分类讨论思想方法.ppt

合集下载

思想方法 第3讲 分类讨论思想

思想方法 第3讲 分类讨论思想

思想方法第3讲分类讨论思想 思想概述分类讨论思想是当问题的对象不能进行统一研究时,需对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.方法一 由概念、公式、法则、计算性质引起的讨论 概念、定理分类整合即利用数学中的基本概念、定理对研究对象进行分类,如绝对值的定义、不等式的转化、等比数列{a n }的前n 项和公式等,然后分别对每类问题进行解决. 例1(1)(2022·滁州质检)已知过点P (0,1)的直线l 与圆x 2+y 2+2x -6y +6=0相交于A ,B 两点,则当|AB |=23时,直线l 的方程为( )A .x =0B .15x -8y -8=0C .3x -4y +4=0或x =0D .3x +4y -4=0或x =0________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________(2)已知数列{a n }满足a 1=-2,a 2=2,a n +2-2a n =1-(-1)n ,则下列选项不正确的是( )A .{a 2n -1}是等比数列B.∑i =15(a 2i -1+2)=-10C .{a 2n }是等比数列D.∑i =110a i =52________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________规律方法 解题时应准确把握数学概念的本质,根据需要对所有情形分类.本例中,设直线方程需分斜率存在和不存在两种情况,数列中含(-1)n 需分奇偶两种情况,要注意分类讨论要有理有据、不重不漏.方法二 由图形位置或形状引起的讨论图形位置、形状分类整合是指由几何图形的不确定性而引起的分类讨论,这种方法适用于对几何图形中点、线、面的位置关系以及解析几何中直线与圆锥曲线的位置关系的研究. 例2设F 1,F 2为椭圆x 29+y 24=1的两个焦点,点P 为椭圆上一点,已知点P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|=________. ________________________________________________________________________ ________________________________________________________________________规律方法 圆锥曲线的形状、焦点位置不确定时要分类讨论;立体几何中点、线、面的位置变化,三角形和平行四边形的不确定性都要进行分类讨论.方法三 由参数变化引起的分类讨论某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,需对参数进行讨论,如含参数的方程、不等式、函数等.解决这类问题要根据需要合理确定分类标准,讨论中做到不重不漏,结论整合要周全.例3 (2022·湖北七市(州)联考)已知函数f (x )=x +1x (x >0),若f (x )[f (x )]2+a的最大值为25,则正实数a =________.________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________规律方法 若遇到题目中含有参数的问题,常常结合参数的意义和对结果的影响进行分类讨论,此类题目为含参型,应全面分析参数变化引起的结论的变化情况,在分类讨论时要遵循分类的原则:一是分类的标准要一致,二是分类时要做到不重不漏,三是能不分类的要尽量避免分类,杜绝无原则的分类讨论.。

人教A版高考数学(文)复习课件 专题 数学思想方法第1部分专题7第2讲

人教A版高考数学(文)复习课件 专题 数学思想方法第1部分专题7第2讲

设 lg(log210)=t,则 lg(lg2)=-t.由条件可知 f(t)=5,即 f(t)= at3+bsin t+4=5,所以 at3+bsin t=1,所以 f(-t)=-at3-bsin
t+4=-1+4=3.
答案 C
规律方法 复杂的数学问题常用换元法实现化归与转化,运用 “换元”把式子转化为有理式或使整式降幂等,或者把较复杂 的函数、方程、不等式问题转化为易于解决的基本问题.
▪分类讨论的常见类型:
▪(1)由数学概念引起的分类讨论:有的概念本身 就是分类的,如绝对值、直线斜率、指数函数、 对数函数等.
▪(2)由性质、定理、公式的限制引起的分类讨论: 有的定理、公式、性质是分类给出的,在不同 的条件下结论不一致,如等比数列的前n项和公 式、函数的单调性等.
▪(3)由数学运算和字母参数变化引起分类;如偶 次方根非负,对数的底数与真数的限制,方程 (不等式)的运算与根的大小比较,含参数的取 值不同会导致所得结果不同等.
3a1+3d=6, 8a1+28d=-4,
解得ad1==-3,1.
故 an=3-(n-1)=4-n.
(2)由(1)可得 bn=n·qn-1,于是 Sn=1·q0+2·q1+3·q2+…+n·qn-1. 若 q≠1,将上式两边同乘 q,得 qSn=1·q1+2·q2+…+(n-1)·qn-1+n·qn. 两式相减,得(q-1)Sn=nqn-1-q1-q2-…-qn-1 =nqn-qqn--11=nqn+1-qn-+11qn+1. 于是,Sn=nqn+1-q-n+112qn+1. 若 q=1,则 Sn=1+2+3+…+n=nn2+1.
▪历年高考中,化归与转化思想无处不在,我们 要不断培养和训练自觉的转化意识,将有利于 提高解决数学问题的应变能力,提高思维能力 和技能、技巧.

