Fluent培训资料:8-湍流模型

合集下载

湍流模型及其在FLUENT软件中的应用

湍流模型及其在FLUENT软件中的应用

湍流模型及其在FLUENT软件中的应用一、本文概述湍流,作为流体动力学中的一个核心概念,广泛存在于自然界和工程实践中,如大气流动、水流、管道输送等。

由于其高度的复杂性和非线性特性,湍流一直是流体力学领域的研究重点和难点。

随着计算流体力学(CFD)技术的快速发展,数值模拟已成为研究湍流问题的重要手段。

其中,湍流模型的选择和应用对于CFD模拟结果的准确性和可靠性具有决定性的影响。

本文旨在深入探讨湍流模型的基本理论及其在FLUENT软件中的应用。

我们将简要回顾湍流的基本概念、特性和分类,为后续的模型介绍和应用奠定基础。

接着,我们将详细介绍几种常用的湍流模型,包括雷诺平均模型(RANS)、大涡模拟(LES)和直接数值模拟(DNS)等,并重点分析它们的适用范围和优缺点。

在此基础上,我们将重点关注FLUENT软件在湍流模拟方面的应用。

FLUENT作为一款功能强大的CFD软件,提供了丰富的湍流模型供用户选择。

我们将通过具体案例,展示如何在FLUENT中设置和应用不同的湍流模型,以及如何通过参数调整和结果分析来优化模拟效果。

我们还将探讨湍流模型选择的影响因素和最佳实践,以帮助读者更好地理解和应用湍流模型。

本文将对湍流模型在FLUENT软件中的应用进行总结和展望,分析当前存在的问题和挑战,并探讨未来的发展趋势和应用前景。

通过本文的阅读,读者可以全面了解湍流模型的基本理论及其在FLUENT 软件中的应用方法,为实际工程问题的解决提供有力的理论支持和技术指导。

二、湍流基本理论湍流,亦被称为乱流或紊流,是一种流体动力学现象,其特点是流体质点做极不规则而又连续的随机运动,同时伴随有能量的传递和耗散。

湍流与层流相对应,是自然界和工程实践中广泛存在的流动状态。

湍流流动的基本特征是流体微团运动的随机性和脉动性,即流体微团除有沿平均运动方向的运动外,还有垂直于平均运动方向的脉动运动。

这种脉动运动使得流体微团在运动中不断混合,流速、压力等物理量在空间和时间上均呈现随机性质的脉动和涨落。

fluent湍流模型

fluent湍流模型

第三节,
湍流模型
3.3.1 单方程(Spalart-Allmaras)模型 ~ ,表征出了近壁(粘性影响)区域以外的湍流运动粘 Spalart-Allmaras 模型的求解变量是ν ~ 的输运方程为: 性系数。ν
~ ~ ~ ∂ν Dν 1 ∂ ∂ν ~ − Yν ρ = Gν + 3-9 ( µ + ρν ) + Cb 2 ρ Dt σ ν~ ∂ x ∂ x ∂ x j j j 其中,Gν 是湍流粘性产生项;Yν 是由于壁面阻挡与粘性阻尼引起的湍流粘性的减少;σ ν ~
ρu y u = τ uτ µ ρuτ y u 1 = ln E µ uτ k
其中,k=0.419,E=9.793。
3-18
如果网格粗错不能用来求解层流底层,则假设与壁面近邻的网格质心落在边界层的对数 区,则根据壁面法则: 3-19
对流传热传质模型 在 FLUENT 中,用雷诺相似湍流输运的概念来模拟热输运过程。给出的能量方程为:
3-11
壁面的距离;S ≡
Ω ij =
∂u 1 j − ∂u i 2 ∂xi ∂x j
由于平均应变率对湍流产生也起到很大作用,FLUENT 处理过程中,定义 S 为:
S ≡ Ω ij + C prod min(0, S ij − Ω ij )
Байду номын сангаас其中, C prod = 2.0 , Ω ij ≡
率ε两个方程,湍流粘性系数用湍动能 k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍 流粘性系数 µ t 是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限 制性。 另外的方法是求解雷诺应力各分量的输运方程。这也需要额外再求解一个标量方程,通常 是耗散率ε方程。这就意味着对于二维湍流流动问题,需要多求解 4 个输运方程,而三维湍流 问题需要多求解 7 个方程,需要比较多的计算时间,对计算机内存也有更高要求。 在许多问题中,Boussinesq 近似方法可以得到比较好的结果,并不一定需要花费很多时间 来求解雷诺应力各分量的输运方程。但是,如果湍流场各向异性很明显,如强旋流动以及应力 驱动的二次流等流动中,求解雷诺应力分量输运方程无疑可以得到更好的结果。

