………13分 21.解:(Ⅰ)由题意得ln ()(1ln )x f x a x x ⋅=-⋅()(1)ln xf x ax x x∴=-≠. ………………2分 ()f x 在(1,)+∞上是减函数,∴等价于2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立max 2ln 1()(ln )x a x -⇔≥.…………4分 222ln 1111111()()(ln )ln ln ln 244x x x x x -=-+=--+≤, 当且仅当11ln 2x =即2x e =时取到最大值. ∴1=4a . ………………6分(Ⅱ)题意等价于min max 1()(())4f x f x a '≤+=.由(Ⅰ)知2111()()ln 24f x a x '=--+-. 2e x e ≤≤,∴1112ln x≤≤. ∴()f x '在2,x e e ⎡⎤∈⎣⎦上单调递增,且()f x '的值域为1,4a a ⎡⎤--⎢⎥⎣⎦. ………8分 1 当0a ≤时,()0f x '≥,()f x 在2,x e e ⎡⎤∈⎣⎦上单调递增,min 1()()4f x f e e ae ==-≤11-04a e⇒≥>与前提矛盾,无解.2 当14a ≥时,()0f x '≤,()f x 在2,x e e ⎡⎤∈⎣⎦上单调递减, 222min1()()24e f x f e ae ==-≤2111244a e ⇒≥->.∴21124a e≥-. 3 当104a <<时, ()y f x '=存在唯一零点20(,)x e e ∈,且[]0,x e x ∈时,()0f x '≤,()f x 单调递减,(20,x x e ⎤∈⎦时,()0f x '>,()f x 单调递增,0min 0001()()ln 4x f x f x ax x ∴==-≤0011ln 4a x x ⇒≥-. 设211()()ln 4h x e x e x x =-<<,2111()()(ln )4h x x x x'∴=--, 211(,1)(ln )4x ∈,2111(,)444x e e ∈211()0()(ln )4h x h x x x '>∴<∴单减. 222111111111()ln 4ln 424244h x x x e e e ∴=->-=->-=. 00111ln 44a x x ⇒≥->与前提矛盾,无解. 综上所述,实数a 的取值范围是211,24e ⎡⎫-+∞⎪⎢⎣⎭. ………………14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都市2015届高中毕业班第一次诊断性检测数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x ,集合{1}=P ,则UP =(A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 3.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是(A )复数z 的虚部为3i - (B )复数z 的虚部为3 (C )复数z 的共轭复数为z 43i =+ (D )复数z 的模为54.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D )5.已知命题p :“若22≥+x a b ,则2≥x ab ”,则下列说法正确的是 (A )命题p 的逆命题是“若22<+x a b ,则2<x ab ” (B )命题p 的逆命题是“若2<x ab ,则22<+x a b ” (C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”y xOxyO x y Ox yOGFEHPACBDA B C D 6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是 (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是 (A )14(B )34 (C )12 (D 8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π10.如图,已知正方体1111ABCD A BC D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDDC 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是(A )21 (B )22 (C )23 (D )25二、填空题:本大题共5小题,每小题5分,共25分.11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________.12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答)13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.15.已知曲线C :22y x a =+在点n P (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N时,n y 的最小值为54; ③当*n ∈N 时,n k <; ④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则1)<n S .其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.(Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X .17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为43(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且32AB =点0(,2)P x 满足=PA PB ,求0x 的值. 21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(理科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.B ;8.D ;9.A ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.90︒ 12.20- 1314.[2,0]- 15.①③④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分) 解:(Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………………4分(Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C (2)分122436123(1)205⋅====C C P X C ………………………………………………………2分1(2)()5===P X P A ………………………………………………………………2分∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .…………………………………2分17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC .∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图. 