数学分类讨论思想课件

数学分类讨论思想课件


F a
2、在直角坐标系中,O为坐标原点, 已知 A(1,1),在x轴上确定点P, 使得△AOP为等腰三角形,则符合条 y 4 件的P点共有 个
1
P2(2 ,0)
A (1,1)
P1(2,0)
-1
o
-1
P4( 1, 0 )
1 P3(
2
,0) x
例7、在下图三角形的边上找出一点,使得 该点与三角形的两顶点构成等腰三角形!C
当AQ=AP时,△QAP为等腰直 角三角形, 即6-t=2t,解得t=2(秒) ∴当t=2秒时, △QAP为等腰直 角三角形。
16 17
(1)若顶角顶点与矩形顶点重合
A
F
D
16
E B
17
如图,当AE=AF=10时,S△AEF=
1 2 2×10×10=50(cm )
C
(2)若底角顶点与矩形顶点重合
A D E A D
E B F C B C
F
如图,当EA=EF=10时,BE=6, BF= 102 62 =8,
1 S△AEF= ×10×8=40(cm2) 2
例5
1、已知⊙O的半径为5cm,AB、CD是⊙O的弦, 且AB=6cm, CD=8cm,AB∥CD,则AB与CD之 间的距离为 7cm或1cm 。
A B C C A B D
O 2、在半径为1的圆O中,弦AB、AC的长分 别是 3、 2,则∠BAC的度数是 150或750 。
3、△ABC是半径为2cm的圆的内接三角形,若 0或1200 60 BC=2 cm,则∠ A的度数是 。
1)、对∠A进行讨论
110° 20° 50° B
3)、对∠C进行讨论
C

分类讨论思想在解题中的应用ppt 通用

分类讨论思想在解题中的应用ppt 通用

问 题 9 : 过 点 P ( 2 , 3 ) 且 在 坐 标 轴 上 的 截 距 相 等 的 直 线 方 程 是
解 : 有 的 学 生 得 出 答 案 为 x y 5 0 这 种 解 法 漏 了 直 线 过 原 点 的 情 形 。 还 有 一 条 直 线 为 : 32 x y 0 答 案 应 为 x y 5 0 或 32 x y 0
变 形 的 依 据 是 不 等 式 的 性 质 。 在 两 边 同 除 以 t, 必 须 考 虑 其 正 负 。 因 为 随 着 t 的 变 化 , t正 负 号 相 应 发 生 变 化 , 不 能 统 一 解 决 , 所 以 必 须 分 类 。
n
n
t t 不 等 式 a a n n 1
当 t 0 时 , 不 等 式 不 可 能 成 立 。
a2 当 e ; a e 时 , 2
最 小 值 为 e
2
2 a 0 设 ,函数 f ( x) x a | ln x 1| .
当 x 1, ,求函数 f ( x ) 的最小值.
所以函数 y=f(x)的最小值为 1+a,(0<a≤2), 3a a a 2 - ln ,(2<a≤2e ), ymin= 2 2 2 2 2 e ,(a>2e ).
x a 解 : 函 数 值 域 为 f( x ) ,( a 0 ,a 1 )的 ( 0 , 1 ) x 1 a
1 1 1 1 f( x ) 可 能 为 1 或 0 f( x ) 而 2 2 2 2
1 为 了 进 一 步 确 定 f ( x ) 的 值 , 必 须 对 f( x )的 值 进 行 分 类 。 2
1 1 1 当 f () x 1 , f () x 0 , f () x 1 2 2 2 1 1 此 时 f () x f () x 1 2 2 1 1 所 以 f () x f () x 的 值 域 是 1 , 1 2 2