中科大FLUENT讲稿_第三章_湍流模型

中科大FLUENT讲稿_第三章_湍流模型

第三章,湍流模型第一节, 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。

即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有:ij ijj i t j i k x u xu u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。

根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。

第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。

第三类是大涡模拟。

前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。

大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。

实际求解中,选用什么模型要根据具体问题的特点来决定。

选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。

FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。

湍流模型种类示意图包含更多 物理机理每次迭代 计算量增加提供RANS-based models第二节,平均量输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。

对于速度,有:i i i u u u '+= 3-3其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。

ansysFLUENT湍流模型PPT课件

ansysFLUENT湍流模型PPT课件
– 只有非常简单的流动才能预测出这些尺度(如充分发展的管流或 粘度计里的流动
对一般问题,我们需要导出偏微分输运方程组来计算涡粘系数
湍动能k 启发了求解涡粘模型的物理机理
-
11
A Pera Global Company © PERA China
涡粘模型
涡粘系数类似于动量扩散效应中的分子粘性
涡粘系数不是流体的属性,是一个湍流的特征量,随着流体流动 的位置而改变。
– 模型参数通过试验数据校验过,如管流、平板流等 – 对大多数应用有很好的稳定性和合理的精度 – 包括适用于压缩性、浮力、燃烧等子模型
SKE 局限性:
– 对有大的压力梯度、强分离流、强旋流和大曲率流动,模拟精度 不够。
– 难以准备模拟出射流的传播 – 对有大的应变区域(如近分离点),模拟的k 偏大
-
Fully turbulent region (log law region)
y is the normal distance
Upper limit of log
from the wall.
law region depends
on Reynolds number
近壁面处无量纲的速度分布图
对平衡的湍流边界层来说,半对数曲线的线性段叫做边界层一致性定
Eddy viscosity
– 雷诺应力模型 (RSM): 求解六个雷诺应力项(加上耗散率方程) 的偏微分输运方程组
-
10
A Pera Global Company © PERA China
涡粘模型
量纲分析表明,如果我们知道必要的几个尺度(如速度尺度、长 度尺度),涡粘系数就可以确定出来
– 例如,给定速度尺度和长度尺度,或速度尺度和时间尺度,涡粘 系数就被确定,RANS方程也就封闭了

fluent湍流模型

fluent湍流模型

第十章湍流模型本章主要介绍Fluent所使用的各种湍流模型及使用方法。

各小节的具体内容是:10.1 简介10.2 选择湍流模型10.3 Spalart-Allmaras 模型10.4 标准、RNG和k-e相关模型10.5 标准和SST k-ω模型10.6 雷诺兹压力模型10.7 大型艾迪仿真模型10.8 边界层湍流的近壁处理10.9 湍流仿真模型的网格划分10.10 湍流模型的问题提出10.11 湍流模型问题的解决方法10.12 湍流模型的后处理10.1 简介湍流出现在速度变动的地方。

