齿轮泵工作原理及结构

合集下载

双联齿轮泵工作原理

双联齿轮泵工作原理

双联齿轮泵工作原理
双联齿轮泵是一种常见的润滑油泵,其工作原理如下:
1. 结构:双联齿轮泵由一对相互啮合的齿轮和泵体组成,其中一个齿轮为驱动齿轮,另一个齿轮为从动齿轮,两个齿轮通过轴连接在一起。

2. 工作过程:当泵的输入轴被驱动时,驱动齿轮开始旋转,从动齿轮跟随驱动齿轮通过啮合互相转动。

在齿轮之间形成的密封腔中,随着齿轮的旋转,密封腔的体积逐渐增大,吸入的液体被强制进入密封腔。

3. 吸入阶段:当从动齿轮转到驱动齿轮的吸入侧时,密封腔体积逐渐增大,导致压力降低,使得液体通过进油口进入泵腔。

4. 推出阶段:当从动齿轮转到驱动齿轮的推出侧时,密封腔体积逐渐减小,液体被强制排出泵腔通过出油口离开泵。

5. 泵压与输送量:双联齿轮泵的压力和输送量与齿轮的精度、齿轮啮合角、齿数和轴转速等因素有关,一般随着轴转速的增加,排量和压力也会增加。

总结起来,双联齿轮泵通过两个相互啮合的齿轮的旋转来产生泵压,从而实现液体的吸入和排出。

这种泵结构简单、可靠性高,广泛应用于润滑系统和液压系统中。

齿轮泵工作原理及结构

齿轮泵工作原理及结构

齿轮泵工作原理及结构(共5页) -本页仅作为预览文档封面,使用时请删除本页-齿轮泵工作原理及结构齿轮泵齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。