分类讨论思想

分类讨论思想
整理分类讨论素材
• 对收集到的素材进行筛选、整理和分类 • 建立素材数据库,便于后续分析讨论
运用分类讨论方法进行分析讨论
运用分类讨论方法
• 根据已确定的分类标准对素材进行分析讨论 • 注意多角度和多层次的分析讨论
得出结论和建议
• 根据分析讨论的结果,得出结论和建议 • 评估结论和建议的可行性和有效性
02
分类讨论思想的实施步骤与方法
确定讨论主题与分类标准
确定讨论主题
• 选择具有代表性和针对性的问题 • 确保问题具有可操作性和可解决性
确定分类标准
• 根据问题的性质和特点制定分类标准 • 分类标准应简洁明了,便于实际操作
收集与整理分类讨论素材
收集分类讨论素材
• 通过文献检索、实地调查、访谈等方式收集素材 • 确保素材的真实性和可靠性
• 可以追溯到古代哲学家亚里士多 德 • 在文艺复兴时期得到进一步发展 -近现代广泛应用于科学、工程、社 会科学等领域
• 东方文化中的“分而治之”策略 • 西方文化中的“案例分析”方法
分类讨论思想在解决问题中的应用
分类讨论思想在问题解决过程中的应用
• 首先,确定问题的主题和分类标准 • 然后,收集和整理相关的分类讨论素材 • 最后,运用分类讨论方法进行分析讨论
分类讨论思想在未来可能的发展机遇
• 如何利用新技术和新方法提高分类讨论的效果 • 如何拓展应用领域和应用场景,发挥分类讨论思想的潜 力
如何应对分类讨论思想未来的挑战
应对分类讨论思想未来的挑战
• 培养信息素养和创新能力 • 提高团队协作和沟通能力
发挥分类讨论思想在未来发展的优势
• 为决策者提供有价值和有深度的信息支持 • 为解决复杂问题和应对不确定性提供新思路和方法

分类讨论思想ppt课件演示文稿

分类讨论思想ppt课件演示文稿



1 cos 2 x 2 | sin x | 解析:f x cos x cos x 2 tan x, x [2k ,2k ) [2k ,2k ) 2 2 . 2 tan x, x [2k ,2k 3 ) [2k 3 ,2k 2 ) 2 2
2.引入分类讨论的主要原因
1由数学概念引起的分类讨论:如绝对值的定义、
直线与平面所成的角、定比分点坐标公式等;
2 由数学运算要求引起的分类讨论:如除法运算
中除数不为零、对数中真数与底数的要求等;
3由函数的性质、定理、公式的限制引起的分类讨论; 4 由图形的不确定引起的分类讨论; 5由参数的变化引起的分类讨论; 6 按实际问题的情况而分类讨论.
考点1 由数学概念引起的分类讨论
例1.设a为实数,函数f x 2x 2 x a x a .
1 若f 0 1,求a的取值范围; 2 求f x 的最小值.
分析:由f 0 1,知 a a 1,然后根据 绝对值的定义解此不等式可解得第 1 小题; 而第 2 小题利用绝对值的定义化函数为分 段函数,然后分别求其最值.
【思维启迪】由数学运算性质类型、公式和定理、 法则有范围或者条件限制,或者是分类给出 的,在解答中注意分类讨论思想的应用.本题 Sn 中利用an Sn S n1 n 1与n 2讨论. n 1 n 2 求出an 就须分
分析:分两类n 1与n 2进行解答,但须注
解析:当n 2时,an Sn S n 1
2 2n 2n 2 n 1 2 n 1 4n, 所以an 4n(n 2,n N* ). 2