这种波动使得流体介质之间相互交换动量、能量和浓度变化,而且引起了数量的波动。

由于这种波动是小尺度且是高频率的,所以在实际工程计算中直接模拟的话对计算机的要求会很高。

实际上瞬时控制方程可能在时间上、空间上是均匀的,或者可以人为的改变尺度,这样修改后的方程耗费较少的计算机。

但是,修改后的方程可能包含有我们所不知的变量,湍流模型需要用已知变量来确定这些变量。

FLUENT 提供了以下湍流模型:·Spalart-Allmaras 模型·k-e 模型-标准k-e 模型-Renormalization-group (RNG) k-e模型-带旋流修正k-e模型·k-ω模型-标准k-ω模型-压力修正k-ω模型-雷诺兹压力模型-大漩涡模拟模型10.2 选择一个湍流模型不幸的是没有一个湍流模型对于所有的问题是通用的。

选择模型时主要依靠以下几点:流体是否可压、建立特殊的可行的问题、精度的要求、计算机的能力、时间的限制。

为了选择最好的模型,你需要了解不同条件的适用范围和限制这一章的目的是给出在FLUENT中湍流模型的总的情况。

我们将讨论单个模型对cpu 和内存的要求。

同时陈述一下一种模型对那些特定问题最适用,给出一般的指导方针以便对于你需要的给出湍流模型。

10.2.1 雷诺平均逼近vs LES在复杂形体的高雷诺数湍流中要求得精确的N-S方程的有关时间的解在近期内不太可能实现。

第三章_湍流模型

第三章_湍流模型

第三章 湍流模型第一节 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。

即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有:ij ijj i t j i k x u xu u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。

根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。

第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。

第三类是大涡模拟。

前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。

大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。

实际求解中,选用什么模型要根据具体问题的特点来决定。

选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。

FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。

湍流模型种类示意图Direct Numerical Simulation包含更多 物理机理每次迭代 计算量增加提的模型选RANS-based models第二节 平均量输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。

对于速度,有:i i i u u u '+= 3-3其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。

fluent中常见的湍流模型及各自应用场合

fluent中常见的湍流模型及各自应用场合

标题:深入探讨fluent中常见的湍流模型及各自应用场合在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。

本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。

1. 简介湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。

在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。

2. k-ε模型k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。

它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。

k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。

3. k-ω模型k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。

与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。

4. LES模型LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。

在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复杂湍流流动进行模拟。

5. DNS模型DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。

在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。

总结与回顾通过本文的介绍,我们可以看到不同的湍流模型在fluent中各有其适用的场合。

从k-ε模型和k-ω模型适用于工程领域的实际流动情况,到LES模型和DNS模型适用于研究湍流细节结构和小尺度特征,每种湍流模型都有其独特的优势和局限性。

fluent湍流简述

fluent湍流简述

Reynolds-Stress Model
Detached Eddy Simulation
Available in FLUENT 6.2
Large-Eddy Simulation
Direct Numerical lation
17
Fluent中湍流模型面板
Define Models Viscous...
DNS和LES能直接得到气体的瞬态流场,但需要很大的计算机
容量和CPU时间,未能广泛应用于工程应用。
RANS将非稳态控制方程对时间作平均,即 N
1 n U i x , t lim ui x , t N N n 1
ui x, t Ui x, t uix, t
代数应力模型
1.紊流粘性模型(Eddy-Viscosity Models ,EVM)
引入Boussinesq涡粘性假设,认为雷诺应力与平均速 度梯度成正比,即将Reynolds应力项表示为
U i U j ij u iu j t x xi j
时均值 脉动值
因此,只能得到流场的时均值。要想得到瞬时值,它还必须和 另一些求脉动速度的方法相结合。在实际工程应用中,人们更关心流 动的时均值,而忽略湍流的细节。 因此,目前工程湍流计算还是依 赖于RANS。
7
基于Reynolds时均方程的统观模拟(RANS)
忽略流体相密度脉动,可得如下的时均方程组:
u y