下面以外啮合齿轮泵为例来剖析齿轮泵。

液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。

齿轮泵的工作原理和结构齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。

两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。

图3-3 外啮合型齿轮泵工作原理CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。

随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。

这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。

齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。

当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,这就是齿轮泵的工作原理。

泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。

为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为~,大流量泵为~。

齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取~。

偏心齿轮泵的工作原理

偏心齿轮泵的工作原理

偏心齿轮泵的工作原理偏心齿轮泵是一种常见的离心泵,广泛应用于工业领域,特别是在输送液体、增压和真空排气等方面。

它利用偏心轴上两个齿轮的旋转来产生流体压力,从而实现液体的输送。

本文将详细介绍偏心齿轮泵的工作原理及其相关特点。

一、偏心齿轮泵的结构偏心齿轮泵由驱动轴、偏心轴、固定齿轮、偏心齿轮、泵体等部件组成。

1. 驱动轴:传动力的来源,通常由电机或发动机提供动力。

2. 偏心轴:连接驱动轴和偏心齿轮的轴,使得偏心齿轮旋转而产生偏心。

3. 固定齿轮:安装在泵体内部的固定齿轮,与偏心轴上的偏心齿轮啮合。

4. 偏心齿轮:安装在偏心轴上的齿轮,在旋转时产生偏心效应。

5. 泵体:包裹驱动轴、偏心轴、固定齿轮和偏心齿轮的外壳,形成泵的基本结构。

二、偏心齿轮泵的工作原理当驱动轴转动时,通过驱动装置将动力传递给偏心轴,偏心轴上的偏心齿轮也随之旋转。

两个齿轮之间的啮合形成的空隙随着旋转不断变化,从而产生了泵腔的吸入和排出过程。

1. 吸入过程:在齿轮的旋转作用下,偏心轴上的偏心齿轮不断向泵腔移动,从而产生一个负压区域。

液体在负压的作用下,通过进口处被吸入到泵腔内。

2. 排出过程:在齿轮继续旋转的过程中,液体被推入泵腔内,并被排出泵体。

由于偏心齿轮的旋转方向和固定齿轮的旋转方向相反,导致液体在泵腔内被挤压,从而增加了液体的压力。

在这一过程中,液体通过齿轮的不断旋转,形成了连续的输送和压缩,从而产生了液体的流动。

三、偏心齿轮泵的特点1. 高效率:由于偏心齿轮泵采用齿轮传动,且液体在固定齿轮与偏心齿轮之间不断被压缩,因此具有较高的输送效率。

2. 适用范围广:偏心齿轮泵对液体的粘度要求较低,可输送各种液体,例如清水、燃油、润滑油等。

3. 运转平稳:偏心齿轮泵结构简单,运转平稳,噪音小,使用寿命长。

4. 适用于高压输送:偏心齿轮泵能够输送高压液体,且在高压下工作时,效果更为明显。

总结:偏心齿轮泵以其稳定的输送性能和适用性广泛的特点,成为了工业领域中不可或缺的一种泵类设备。

齿轮泵工作原理及结构

齿轮泵工作原理及结构

齿轮泵处事本理及结构之阳早格格创做齿轮泵齿轮泵是液压系统中广大采与的一种液压泵,它普遍干成定量泵,按结构分歧,齿轮泵分为中啮合齿轮泵战内啮合齿轮泵,而以中啮合齿轮泵应用最广.底下以中啮合齿轮泵为例去领会齿轮泵.液压齿轮泵主要包罗:下压定量齿轮泵,下压单联齿轮泵,润滑泵,化工泵,单背齿轮马达,齿轮泵附调压阀,齿轮泵附降落阀.齿轮泵的处事本理战结构齿轮泵的处事本理如图3-3所示,它是分散三片式结构,三片是指泵盖4,8战泵体7,泵体7内拆有一对于齿数相共、宽度战泵体交近而又互相啮合的齿轮6,那对于齿轮与二端盖战泵体产死一稀启腔,并由齿轮的齿顶战啮合线把稀启腔区分为二部分,即吸油腔战压油腔.二齿轮分别用键牢固正在由滚针轴启收启的主动轴12战从动轴15上,主动轴由电效果戴动转化.图3-3 中啮合型齿轮泵处事本理CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头目标转化时,齿轮泵左侧(吸油腔)齿轮脱启啮合,齿轮的轮齿退出齿间,使稀启容积删大,产死局部真空,油箱中的油液正在中界大气压的效用下,经吸油管路、吸油腔加进齿间.随着齿轮的转化,吸进齿间的油液被戴到另一侧,加进压油腔.那时轮齿加进啮合,使稀启容积渐渐减小,齿轮间部分的油液被挤出,产死了齿轮泵的压油历程.齿轮啮适时齿背交触线把吸油腔战压油腔分启,起配油效用.当齿轮泵的主动齿轮由电效果戴动不竭转化时,轮齿脱启啮合的一侧,由于稀启容积变大则不竭从油箱中吸油,轮齿加进啮合的一侧,由于稀启容积减小则不竭天排油,那便是齿轮泵的处事本理.泵的前后盖战泵体由二个定位销17定位,用6只螺钉固紧如图3-3.为了包管齿轮能机动天转化,共时又要包管揭收最小,正在齿轮端里战泵盖之间应有适合间隙(轴背间隙),对于小流量泵轴背间隙为0.025~0.04mm,大流量泵为0.04~0.06mm.齿顶战泵体内表面间的间隙(径背间隙),由于稀启戴少,共时齿顶线速度产死的剪切震动又战油液揭收目标差异,故对于揭收的效用较小,那里要思量的问题是:当齿轮受到不仄衡的径背力后,应预防齿顶战泵体内壁相碰,所以径背间隙便可稍大,普遍与0.13~0.16mm.