数学分类讨论思想与“零点分段法”(8班)精品PPT课件

数学分类讨论思想与“零点分段法”(8班)精品PPT课件

③当 1<m1 <e,即1e<m<1 时,
函数 f (x)在 (1,m1 )上单调递增,在(m1 ,e)上单调递减,
则 f (x) max=f (m1 )=-lnm-1.…………………………7 分1,e), f ′(x)<0,函数 f (x)在(1,e)上单调递减,
即 3x2 3a 1 0 无解……………4 分
0 4 3(3a 1) 0
a 1 3
………………6 分
法 2: f / (x) 3x2 3a 3a ,……………4 分
要使直线 x y m 0 对任意的 mR 都不是曲线
y f (x) 的切线,当且仅当 1 3a 时成立,
(2)若直线 x y m 0 对任意的 m R 都不是曲线 y f (x)
的切线,求 a 的取值范围;
(3)设 g(x) | f (x) |, x [1,1],求 g(x) 的最大值 F (a) 的
解析式. (惠州市 2013 届高三上学期期末)
解:(1)当a 1时, f ' (x) 3x2 3,令f ' (x) 0,得x 1或x 1……1 分 当 x (1,1) 时 , f ' (x) 0,当x (,1] [1,) 时 ,
x a ex
…2 分
因为 x 0 为 f x 的极值点,
所以由 f 0 ae0 0 ,解得 a 0 ……………3 分
检验,当 a 0 时, f x xex ,当 x 0 时, f x 0 ,当 x 0
时, f x 0.
所以 x 0 为 f x 的极值点,故 a 0 .……………4 分
(Ⅱ) 当 a 0 时,不等式
f
x
x
1
1 2
x2
x

中考数学专题复习一分类讨论思想PPT课件

中考数学专题复习一分类讨论思想PPT课件
过点A作AD⊥BC,垂足为D, ∵∠ACB=75°-∠B=45°, sinACD AD,
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由

分类讨论思想(上)--数学思想方法

分类讨论思想(上)--数学思想方法

【对等比数列公比q的讨论】
【2010 四川 21(Ⅲ)】设 cn = 2nqn-1 (q≠0),求数列{cn } 的前 n 项和 Sn . 【方法点拨】对公比为参数的等比数列用前n项和公式求和时,注意对公比是否为1的讨论.
【解析】由 cn = 2nqn-1 ,当 q = 1 时, Sn = 2 + 4 + 6 +ggg+2n = n(n + 1) ;
高考思想方法篇 分类讨论思想(上)
思想方法透析
所谓分类讨论就是当问题所给的对象不能进行统一研究时,需要根据问题的条 件和结论所涉及到的概念、定理、公式、性质以及运算的需要、图形的位置等进行 科学合理的分类,然后对每一类分别研究,得出每一类的结论,最后汇总各类的结 果,得到整个问题的解答.
分 标准统一 类 的 不重不漏 原 则 分清主次
思想突破题型
第一种类型:由问题所涉及到的数学概念引发的讨论
【绝对值符合引发的讨论】
(2012 浙江卷)已知 a∈R,设关于 x 的不等式|2x-a|+|x+3|≥2x+4 的解集为 A.
(1)若 a=1,求 A;
(2)若 A=R,求 a 的取值范围.
【方法点拨】找零点分区间,去掉绝对值符号.
【指对数的底数与1大小的讨论】
【用前n项和求通项时注意对n=1的讨论】 (2011 湖北 19)已知数列{an } 的前 n 项和为 Sn ,且满足: a1 = a (a ≠ 0), an+1 = rSn (n∈ N+ ,r∈R,r ≠ -1). (1)求数列{an}的通项公式;
方法指点迷津
涉及分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人 思维的条理性和概括性,所以在高考试题中占有重要的位置,也是近几年来高考重 点考查的热点问题之一.

高三数学课件:下学期_分类讨论思想方法(1.p

高三数学课件:下学期_分类讨论思想方法(1.p

4 − x 2 ≥ −1 恒成立
由4-x2≥0,x>0,得0<x≤2; , > , < ;
x 4 − x2 ≥ 1 (2)当x<0时, =-1,原不等式等价于 当 < 时 x ,
4-x2≥0