则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-++=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n .∴平面DEA 与平面ABC8分 18.(本小题满分12分) 解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-nn c n (1)分∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n (1)分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n …………………………………………………1分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n (3)分19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分 2125.15.22minmax =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f .(Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产) 20.(本小题满分13分)(Ⅰ)由已知2=a=a=c ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴12=-==AB x .又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分 综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .……………………1分∴函数)(x f 的单调递减区间是(0,1),(1e),单调递增区间是),(+∞e .………………2分∴me e f x f 2)()(-==极小值.………………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e --'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m+∞上单调递增. ∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e .∴02<<me …………………………………………………………………………………3分 由(1)(1)0-=-=-<mmg m me m e .∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分 (III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增.∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mxmx mx g x e由0<m ,∴函数()g x 在2(,)m-∞上单调递增,2(,0)m 上单调递减.∴max 224()()==-g x g m m e m .……………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+.由0<m ,解得(21)m e e <-+.综上所述,存在这样的负数(,(21)∈-∞-+m e e 满足题意.……………………………1分成都市2015届高中毕业班第一次诊断性检测数学试题(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x ,集合{1}=P ,则UP =(A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 3.命题“若22≥+x a b ,则2≥x ab ”的逆命题是(A )若22<+x a b ,则2<x ab (B )若22≥+x a b ,则2<x ab (C )若2<x ab ,则22<+x a b (D )若2≥x ab ,则22≥+x a b4.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D ) 5.复数5i(2i)(2i)=-+z (i 是虚数单位)的共轭复数为(A )5i 3- (B )5i 3(C )i - (D )i6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是y xOxyO x y Ox yO消费支出/元(A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3] 7.已知53cos()25+=πα,02-<<πα,则sin 2α的值是 (A )2425 (B )1225 (C )1225- (D )2425-8.已知抛物线:C 28y x =,过点(2,0)P 的直线与抛物线交于A ,B 两点,O 为坐标原点,则OA OB ⋅的值为(A )16- (B )12- (C )4 (D )0 9.已知m ,n 是两条不同直线,α,β是两个不同的平面,且n ⊂β,则下列叙述正确的是(A )若//m n ,m ⊂α,则//αβ (B )若//αβ,m ⊂α,则//m n (C )若//m n ,m α⊥,则αβ⊥ (D )若//αβ,m n ⊥,则m α⊥10.如图,已知正方体1111ABCD A BC D -棱长为4,点H 在棱1AA 上,且11HA =.点E ,F 分别为棱11B C ,1C C 的中点,P 是侧面11BCC B 内一动点,且满足⊥PE PF .则当点P 运动时, 2HP 的最小值是 (A )72- (B )2762- (C )51142- (D )1422-二、填空题:本大题共5小题,每小题5分,共25分. 11.已知100名学生某月饮料消费支出情况的频率分布直方图如右图所示.则这100名学生中,该月饮料消费支出超过150元的人数是________.12.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹A BCD1A 1B 1C 1D HPE F角的大小为__________.13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B .则边c 的长度为__________.14.已知关于x 的不等式()(2)0---≤x a x a 的解集为A ,集合{|22}=-≤≤B x x .若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________. 15.已知函数21()()2f x x a =+的图象在点n P (,())n f n (*n ∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且11y =-.给出以下结论: ①1a =-;②记函数()=n g n x (*n ∈N ),则函数()g n 的单调性是先减后增,且最小值为1;③当*n ∈N 时,1ln(1)2n n n y k k++<+; ④当*n ∈N 时,记数列的前n 项和为n S ,则n S <其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除编号外其余完全相同的5个小球,编号依次为1,2,3,4,5.现从中同时取出两个球,分别记录下其编号为,m n . (Ⅰ)求“5+=m n ”的概率; (Ⅱ)求“5≥mn ”的概率.17.(本小题满分12分)如图,在多面体ECABD 中,EC ⊥平面ABC ,//DB EC ,ABC ∆为正三角形,F 为EA 的中点,2EC AC ==,1BD =. (Ⅰ)求证:DF //平面ABC ; (Ⅱ)求多面体ECABD 的体积. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且122+=-n n S ;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a 和{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且过点(23,0).(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:()l y x m m =+∈R 与椭圆Γ交于不同两点A 、B ,且32AB =点0(,2)P x 满足=PA PB ,求0x 的值. 21.(本小题满分14分) 已知函数()ln 2mf x x x=+,()2g x x m =-,其中m ∈R ,e 2.71828=为自然对数的底数.(Ⅰ)当1m =时,求函数()f x 的极小值;(Ⅱ)对1[,1]e x ∀∈,是否存在1(,1)2m ∈,使得()()1>+f x g x 成立?若存在,求出m 的取值范围;若不存在,请说明理由;(Ⅲ)设()()()F x f x g x =,当1(,1)2m ∈时,若函数()F x 存在,,a b c 三个零点,且a b c <<,求证: 101ea b c <<<<<.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(文科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.D ;8.B ;9.C ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.30 12.90︒ 13.4 14.[2,0]- 15.①②④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分)解:同时取出两个球,得到的编号,m n 可能为: (1,2),(1,3),(1,4),(1,5) (2,3),(2,4),(2,5) (3,4),(3,5)(4,5)…………………………………………………………………………………6分(Ⅰ)记“5+=m n ”为事件A ,则 21()105==P A .……………………………………………………………………………3分(Ⅱ)记“5≥mn ”为事件B ,则 37()11010=-=P B .…………………………………………………………………… 3分 17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 面ABC ,⊂OB 平面ABC .∴//DF 面ABC .………………………6分 (Ⅱ)据题意知,多面体ECABD 为四棱锥-A ECBD . 过点A 作⊥AH BC 于H .∵⊥EC 平面ABC ,⊂EC 平面ECBD , ∴平面⊥ECBD 平面ABC .又⊥AH BC ,⊂AH 平面ABC ,平面ECBD 平面=ABC BC ,∴⊥AH 面ECBD .∴在四棱锥-A ECBD 中,底面为直角梯形ECBD ,高3=AH .∴1(21)23332-+⨯=⨯⨯=A ECBD V . ∴多面体ECABD 的体积为3.……………………………………………6分 18.(本小题满分12分) 解:(Ⅰ)∵122+=-n n S ① 当2≥n 时,122-=-n n S ② ①-②得,2=n n a (2≥n ).∵当2≥n 时,11222--==nn n n a a ,且12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)由(Ⅰ)知,(21)2=-nn c n ……………………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n (1)分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n (1)分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n (3)分19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分 2125.15.22minmax =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产)20.(本小题满分13分)(Ⅰ)由已知得23=a ,又22=c . ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴2222129312(312)21244=+-=⨯--=⨯-+AB kx x m m m . 又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)1m =时,1()ln ,02=+>f x x x x. ∴221121()22-'=-=x f x x x x ……………………………………………………………………1分由()0'>f x ,解得12>x ;由()0'<f x ,解得102<<x ; ∴()f x 在1(0,)2上单调递减,1(,)2+∞上单调递增. (2)分∴=极小值)(x f 11()ln 11ln 222f =+=-.…………………………………………………… 2分(II )令1()()()1ln 21,,12⎡⎤=--=+-+-∈⎢⎥⎣⎦m h x f x g x x x m x x e ,其中1(,1)2m ∈ 由题意,()0h x >对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立,∵2221221()1,,122-+-⎡⎤'=--=∈⎢⎥⎣⎦m x x m h x x x x x e ∵1(,1)2m ∈,∴在二次函数222=-+-y x x m 中,480∆=-<m , ∴2220-+-<x x m 对∈x R 恒成立∴()0'<h x 对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立, ∴()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单减. ∴min 5()(1)ln11212022==+-+-=->m h x h m m ,即45>m .故存在4(,1)5∈m 使()()f x g x >对1,1⎡⎤∀∈⎢⎥⎣⎦x e 恒成立.……………………………………4分(III )()(ln )(2),(0,)2mF x x x m x x=+-∈+∞,易知2x m =为函数()F x 的一个零点, ∵12>m ,∴21>m ,因此据题意知,函数()F x 的最大的零点1>c , 下面讨论()ln 2mf x x x=+的零点情况,∵2212()22m x mf x x x x -'=-=. 易知函数()f x 在(0,)2m 上单调递减,在(,)2m+∞上单调递增.由题知()f x 必有两个零点,∴=极小值)(x f ()ln 1022=+<m mf ,解得20<<m e ,∴122<<m e ,即(,2)2∈eme .…………………………………………………………3分 ∴11(1)ln10,()ln 11102222=+=>=+=-<-=m m em emf f e e .…………………1分又10101010101()ln 10100224---=+=->->m m f e e e e e .101()0,()0,(1)0f e f f e -∴><>.10101e a b c e -∴<<<<<<.101a b c e∴<<<<<,得证.……………………………………………………………1分。

相关文档
最新文档