为了预防压力油从泵体战泵盖间揭收到泵中,并减小压紧螺钉的推力,正在泵体二侧的端里上启有油启卸荷槽16,使渗进泵体战泵盖间的压力油引进吸油腔.正在泵盖战从动轴上的小孔,其效用将揭收到轴启端部的压力油也引到泵的吸油腔去,预防油液中溢,共时也润滑了滚针轴启.图3-4 CB—B齿轮泵的结构1-轴启中环2-堵头3-滚子4-后泵盖5-键6-齿轮7-泵体8-前泵盖9-螺钉10-压环11-稀启环12-主动轴13-键14-泻油孔15-从动轴16-泻油槽17-定位销齿轮泵存留的问题1、齿轮泵的困油问题齿轮泵要能连绝天供油,便央供齿轮啮合的沉叠系数ε大于1,也便是当一对于齿轮尚已脱启啮适时,另一对于齿轮已加进啮合,那样,便出现共时有二对于齿轮啮合的瞬间,正在二对于齿轮的齿背啮合线之间产死了一个启关容积,一部分油液也便被困正在那一启关容积中〔睹图3-5(a)〕,齿轮连绝转化时,那一启关容积便渐渐减小,到二啮合面处于节面二侧的对于称位子时〔睹图3-5(b)〕,启关容积为最小,齿轮再继启转化时,启关容积又渐渐删大,曲到图3-5(c)所示位子时,容积又形成最大.正在启关容积减小时,被困油液受到挤压,压力慢遽降下,使轴启上突然受到很大的冲打载荷,使泵剧烈振荡,那时下压油从十足大概揭收的漏洞中挤出,制乐成率益坏,使油液收热等.当启关容积删大时,由于不油液补充,果此产死局部真空,使本去溶解于油液中的气氛分散出去,产死了气泡,油液中爆收气泡后,会引起噪声、气蚀等一系列恶果.以上情况便是齿轮泵的困油局里.那种困油局里极为宽沉天效用着泵的处事稳固性战使用寿命.图3-5 齿轮泵的困油局里为了与消困油局里,正在CB—B型齿轮泵的泵盖上铣出二个困油卸荷凸槽,其几许关系如图3-6所示.卸荷槽的位子该当使困油腔由大变小时,能通过卸荷槽与压油腔相通,而当困油腔由小变大时,能通过另一卸荷槽与吸油腔相通.二卸荷槽之间的距离为a,必须包管正在所有时间皆不克不迭使压油腔战吸油腔互通.按上述对于称启的卸荷槽,当困油启关腔由大变至最小时(图3-6),由于油液阻挡易从将要关关的漏洞中挤出,故启关油压仍将下于压油腔压力;齿轮继启转化,当启关腔战吸油腔相通的瞬间,下压油又突然战吸油腔的矮压油相交触,会引起冲打战噪声.于是CB—B型齿轮泵将卸荷槽的位子所有背吸油腔侧仄移了一个距离.那时启关腔惟有正在由小变至最大时才战压油腔断启,油压不突变,启关腔战吸油腔交通时,启关腔不会出现真空也不压力冲打,那样矫正后,使齿轮泵的振荡战噪声得到了进一步革新.图3-6 齿轮泵的困油卸荷槽图图3-7 齿轮泵的径背不仄衡力2、径背不仄衡力齿轮泵处事时,正在齿轮战轴启上启受径背液压力的效用.如图3-7所示,泵的左侧为吸油腔,左侧为压油腔.正在压油腔内有液压力效用于齿轮上,沿着齿顶的揭收油,具备大小不等的压力,便是齿轮战轴启受到的径背不仄衡力.液压力越下,那个不仄衡力便越大,其截止不但是加速了轴启的磨益,落矮了轴启的寿命,以至使轴变形,制成齿顶战泵体内壁的摩揩等.为了办理径背力不仄衡问题,正在有些齿轮泵上,采与启压力仄稳槽的办法去与消径背不仄衡力,但是那将使揭收删大,容积效用落矮等.CB—B型齿轮泵则采与缩小压油腔,以缩小液压力对于齿顶部分的效用里积去减小径背不仄衡力,所以泵的压油心孔径比吸油心孔径要小.齿轮泵的流量估计齿轮泵的排量V相称于一对于齿轮所有齿谷容积之战,假若齿谷容积大概等于轮齿的体积,那么齿轮泵的排量等于一个齿轮的齿谷容积战轮齿容积体积的总战,即相称于以灵验齿下(h=2m)战齿宽形成的仄里所扫过的环形骸积,即:(3-10)式中:D为齿轮分度圆曲径,D=mz(cm);h为灵验齿下,h=2m(cm);B为齿轮宽(cm);m为齿轮模数(cm);z为齿数.本质上齿谷的容积要比轮齿的体积稍大,故上式中的π常以3.33代替,则式(3-10)可写成:(3-11)齿轮泵的流量q(1/min)为:(3-12)式中:n为齿轮泵转速(rpm);ηv为齿轮泵的容积效用.本质上齿轮泵的输油量是有脉动的,故式(3-12)所表示的是泵的仄稳输油量.从上头公式不妨瞅出流量战几个主要参数的关系为:(1)输油量与齿轮模数m的仄圆成正比.(2)正在泵的体积一定时,齿数少,模数便大,故输油量减少,但是流量脉动大;齿数减少时,模数便小,输油量缩小,流量脉动也小.用于机床上的矮压齿轮泵,与z=13~19,而中下压齿轮泵,与z=6~14,齿数z<14时,要举止建正.(3)输油量战齿宽B、转速n成正比.普遍齿宽B=(6~10)m;转速n为750r/min:1000 r/min、1500r/min,转速过下,会制成吸油缺累,转速过矮,泵也不克不迭仄常处事.普遍齿轮的最大圆周速度不该大于5~6m/s.下压齿轮泵的特性上述齿轮泵由于揭收大(主假若端里揭收,约占总揭收量的70%~80%),且存留径背不仄衡力,故压力阻挡易普及.下压齿轮泵主假若针对于上述问题采与了一些步伐,如尽管减小径背不仄衡力战普及轴与轴启的刚刚度;对于揭收量最大处的端里间隙,采与了自动补偿拆置等.底下对于端里间隙的补偿拆置做简朴介绍.1.浮动轴套式图3-8(a)是浮动轴套式的间隙补偿拆置.它利用泵的出心压力油,引进齿轮轴上的浮动轴套1的中侧A腔,正在液体压力效用下,使轴套紧揭齿轮3的正里,果而不妨与消间隙并可补偿齿轮正里战轴套间的磨益量.正在泵起动时,靠弹簧4去爆收预紧力,包管了轴背间隙的稀启.图3-82.浮动侧板式浮动侧板式补偿拆置的处事本理与浮动轴套式基本相似,它也是利用泵的出心压力油引到浮动侧板1的反里〔睹图3-8(b)〕,使之紧揭于齿轮2的端里去补偿间隙.起动时,浮动侧板靠稀启圈去爆收预紧力.3.挠性侧板式图3-8(c)是挠性侧板式间隙补偿拆置,它是利用泵的出心压力油引到侧板的反里后,靠侧板自己的变形去补偿端里间隙的,侧板的薄度较薄,内正里要耐磨(如烧结有0.5~0.7mm的磷青铜),那种结构采与一定步伐后,易使侧板中正里的压力分散大概上战齿轮正里的压力分散相符合.图3-9内啮合齿轮泵处事本理。