ห้องสมุดไป่ตู้4-x2≥1
得-√3≤x<0
x<0 < 所以原不等式的解集为{x| 所以原不等式的解集为 |-√3≤x<0或0<x≤2}.故应选 < 或 < . (B). .
三.示范性题组
是首项为1,公比为q( 例1.设数列 n}是首项为 ,公比为 (q>0)的等比数列, .设数列{a 是首项为 )的等比数列, sn + 1 求 lim Tn 其前n项和为 项和为S 其前 项和为 n, Tn = 解:(1)当q=1时,Sn=n, Sn+1=n+1, :( ) 时 n+1 ∴ lim Tn = lim n = 1 n→ ∞ n→ ∞ 1 − q n+1 (2)当q≠1时,lim Tn = lim 1 − q n ) 时 n→ ∞ n→ ∞ ①若0<q<1,lim Tn = 1 , n→ ∞ 1 n ( ) −q q =q ② 若q>1, lim Tn = lim 1 n→ ∞ n→ ∞ ( )n − 1 q Tn = 1 0<q≤1 综上, 综上, lim n→ ∞ q q>1
①0<a<1时,0<f(x) 时 a ②-1<a<0时, 1 = a 时
a2 = 1 a2 + 1 ≤ a+ a − a2
2
+1
≤f(x)<0
又当x=0时,f(x)=0; ∴原函数的值域为: 时 原函数的值域为: 又当

初中数学---常用的思想方法PPT课件

初中数学---常用的思想方法PPT课件

5、配方法:就是把一个代数式设法构造成平方式,然后再 进行所需要的变化。配方法是初中代数中重要的变形技巧, 配方法在分解因式、解方程、讨论二次函某个或某些字母的式子作为 一个整体,用一个新的字母表示,以便进一步解决问题的 一种方法。换元法可以把一个较为复杂的式子化简,把问 题归结为比原来更为基本的问题,从而达到化繁为简,化 难为易的目的。
初中数学---常用的思想方法 PPT课件
1、数形结合思想:就是根据数学问题的条件和结论之间的 内在联系,既分析其代数含义,又揭示其几何意义;使数 量关系和图形巧妙和谐地结合起来,并充分利用这种结合, 寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互 转化的。数学学科的各部分之间也是相互联系,可以相互转化的。 在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易, 化繁为简。 如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的 转化、部分与整体的转化、动与静的转化等等。
7、分析法:在研究或证明一个命题时,又结论向已知条件 追溯,既从结论开始,推求它成立的充分条件,这个条件 的成立还不显然;则再把它当作结论,进一步研究它成立 的充分条件,直至达到已知条件为止,从而使命题得到证 明。这种思维过程通常称为“执果寻因”
8、综合法:在研究或证明命题时,如果推理的方向是从已 知条件开始,逐步推导得到结论,这种思维过程通常称为 “由因导果”
3、分类讨论的思想:在数学中,我们常常需要根据研究对 象性质的差异,分各种不同情况予以考查;这种分类思考 的方法,是一种重要的数学思想方法,同时也是一种重要 的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形 式时,要确定它,只要求出式子中待确定的字母得值就可 以了。为此,把已知条件代入这个待定形式的式子中,往 往会得到含待定字母的方程或方程组,然后解这个方程或 方程组就使问题得到解决。

第三讲分类讨论思想课件

第三讲分类讨论思想课件

1 1.“m=2”是“直线(m+2)x+3my+1=0 与直线(m -2)x+(m+2)y-3=0 相互垂直”的 A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件
1 解析 当 m=2时,两条直线斜率的乘积为-1,从而可 得两条直线垂直;当 m=-2 时,两条直线中一条直线的斜 率为 0,另一条直线的斜率不存在,但两条直线仍然垂直, 1 因此 m=2是题目中给出的两条直线相互垂直的充分不必要 条件.
解析 若 p 真,则 0<a<1,若 p 假,则 a>1,
若 q 真,因为函数 y=|x-2a|+x 在 R 上的最小值为 2a,
1 1 由 2a>1,得 a>2;若 q 假,则 0<a≤2. 1 ①若 p 真 q 假, 0<a≤2; 则 ②若 p 假 q 真, a>1; 则 1 故 a 的取值范围是 0<a≤2或 a>1.
a,a如图(1),
此时 a 可以取最大值,可知 AD= 3, SD= a2-1,则有 a2-1<2+ 3, 即 a2<8+4 3=( 6+ 2)2,
即有 a< 6+ 2,又 2a>2,∴1<a< 6+ 2;
图(1)
图(2)
(2)构成三棱锥的两条对角线长为a,其他各边长为2,
如图(2),此时a>0且a<4,即0<a<4.
2.分类讨论的常见类型: (1)由数学概念引起的分类讨论:有的概念本身就是 分类的,如绝对值、直线斜率、指数函数、对数函 数等. (2)由性质、定理、公式的限制引起的分类讨论:有 的定理、公式、性质是分类给出的,在不同的条件 下结论不一致,如等比数列的前n项和公式、函数 的单调性等. (3)由数学运算引起的分类讨论:如除法运算中除数 不为零,偶次方根为非负,对数真数与底数的要求, 指数运算中底数的要求,不等式两边同乘以一个正 数、负数,三角函数的定义域等.

技法专题第2讲分类讨论思想、转化与化归思想

技法专题第2讲分类讨论思想、转化与化归思想
问题的C思o想py策r略ig.h对t 问20题1实9-行20分1类9与A整sp合o,s分 e P类t标y准L等td于. 增加
一个已知条件,实现了有效增设,将大问题(或综合性问题)分 解为小问题(或基础性问题),优化解题思路,降低问题难度.
分类讨论思想在解题中的应用
1
由数学概念而引起的分类讨论:如绝对值的定义、不等式 的定义、二次函数的定义、直线的倾斜角等.
①当 m≤0 时,g′(x)≤0,则 g(x)的单调递减区间是(-∞,
+∞);
②当m>0时,令g′(x)<0,解得x<- 2m 或x> 2m ,则
g(x)的单调递减区间E是v(a-lu∞a,ti-on2omn) l,y.( 2m,+∞). ated w综i上th所A述s,pmos≤e0.S时l,idge(xs)的fo单r调.N递E减T区3间.5是C(-li∞en,t+P∞ro);file 5.2
Evaluation only. ated witfh(a)A=s-p3o,se则.Sf(l6i-deas)=for .NET 3.5 Client P(rofi)le 5.2
AC.o-p74yright 2019-201B9.A-sp54 ose Pty Ltd.
C.-34
D.-14
解析:由于 f(a)=-3,
综上知,||PPFF21||=72或 2.
[技法领悟]
(1)本题中直角顶点的位置不定,影响边长关系,需按
直角顶点不同的位E置v进a行lu讨at论io.n only. ated with Aspose.Slides for .NET 3.5 Client Profile 5.2
C(2o)涉py及r几ig何h问t 2题0时19,-2由0于1几9 A何s元p素os的e形P状ty、L位t置d.变化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、在什么情况下要进行分类讨论
1.数学中的某些概念、定理、性质、法则、公式是分类定义 或分类给出的,在运用它们时要进行分类讨论。
2.研究含参数的函数、方程、不等式等问题,由参数值的 “量变”而导致结果发生“质变”,因而也要进行分类讨论。
3.在研究几何问题时,由于图形的变化(图形位置不确定 或形状不确定),引起问题结果有多种可能,就需要对各 种情况分别进行讨论。 4.含有特殊元素或特殊位置的排列组合问题,其解题的基 本策略,就是按照特殊元素或特殊位置的特征进行恰当的 划分,转化为最基本、最简单的排列组合问题,然后结合 加法原理或乘法原理完成解答。
0
,解得φ;
当a=0时,f(x)=-2x+2 , f(1)=0,f(4)=-6,∴不合题意
由上而得,实数a的取值范围是a > 1 。 2
(x 4a)(x 6a)
1
例4.解不等式
2a 1
>0 (a为常数,a≠- 2)
【分析】含参不等式,参数a决定了2a+1的符号和两根
1
1
-分【4解别a、加】6以2aa的+讨大1论>小.0时,,故a对> a->012、;a=-04、a<-6a时2<,a<a0>、0a。<- 2
2
,则 lim cosnθ sin nθ
n→∞cosnθ+sin nθ
的值为_________。
A.1或-1;B.0或-1;C.0或1;D.0或1或-1。
5.函数
y x 1 x
的值域是_________。
A.[2,+∞];B.(-∞,-2]∪[2,+∞];C.(-∞,+∞);D.[-2,2]。
6.正三棱柱的侧面展开图是边长分别为2和4的矩形, 则它的体积为_________。
A.
8 3;B. 9
4 9
3 ;C. 2
9
3 ;D. 4 9
3或8 9
3。
5.过点P(2,3),且在坐标轴上的截距相等的直=0;
C.3x-2y=0或x+y-5=0;
D.不能确定。
Ⅱ、示范性题组:
例1.设0<x<1,a>0且a≠1,比较| 的大小。
当a>1时,| log a (1 x)|-| log a (1 x)|=……
由①、②可知,……