外啮合齿轮泵、内啮合的工作原理及特点

外啮合齿轮泵、内啮合的工作原理及特点

外啮合齿轮泵、内啮合的工作原理及特点齿轮泵是一种常见的液压泵,其主要工作原理是通过齿轮的旋转运动产生压力,将液体从低压区域输送至高压区域。

根据齿轮的啮合方式不同,齿轮泵可以分为外啮合齿轮泵和内啮合齿轮泵两种类型。

本文将对这两种齿轮泵的工作原理及特点进行详细介绍。

一、外啮合齿轮泵的工作原理外啮合齿轮泵是由一对齿轮构成,它们分别为驱动齿轮和从动齿轮。

驱动齿轮通常由电机或者发动机驱动,带动从动齿轮旋转。

驱动齿轮和从动齿轮之间的啮合间隙通常很小,从而确保在齿轮旋转时,液体不会从齿轮之间泄漏。

外啮合齿轮泵的工作过程如下:当驱动齿轮旋转时,会带动从动齿轮旋转,从而使从动齿轮内部的液体被吸入泵腔内。

当齿轮继续旋转时,液体就会被推入压力出口,从而形成压力,将液体输送至需要的位置。

在齿轮旋转过程中,齿轮和泵腔之间的间隙会不断变化,从而使泵腔内的液体被不断挤压,形成连续的流体压力。

二、外啮合齿轮泵的特点1、结构简单:外啮合齿轮泵由两个齿轮组成,结构简单,易于制造和维护,成本较低。

2、压力稳定:由于齿轮之间的啮合间隙很小,因此液体在齿轮旋转过程中不会泄漏,从而确保了压力的稳定性。

3、适用范围广:外啮合齿轮泵适用于输送各种液体,包括油、水、溶液等,广泛应用于机械、冶金、化工等领域。

三、内啮合齿轮泵的工作原理内啮合齿轮泵也由一对齿轮构成,它们分别为内齿轮和外齿轮。

内齿轮通常是由轴心转动,而外齿轮则是随着内齿轮的旋转而绕其轴心旋转。

内啮合齿轮泵的工作过程如下:当内齿轮旋转时,会带动外齿轮绕其轴心旋转,从而使外齿轮内部的液体被吸入泵腔内。

当齿轮继续旋转时,液体就会被推入压力出口,从而形成压力,将液体输送至需要的位置。

在齿轮旋转过程中,齿轮和泵腔之间的间隙会不断变化,从而使泵腔内的液体被不断挤压,形成连续的流体压力。

四、内啮合齿轮泵的特点1、流量稳定:内啮合齿轮泵的内齿轮和外齿轮之间的啮合间隙较小,从而保证了液体在泵腔内的流动稳定性。

齿轮泵结构特点和工作原理

齿轮泵结构特点和工作原理

齿轮泵结构特点和工作原理
齿轮泵是一种常见的液压泵,其结构特点和工作原理如下:
一、结构特点:
1. 齿轮泵主要由外齿轮、内齿轮、泵壳等部件组成。

外齿轮和内齿轮通过齿与齿之间的啮合来实现液体的吸入和排出。

2. 外齿轮和内齿轮通常由高强度合金钢制成,具有良好的耐磨性和耐腐蚀性。

3. 泵壳采用优质铸铁或铸钢材料制成,具有良好的密封性能和刚性。

4. 齿轮泵结构紧凑,体积小,重量轻,适用于安装空间有限的场合。

5. 齿轮泵的工作稳定可靠,噪音低,寿命长。

二、工作原理:
1. 吸入阶段:当齿轮泵开始工作时,外齿轮和内齿轮开始旋转。

在齿与齿之间的啮合区域,液体被吸入泵的内部。

2. 排出阶段:随着齿轮继续旋转,液体被推入泵的出口,完成一次排出过程。

3. 密封阶段:在齿轮的啮合区域,通过齿轮和泵壳之间的密封装置,实现液体在吸入和排出过程中的密封,避免泄漏。

4. 循环阶段:齿轮泵通过不断的旋转运动,实现液体的连续吸入和排出,形成循环供液。

5. 流量调节:通过调整齿轮泵的转速或改变齿轮的尺寸,可以实现对流量的调节。

总结起来,齿轮泵的工作原理是通过外齿轮和内齿轮的旋转运动,使液体在吸入和排出过程中实现连续循环供液。

齿轮泵的结构特点包括紧凑、体积小、重量轻、工作稳定可靠、噪音低、寿命长等。

齿轮泵由于其结构简单、可靠性高、适用范围广等特点,被广泛应用于工业领域中的液压系统、农业机械、建筑机械、船舶等设备中。

它能够提供稳定的流量和压力,满足各种工况下的液压动力需求。

外啮合齿轮泵的工作原理

外啮合齿轮泵的工作原理

外啮合齿轮泵的工作原理一、引言外啮合齿轮泵是一种常见的液压传动装置,广泛应用于工程机械、冶金设备、石油装备等领域。

它通过齿轮啮合的方式来实现液体的输送和压力的转换。

本文将深入探讨外啮合齿轮泵的工作原理,包括结构组成、工作过程和特点等方面。

二、外啮合齿轮泵的结构组成外啮合齿轮泵主要由泵体、齿轮、轴、密封件等组成。

2.1 泵体泵体是外啮合齿轮泵的主要承载部件,通常由铸铁或钢材料制成。

泵体内部设有进、出口沟槽和齿轮啮合腔,用于实现液体的吸入和排出。

2.2 齿轮齿轮是外啮合齿轮泵的核心部件,它由多个齿轮组成,其中至少有一个为主动齿轮,其余为从动齿轮。

齿轮通常由优质合金钢材料制成,具有较高的硬度和耐磨性。

2.3 轴轴是齿轮泵的传动部件,用于连接齿轮和驱动装置。

轴通常由优质碳素钢制成,具有足够的强度和刚度,以承受齿轮的工作载荷。

2.4 密封件外啮合齿轮泵内部设有多个密封件,用于防止液体泄漏和外界杂质进入。

常见的密封件包括轴封、端面密封等,其材料通常为橡胶或聚四氟乙烯等。

三、外啮合齿轮泵的工作过程外啮合齿轮泵的工作过程可以分为吸入、压缩和排出三个阶段。

3.1 吸入阶段当齿轮泵开始工作时,主动齿轮和从动齿轮开始啮合。

主动齿轮通过驱动装置旋转,带动从动齿轮转动。

在啮合过程中,齿轮的齿槽逐渐从出口端移动至进口端,形成一个封闭的吸入腔。

在齿轮的旋转作用下,吸入腔内部的压力降低,液体被吸入到吸入腔中。

3.2 压缩阶段随着齿轮的继续旋转,吸入腔逐渐移动至出口端,形成一个封闭的压缩腔。

在齿轮的旋转作用下,压缩腔内的液体被挤压,压力逐渐升高。

当压缩腔达到最大容积时,液体的压力达到最高点。

3.3 排出阶段当压缩腔达到最大容积后,吸入腔开始从进口端移动至出口端,形成一个封闭的排出腔。

在齿轮的旋转作用下,排出腔内的液体被排出到出口沟槽中,完成液体的输送。

四、外啮合齿轮泵的特点外啮合齿轮泵具有以下几个特点:4.1 结构简单外啮合齿轮泵的结构相对简单,由较少的零部件组成,易于制造和维修。

齿轮泵工作原理及结构

齿轮泵工作原理及结构

齿轮泵工作原理及结构齿轮泵齿轮泵就是液压系统中广泛采用得一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵与内啮合齿轮泵,而以外啮合齿轮泵应用最广。

下面以外啮合齿轮泵为例来剖析齿轮泵。

液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。

ﻫ齿轮泵得工作原理与结构ﻫ齿轮泵得工作原理如图3—3所示,它就是分离三片式结构,三片就是指泵盖4,8与泵体7,泵体7内装有一对齿数相同、宽度与泵体接近而又互相啮合得齿轮6,这对齿轮与两端盖与泵体形成一密封腔,并由齿轮得齿顶与啮合线把密封腔划分为两部分,即吸油腔与压油腔。

两齿轮分别用键固定在由滚针轴承支承得主动轴12与从动轴15上,主动轴由电动机带动旋转。

图3-3外啮合型齿轮泵工作原理ﻫCB-B齿轮泵得结构如图3-4所示,当泵得主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮得轮齿退出齿间,使密封容积增大,形成局部真空,油箱中得油液在外界大气压得作用下,经吸油管路、吸油腔进入齿间.随着齿轮得旋转,吸入齿间得油液被带到另一侧,进入压油腔。

这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分得油液被挤出,形成了齿轮泵得压油过程。

齿轮啮合时齿向接触线把吸油腔与压油腔分开,起配油作用。

当齿轮泵得主动齿轮由电动机带动不断旋转时,轮齿脱开啮合得一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合得一侧,由于密封容积减小则不断地排油,这就就是齿轮泵得工作原理.泵得前后盖与泵体由两个定位销17定位,用6只螺钉固紧如图3-3。

为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面与泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为0、025~0、04mm,大流量泵为0、04~0、06mm。

齿顶与泵体内表面间得间隙(径向间隙),由于密封带长,同时齿顶线速度形成得剪切流动又与油液泄露方向相反,故对泄露得影响较小,这里要考虑得问题就是:当齿轮受到不平衡得径向力后,应避免齿顶与泵体内壁相碰,所以径向间隙就可稍大,一般取0、13~0、16mm。

高压齿轮泵结构原理

高压齿轮泵结构原理

高压齿轮泵结构原理
高压齿轮泵主要由三部分组成:齿轮、泵体、泵盖。

齿轮的齿根部分是渐开线齿轮,工作时,当压力油由进油口进入齿根,齿轮在齿根内向外滚动。

由于齿根部是渐开线,所以它的齿根部分始终是处于高压状态,在工作时承受着很大的压力。

泵体是一个圆筒形的筒状壳体,其上部设有泵盖。

泵盖上开设有进油孔、出油孔和泄油孔。

在泵的上面,还装有一对进油管口和出油管口。

泵盖与泵体之间是用一个弹簧片固定的,在弹簧片的另一端有一只止动环,当齿轮在齿根内向外滚动时,止动环就会自动地与泵盖止动环发生相对转动。

在泵的进油孔和出油孔之间还装有一个单向阀,它的作用是当泵停止工作时,使高压油从出油孔回流到泵盖和泵体之间。

单向阀上的阀盖上有两个通孔,一个用来固定止动环,另一个用来安装进油孔。

当齿轮在齿根内向外滚动时,止动环就会与齿轮啮合,泵内的高压油就会通过这个通孔流到泵的进油孔和出油孔中。

齿轮在工作时是不能随便拆开的,因为这会影响到泵的性能和寿命。

—— 1 —1 —。

叙述外啮合齿轮泵的工作原理

叙述外啮合齿轮泵的工作原理

叙述外啮合齿轮泵的工作原理外啮合齿轮泵是一种常用的液压传动元件,主要用于输送各种液体介质。

其工作原理是利用外啮合齿轮的旋转来产生吸入和排出压力差,从而实现液体的输送。

下面将详细介绍外啮合齿轮泵的工作原理。

一、外啮合齿轮泵的结构外啮合齿轮泵主要由泵体、前后盖、两个啮合齿轮和轴等部件组成。

其中,泵体是一个中空的铸铁或铝合金壳体,内部有两个平行排列的圆柱形孔,分别安装了两个啮合齿轮。

前后盖分别安装在泵体两端,并通过螺栓紧固在一起。

轴则穿过前后盖,并与啮合齿轮相连。

二、外啮合齿轮泵的工作原理1.吸入阶段当外啮合齿轮泵开始运转时,驱动电机带动轴旋转,从而带动两个啮合齿轮相互旋转。

此时,由于两个齿轮之间存在一定的间隙,因此在两个齿轮之间形成了一些小的密闭腔室。

当齿轮旋转到吸入侧时,腔室内的体积逐渐增大,从而形成了一个低压区域。

此时,泵体内的液体会受到低压区域的吸引力,通过进口管道流入泵体内部,并填充到啮合齿轮之间的密闭腔室中。

由于液体是不可压缩的,因此随着液体的进入,啮合齿轮之间的密闭腔室逐渐被填满。

当齿轮继续旋转时,吸入侧的密闭腔室逐渐缩小,并将液体推向出口侧。

2.排出阶段当啮合齿轮旋转到排出侧时,密闭腔室内部的液体受到齿轮和泵壳壁之间的挤压力作用,从而产生了一定的排出压力。

此时,密闭腔室内部的液体被迫流向出口管道,并从泵体中排出。

由于外啮合齿轮泵具有两个啮合齿轮,因此在每一次旋转中,都会有一个齿轮处于吸入阶段,另一个齿轮处于排出阶段。

这样就可以实现连续的液体输送。

三、外啮合齿轮泵的特点1.结构简单、体积小:外啮合齿轮泵的结构相对简单,不需要复杂的控制系统和辅助设备。

同时,其体积也比较小,可以方便地安装在机器内部。

2.输送流量稳定:由于外啮合齿轮泵的密闭腔室内部容积是固定的,因此其输送流量比较稳定。

3.适用范围广:外啮合齿轮泵适用于输送各种液体介质,包括油类、水类和化学品等。

四、外啮合齿轮泵的应用领域由于外啮合齿轮泵具有结构简单、体积小、输送流量稳定等优点,因此被广泛应用于机械制造、冶金、石化和航空等领域。

简述外啮合齿轮泵的工作原理

简述外啮合齿轮泵的工作原理

简述外啮合齿轮泵的工作原理外啮合齿轮泵是一种常用的液压泵,可以将液体从低压区域输送到高压区域,其主要工作原理如下:1. 泵体结构:外啮合齿轮泵由一个驱动齿轮和一个从动齿轮组成,它们以一个齿轮箱相连,并且在泵体内旋转。

2. 啮合过程:当泵体旋转时,驱动齿轮的齿轮齿与从动齿轮的齿轮齿相啮合,形成密封的工作腔。

3. 齿间容积变化:在啮合的过程中,工作腔的体积由最大到最小,然后再增大。

当齿轮齿在离开刚啮合时的位置时,工作腔的体积为最大容积。

当齿轮齿在彼此最近时,工作腔的体积最小时。

4. 吸油过程:当工作腔体积增大时,泵的入口处会形成一个真空区域,从而吸入液体。

5. 排油过程:当工作腔的体积减小时,泵的出口会形成高压区域,从而将液体推出泵。

6. 密封和润滑:齿轮啮合时形成的密封工作腔可防止液体在泵体内外泄漏。

同时,液体还起到润滑齿轮的作用,减少齿轮的磨损。

外啮合齿轮泵的工作原理以及性能受到多个因素的影响,包括齿轮的材料、齿轮的形状和尺寸、泵的入口和出口大小等。

一般来说,外啮合齿轮泵具有以下特点:1. 高效率:由于啮合齿轮的设计和形状优化,外啮合齿轮泵通常具有较高的效率。

2. 紧凑结构:外啮合齿轮泵相对于其他类型的泵具有较为紧凑的结构,适用于安装空间有限的场合。

3. 低噪音:外啮合齿轮泵的齿轮啮合过程相对平稳,产生的噪音较低。

4. 适用范围广:外啮合齿轮泵可用于输送各种液体,包括水、油和液压油等。

参考文献:1. 《液压传动技术手册》,李光敬,机械工业出版社,2006年2. 《液压与气动技术》,柳明,高等教育出版社,2014年3. 《液压传动与控制技术》,陈亮,机械工业出版社,2011年4. 《液压传动设计与系统集成》,王刚,机械工业出版社,2017年5. 《液压传动系统设计与维修》,李文元,机械工业出版社,2013年。