例2.已知集合A和集合B各含有12个元素,A∩B含有4个元素, 试求同时满足下面两个条件的集合C的个数:①CA∪B且 C中含有3个元素;②C∩A≠φ。
【分析】由已知并结合集合的概念,C中的元素分两类: ①属于A元素;②不属于A而属于B的元素。并由含A中 元素的个数1、2、3,而将取法分三种。
【解】 C112·C82+ C122·C81+ C132· C80=1084
【另解】(排除法):
例3.设函数f(x)=ax-2x+2,对于满足1<x<4的一切x值都有 f(x)>0,求实数a的取值范围。
【分析】含参的一元二次函数在有界区间上的值域问题, 先对开口方向讨论,再对其抛物线对称轴的位置进行分 类讨论。(也属数形结合法)
5.树立划分意识,训练思维的严谨性,保证解题的正确 与完整。
二、分类讨论的步骤、原则和方法
1.分类评论的一般步骤是:
→明确讨论对象,确定对象的全体→确定分类标准,正确进行分类 →逐步进行讨论,获取阶段性结果→归纳小结,综合得出结论。
2.逻辑划分应遵循的原则:
分类的对象是确定的,标准是统一的,不遗漏、不重复、 分层次,不越级讨论。
log a (1 x)|与|
log a (1 x)|
【分析】对数函数的性质与底数a有关,而分两类讨论。
【解】∵0<x<1∴0<1-x<1,1+x>1
当0<a<1时, |log a (1 x)|-| log a (1 x) |= log a (1 x) -
log a (1 x) log a (1 x 2 ) >0;
【注】含参问题,结合参数的意义及对结果的影响 而分类讨论。(含参型)
3.多层次分类及“二分法”——处理复杂问题的分类方法。
4.分类讨论后如何归纳结论。
(1)统一式。针对变量分类讨论的,且在不同条件下问题 有不同的结论,归纳结论时应采用分列式。
(2)分列式。针对参数分类讨论的,且每一类讨论结果均 是 总结论的一个子集,归纳结论时应采用统一式。
三、灵活运用逻辑划分的思想方法
1.通过“补集”间接求解。 2.有条件时,尽量减少分类层次,寻求整体解决方法。
Ⅰ、再现性题组:
1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R}, 若AB,那么a的范围是_________。
A.0≤a≤1;B.a≤1;C.a<1;D.0<a<1。
2.若a>0且a≠1,p= log a (a3 a 1),q= log a (a 2 a 1,)
分类讨论思想方法
南宁三中 颜显桐
分类讨论思想方法
在解答某些数学问题时,有时会有多种情况,对各种情况 加以分类,并逐类求解,然后综合求解,这就是分类讨论法。 分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论 思想的数学问题具有明显的逻辑性、综合性、探索性,能训练 人的思维条理性和概括性,所以在高考试题中占有重要的位置。
则p、q的大小关系是_________。
A.p=q;B.p<q;C.p>q;D.当a>1时,p>q;当0<a<1时,p<q。
3.函数 y sin x cos x tgx ctgx 的值域是_________。
| sin x | | cos x | | tgx | | ctgx |
4.若
0,
所以分以下四种情况讨论:
当a>0时,(x+4a)(x-6a)>0,解得:x <-4a或x>6a;
当a=0时,x 2 >0,解得:x≠0;
1 当- 2 <a<0时,(x+4a)(x-6a)>0,解得:x<6a或x>-4a;
当a>- 1 时,(x+4a)(x-6a)<0,解得:6a<x<-4a。 2
综上所述,……
1
1
【解】当a>0时,f(x)=a(x- a )+2- a

1
1 a
4
f
( 1 )=2 a
1 a
0

1 a
≤1
f (1)=a 2 2≥0

1 a
≥4
f (4)=16a 8 2≥0
∴a≥1或
1<a<1或φ即a > 2
1

2
当a<0时,
f f
(1)=a 2 2≥ 0 (4)=16a 8 2≥
相关文档
最新文档