齿轮泵的工作原理

齿轮泵的工作原理
增加吸入困难,齿根处P降低,可能析出气体,导致Q减小, 造成振动和产生噪声,甚至使泵无法工作。
故最大圆周速度应根据所输油的粘度而予以限制,
最大圆周速度不超过5~6m/s, 最高转速一般在3000r/min左右。
加大齿宽会使径向力增大,齿面接触线加长,不易保 持良好的密封。
减少齿数虽可使齿间V加大而Q增加,但会使Q的不 均匀度加重。
齿轮4空套在从动轴上
以补偿制造、安装时出现的误差 具有一定的自整位能力
齿轮两端面有配合良好的盖板 泵轴装在单列向心球轴承上。 在泵体和端盖之间垫有纸垫16
纸垫厚度可改变齿轮端面与盖板之间的轴向间隙。
图2—5 外啮合齿轮泵
6 典型结构-外啮合齿轮泵
防超过额定Pd,装设有安全阀 (safety valve)
却条件。
按额定排出压力pH高低可分为:
低压齿轮泵(pH ≤2.5MPa); 中压齿轮泵(pH =2.5~8MPa) 高压齿轮泵(pH ≥8MPa)。
4 齿轮泵的特点
4.流量连续,有脉动
外啮合齿轮泵σQ在11%~27%范围内,噪声较大
Байду номын сангаас越少, σQ越大
内齿轮泵σQ较小,约为1%一3%,噪声也较小。
滑油泵 驳油泵 液压传动中的供油泵
由于齿轮泵结构简单,价格低廉,又不易 损坏,因而已开发了高压齿轮泵。如:
液压泵。
6 典型结构-外啮合齿轮泵
有直齿、斜齿、人字齿等几种齿轮,一般采用 渐开线齿形。见下图
主动和从动齿轮是由右和左螺旋齿轮拼成的入字齿轮
既能承受较大负荷,又可避免产生轴向推力。
The power absorbed is lower and is constant, whereas a gland excessively tightened causes a considerable increase in power absorbed.

齿轮泵原理结构

齿轮泵原理结构

齿轮泵原理结构齿轮泵是一种常见的液压传动元件,它通过齿轮的啮合来实现液体的输送和增压。

齿轮泵的原理结构十分简单,主要由齿轮、泵壳、进出口阀和密封件等组成。

一、齿轮的作用齿轮是齿轮泵的核心部件,它通过啮合来实现液体的输送。

齿轮通常由两个或多个齿轮组成,其中一个为驱动齿轮,另一个为从动齿轮。

驱动齿轮通过传动装置(如电机、发动机等)提供的动力来带动从动齿轮旋转。

当齿轮旋转时,齿轮之间的啮合空隙会随着齿轮的转动而逐渐变大和变小,使液体在齿间被吸入和压出。

二、泵壳的结构泵壳是齿轮泵的外壳,它起到容纳齿轮和液体的作用。

泵壳通常由两个相互连接的部分组成,上部为进液腔,下部为出液腔。

进液腔和出液腔之间通过齿轮的啮合空隙相互隔离,使液体只能从进液腔经过齿轮的压力作用下被挤出到出液腔中。

三、进出口阀的作用进出口阀是齿轮泵的关键部件,它控制液体的进出。

进口阀位于进液腔,出口阀位于出液腔。

当进口阀打开时,液体可以从外部通过进口管道进入进液腔;当出口阀打开时,液体可以从出液腔通过出口管道流出。

进口阀和出口阀通常采用球阀或蝶阀等形式,通过控制阀门的开启和关闭来实现液体的进出。

四、密封件的重要性密封件是齿轮泵的关键部件,它起到密封齿轮和泵壳的作用。

由于齿轮泵在工作过程中会产生较高的压力,因此密封件需要具备良好的密封性能,以防止液体泄漏。

常见的密封件有O型圈、油封等,它们能够有效地防止液体泄漏,并提高齿轮泵的工作效率和寿命。

齿轮泵的原理结构主要包括齿轮、泵壳、进出口阀和密封件等部件。

齿轮通过啮合来实现液体的输送,泵壳起到容纳齿轮和液体的作用,进出口阀控制液体的进出,密封件确保齿轮泵的密封性能。

齿轮泵具有结构简单、体积小、工作平稳等优点,广泛应用于工程机械、农机装备、船舶、军工等领域。

在实际应用中,我们需要根据具体的工作要求和液体性质选择合适的齿轮泵,并定期进行维护保养,以保证其正常工作和延长使用寿命。

齿轮泵结构与工作原理分析

齿轮泵结构与工作原理分析

齿轮泵结构与工作原理分析齿轮泵,作为一种重要的液压传动元件,广泛应用于工程机械、汽车工业和冶金设备等领域。

其在液压系统中扮演着关键的角色,提供了高效的流体传动能力。

本文将深入探讨齿轮泵的结构和工作原理,帮助读者更全面地理解这一关键组件。

1. 齿轮泵的基本结构齿轮泵的基本结构相对简单,主要由以下几个主要组成部分构成:1.1. 齿轮齿轮泵通常包括一对或多对齿轮。

这些齿轮的轴线平行,它们之间的距离是固定的,形成了泵的外壳。

这些齿轮通常被分为两种类型:驱动齿轮和从动齿轮。

驱动齿轮由驱动源(通常是电动机或发动机)驱动,而从动齿轮则通过齿轮之间的啮合传递动力。

1.2. 泵壳泵壳是齿轮泵的外部壳体,用于包裹和保护齿轮。

泵壳通常具有吸入口和排出口,其中吸入口用于引入液体,排出口用于将液体推送到液压系统中。

泵壳还包括用于密封和保持齿轮定位的端盖。

1.3. 凸轮和轴齿轮泵通常具有一个驱动轴,它与驱动齿轮相连,将动力传递到齿轮。

凸轮通常用于控制从动齿轮的位置,以确保它们的正确啮合。

这种结构有助于确保齿轮泵的正常运行和高效传动。

2. 齿轮泵的工作原理理解齿轮泵的工作原理对于了解其在液压系统中的作用至关重要。

齿轮泵的工作原理可以概括如下:2.1. 吸入阶段1.当齿轮泵启动时,驱动齿轮开始旋转。

这会导致从动齿轮也开始旋转,因为它们通过齿轮之间的啮合与驱动齿轮相连。

2.在初始阶段,吸入口打开,液体开始进入泵壳。

3.随着从动齿轮的旋转,液体被吸引并填充齿轮之间的空隙。

2.2. 排出阶段1.随着驱动齿轮和从动齿轮的旋转,液体在齿轮之间被困住并被排到排出口。

2.从动齿轮的旋转会导致液体被挤压,从而增加了压力。

3.随着液体被排出,它将被输送到液压系统中,提供所需的动力和压力。

2.3. 关键要点•齿轮泵的工作原理非常依赖于齿轮之间的啮合,以及驱动齿轮的旋转。

•齿轮泵的效率高,因为它可以提供一致的流体输送。

•吸入和排出阶段的循环不断重复,以保持稳定的流体输送。

内啮合齿轮泵的工作原理

内啮合齿轮泵的工作原理

内啮合齿轮泵的工作原理
内啮合齿轮泵是一种常用的液压泵,其工作原理如下:
1. 泵的结构由外齿轮、内齿轮和泵体组成。

外齿轮通常被称为驱动齿轮,内齿轮通常被称为从动齿轮。

2. 驱动齿轮由电机或其他动力源驱动,它通过轴与从动齿轮相连接。

3. 当泵开始工作时,驱动齿轮开始旋转,驱动从动齿轮一起旋转。

4. 外齿轮和内齿轮之间的齿隙会形成一个密封腔。

5. 随着驱动齿轮的旋转,密封腔的体积逐渐减小。

在减小体积的过程中,密封腔中的液体被迫从进口处被吸入。

6. 随着进一步的旋转,密封腔中的体积进一步减小,液体被压缩,并被推向出口。

7. 液体通过出口处被送出泵体,完成液压泵的工作。

8. 从动齿轮和驱动齿轮的运动是连续的,这保证了液体的连续供应和流动。

以上是内啮合齿轮泵的工作原理,其主要基于齿轮的运动以及通过齿轮间的齿隙形成密封腔从而实现液体的吸入和推出。


种泵在工程和工业领域中广泛应用,如液压系统、自动化机械等。

齿轮油泵的工作原理

齿轮油泵的工作原理

齿轮油泵的工作原理
齿轮油泵是一种常见的润滑系统设备,用于将润滑油输送到机械设备的齿轮系统中,以提供必要的润滑和冷却。

其工作原理如下:
1. 泵的内部结构:齿轮油泵主要由泵体、驱动轴和齿轮组成。

泵体内设有两个齿轮,分别为驱动齿轮和从动齿轮。

驱动齿轮由驱动轴带动旋转,而从动齿轮则通过咬合与驱动齿轮一起转动。

2. 工作原理:当泵体与润滑系统连通后,润滑油从润滑系统进入泵体中。

当驱动轴转动时,驱动齿轮也开始旋转。

由于从动齿轮与驱动齿轮咬合,当驱动齿轮转动时,从动齿轮也被带动一同旋转。

3. 润滑油吸入:当齿轮组转动时,从动齿轮的齿槽会逐渐与泵体内的吸油腔相连。

吸油腔与进油通道相连,从而使润滑油从进油通道被吸入吸油腔。

4. 润滑油排出:同时,从动齿轮的齿槽也会逐渐与与出油通道相连,使润滑油从泵体的出油通道被排出。

5. 循环输送:润滑油被泵送出去后,会进入润滑系统,通过管路输送到需要润滑和冷却的齿轮系统。

在齿轮系统中,润滑油起到了润滑、冷却、减少磨损和摩擦等作用。

总结:齿轮油泵的工作原理是通过齿轮组的咬合和转动,使润
滑油被吸入泵体并排出,从而实现对齿轮系统的润滑和冷却。

这种工作原理确保了齿轮系统的正常运行和延长了机械设备的使用寿命。

齿轮泵工作原理及结构

齿轮泵工作原理及结构

齿轮泵工作原理及结构-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII齿轮泵工作原理及结构齿轮泵齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。

下面以外啮合齿轮泵为例来剖析齿轮泵。

液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。

齿轮泵的工作原理和结构齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。

两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。

图3-3 外啮合型齿轮泵工作原理CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。

随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。

这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。

齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。

当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,这就是齿轮泵的工作原理。

泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。

为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为0.025~0.04mm,大流量泵为0.04~0.06mm。

齿轮泵工作原理及结构

齿轮泵工作原理及结构

齿轮泵工作原理及结构齿轮泵是一种常见的离心泵,广泛应用于工业领域中的液体输送和压力增加。

它采用齿轮的旋转来产生液体的运动和增压。

本文将详细介绍齿轮泵的工作原理和结构设计。

一、齿轮泵的工作原理齿轮泵的工作原理基于齿轮的相互啮合和转动。

齿轮泵通常由一个驱动齿轮和一个从动齿轮组成。

当齿轮开始旋转时,它们之间的啮合将产生一定的真空效应,使泵腔内的液体被吸入。

具体而言,当驱动齿轮转动时,它的齿轮齿进入从动齿轮的齿槽中。

这时,从动齿轮会受到驱动齿轮的挤压,强迫其同步旋转。

在齿轮啮合的过程中,齿槽和泵腔之间形成一定容积的密闭空间。

由于驱动齿轮的旋转,这个密闭空间会逐渐闭合,导致容积减少,从而使液体被限制在密闭空间内,无法反流。

随着驱动齿轮的不断旋转,液体会被推至从动齿轮的出口处。

在齿轮泵中,出口通常设置有一个阀门,以防止液体回流。

一旦液体被推至阀门之后,阀门会自动关闭,确保液体流向只能是出口方向。

总的来说,齿轮泵通过齿轮的相互啮合和转动,在泵腔内产生一定的真空效应,使液体被吸入,然后通过齿轮的旋转将液体推送至出口处。

二、齿轮泵的结构设计齿轮泵的结构设计应考虑到工作效率、耐磨性、密封性和可靠性等因素。

一般来说,齿轮泵主要由以下几个部分组成:1. 泵壳:泵壳一般采用铸铁或钢材制成,用于支撑和保护齿轮泵的内部部件。

泵壳通常具有进口和出口,以便液体的流动。

2. 齿轮:齿轮是齿轮泵最关键的组件,其设计和加工质量直接影响到泵的性能。

通常情况下,齿轮一般由高强度的合金钢材料制成,并经过精密加工和热处理,以提高其耐磨性和精度。

3. 泵腔:泵腔是齿轮泵内液体流动的主要场所。

泵腔的设计应考虑液体的进入和出口,以及容积变化时的密封性。

通常情况下,泵腔内会设置有一定的密封装置,如密封圈、填料等,以确保液体无泄漏。

4. 轴承和轴封:为了减少齿轮的运动阻力和保证正常工作,齿轮泵通常会设置轴承和轴封。

轴承用于支撑齿轮的旋转,减少动摩擦;轴封用于防止液体泄漏到轴承和外部环境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齿轮泵工作原理及结构标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII
齿轮泵工作原理及结构
齿轮泵
齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。

下面以外啮合齿轮泵为例来剖析齿轮泵。

液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。

齿轮泵的工作原理和结构
齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。

两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。

图3-3 外啮合型齿轮泵
工作原理
CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。

随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。

这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。

齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。

当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封
容积减小则不断地排油,这就是齿轮泵的工作原理。

泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。

为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为~,大流量泵为~。

齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取~。

为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。

在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。

图3-4 CB—B齿轮泵的结构
1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉
10-压环
11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销
齿轮泵存在的问题
1、齿轮泵的困油问题
齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积中
〔见图3-5(a)〕,齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置时〔见图3-5(b)〕,封闭容积为最小,齿轮再继续转动时,封闭容积
又逐渐增大,直到图3-5(c)所示位置时,容积又变为最大。

在封闭容积减小时,被困油液受到挤压,压力急剧上升,使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤出,造成功率损失,使油液发热等。

当封闭容积增大时,由于没有油液补充,因此形成局部真空,使原来溶解于油液中的空气分离出来,形成了气泡,油液中产生气泡后,会引起噪声、气蚀等一系列恶果。

以上情况就是齿轮泵的困油现象。

这种困油现象极为严重地影响着泵的工作平稳性和使用寿命。

图3-5 齿轮泵的困油现象
为了消除困油现象,在CB—B型齿轮泵的泵盖上铣出两个困油卸荷凹槽,其几何关系如图3-6所示。

卸荷槽的位置应该使困油腔由大变小时,能通过卸荷槽与压油腔相通,而当困油腔由小变大时,能通过另一卸荷槽与吸油腔相通。

两卸荷槽之间的距离为a,必须保证在任何时候都不能使压油腔和吸油腔互通。

按上述对称开的卸荷槽,当困油封闭腔由大变至最小时(图3-6),由于油液不易从即将关闭的缝隙中挤出,故封闭油压仍将高于压油腔压力;齿轮继续转动,当封闭腔和吸油腔相通的瞬间,高压油又突然和吸油腔的低压油相接触,会引起冲击和噪声。

于是CB—B型齿轮泵将卸荷槽的位置整个向吸油腔侧平移了一个距离。

这时封闭腔只有在由小变至最大时才和压油腔断开,油压没有突变,封闭腔和吸油腔接通时,封闭腔不会出现真空也没有压力冲击,这样改进后,使齿轮泵的振动和噪声得到了进一步改善。

图3-6 齿轮泵的困油卸荷槽图图3-7 齿轮泵的径向不平衡力
2、径向不平衡力
齿轮泵工作时,在齿轮和轴承上承受径向液压力的作用。

如图3-7所示,泵的右侧为吸油腔,左侧为压油腔。

在压油腔内有液压力作用于齿轮上,沿着齿顶的泄漏油,具有大小不等的压力,就是齿轮和轴承受到的径向不平衡力。

液压力越高,这个不平衡力就越
大,其结果不仅加速了轴承的磨损,降低了轴承的寿命,甚至使轴变形,造成齿顶和泵体内壁的摩擦等。

为了解决径向力不平衡问题,在有些齿轮泵上,采用开压力平衡槽的
办法来消除径向不平衡力,但这将使泄漏增大,容积效率降低等。

CB—B型齿轮泵则
采用缩小压油腔,以减少液压力对齿顶部分的作用面积来减小径向不平衡力,所以泵
的压油口孔径比吸油口孔径要小。

齿轮泵的流量计算
齿轮泵的排量V相当于一对齿轮所有齿谷容积之和,假如齿谷容积大致等于轮齿的体积,那么齿轮泵的排量等于一个齿轮的齿谷容积和轮齿容积体积的总和,即相当于以有效齿高(h=2m)和齿宽构成的平面所扫过的环形体积,即:
(3-10)
式中:D为齿轮分度圆直径,D=mz(cm);h为有效齿高,h=2m(cm);B为齿轮宽(cm);m为齿轮模数(cm);z为齿数。

实际上齿谷的容积要比轮齿的体积稍大,故上式中的π常以代替,则式(3-10)可写成:
(3-11)
齿轮泵的流量q(1/min)为:
(3-12)
式中:n为齿轮泵转速(rpm);ηv为齿轮泵的容积效率。

实际上齿轮泵的输油量是有脉动的,故式(3-12)所表示的是泵的平均输油量。

从上面公式可以看出流量和几个主要参数的关系为:
(1)输油量与齿轮模数m的平方成正比。

(2)在泵的体积一定时,齿数少,模数就大,故输油量增加,但流量脉动大;齿数增加时,模数就小,输油量减少,流量脉动也小。

用于机床上的低压齿轮泵,取z=13~19,而中高压齿轮泵,取z=6~14,齿数z<14时,要进行修正。

(3)输油量和齿宽B、转速n成正比。

一般齿宽B=(6~10)m;转速n为
750r/min:1000 r/min、1500r/min,转速过高,会造成吸油不足,转速过低,泵也不能正常工作。

一般齿轮的最大圆周速度不应大于5~6m/s。

高压齿轮泵的特点
上述齿轮泵由于泄漏大(主要是端面泄漏,约占总泄漏量的70%~80%),且存在径向不平衡力,故压力不易提高。

高压齿轮泵主要是针对上述问题采取了一些措施,如尽量减小径向不平衡力和提高轴与轴承的刚度;对泄漏量最大处的端面间隙,采用了自动补偿装置等。

下面对端面间隙的补偿装置作简单介绍。

1.浮动轴套式图3-8(a)是浮动轴套式的间隙补偿装置。

它利用泵的出口压力油,引入齿轮轴上的浮动轴套1的外侧A腔,在液体压力作用下,使轴套紧贴齿轮3
的侧面,因而可以消除间隙并可补偿齿轮侧面和轴套间的磨损量。

在泵起动时,靠弹簧4来产生预紧力,
保证了轴向间隙的密封。

图3-8
2.浮动侧板式浮动侧板式补偿装置的工作原理与浮动轴套式基本相似,它也是利用泵的出口压力油引到浮动侧板1的背面〔见图3-8(b)〕,使之紧贴于齿轮2的端面来补偿间隙。

起动时,浮动侧板靠密封圈来产生预紧力。

3.挠性侧板式图3-8(c)是挠性侧板式间隙补偿装置,它是利用泵的出口压力油引到侧板的背面后,靠侧板自身的变形来补偿端面间隙的,侧板的厚度较薄,内侧面要耐磨(如烧结有~的磷青铜),这种结构采取一定措施后,易使侧板外侧面的压力分布大体上和齿轮侧面的压力分布相适应。

图3-9内啮合齿轮泵工作原理。

相关文档
最新文档