一方程模型
/ t C k 1/ 2l
零方程模型和单方程模型适用于简单的流动;对于复杂流 动,系数很难给定,无通用性,故应用较少。
10

两方程模型
由求解湍流特征参数的微分方程来确定湍流粘性。包括k-ε 、 k-ω、 kτ、 k-l 模型等 。其中,应用最普遍的是 k-ε模型。

《fluent湍流模型》课件

《fluent湍流模型》课件

Fluent湍流模型的常见问题
常见的问题包括模型精度不够、 计算量太大、计算时间过长等。
解决法
可以通过减小网格尺寸、改变模 拟设置、使用高性能计算机等方 法来解决问题。
常见错误示范
常见错误包括不合理的边界条件、 不准确的物理参数设定等。
总结
通过本课程的学习,您已了解Fluent湍流模型的基本概念、原理和应用。希望您可以将所学应用到实际工作中, 并继续跟踪湍流模型的发展趋势。
工业中的应用
在飞机、汽车、火箭等工业 制造领域中广泛应用,可以 用于优化产品设计、性能测 试和流体控制等方面。
实际案例分析
使用Fluent湍流模型成功预 测了风力发电机转子的性能, 为风力发电技术的发展做出 了重要贡献。
优缺点
具有高精度、高可靠性和可 灵活扩展等优点,但对计算 资源要求较高。
常见问题与解决方法
通过求解雷诺应力方程来描述湍流过程,
精度更高但计算量更大。
3
Large Eddy Simulation
通过将湍流流场分解成大尺度和小尺度
Detached Eddy Simulation
4
来模拟流体运动。
相对于LES模拟时间更短,适合处理具有 湍流特性的旋转流和湍流边界层等问题。
Fluent湍流模型应用
质量守恒方程
描述流体中物质的流 动规律,保证物质质 量不会凭空消失或凭 空增加。
模拟方法
计算流体力学(CFD) 模拟的方法,如有限 元方法、有限体积法 和边界元方法等。
湍流模型原理
1
k-ε模型
在工程实践中应用广泛,许多气动工程
Reynolds Stress Model
2
和水动力学模拟都基于该模型进行。

fluent-湍流模型

fluent-湍流模型

fluent 湍流模型流体运动千变万化,但是都遵循自然规律,流体在运动中遵循质量守恒定律,动量定理和能量守恒定律。

从这些定律出发,导出流体力学基本方程组。

由质量守恒定律推出连续性方程由几种推导方法:1:拉格朗日观点法,2:欧拉法,3:直角坐标下控制体法0div V tρρ∂+=∂(对不可压流体,0divV =) 张量表示为:()0i iv t x ρρ∂∂+=∂∂ 由动量定理推出运动方程dVF divP dt ρρ=+ 张量表示为ij i i jp dv F dt x ρρ∂=+∂ 由能量守恒定理推出能量方程:()dUP S div kgradT q dtρρ=++ 或者 ij ji i i dU T p s k q dt x x ρρ⎛⎫∂∂=++ ⎪∂∂⎝⎭由此得出流体力学基本方程组:'0:()123(,)div V tdV F divPdt dU P S div kgradT q dt P pI S IdivV IdivVp f T ρρρρρρμμρ∂⎧+=⎪∂⎪⎪=+⎪⎪⎨=++⎪⎪⎛⎫⎪=-+-+ ⎪⎪⎝⎭⎪=⎩或者写为:()'0123(,)i iij i i j ij ji i i ij ij ij kk ij kk ijv t x p dvF dt x dU T p s k q dt x x p p s s s p f T ρρρρρρδμδμδρ∂⎧∂+=⎪∂∂⎪⎪∂=+⎪∂⎪⎪⎨⎛⎫∂∂=++⎪ ⎪∂∂⎝⎭⎪⎪⎛⎫⎪=-+-+ ⎪⎝⎭⎪⎪=⎩对于粘性不可压缩均质流体的基本方程为:0()2divV dV F gradp V dtds T div kgradT q dt P pI S ρρμρρμ=⎧⎪⎪=-+∆⎪⎨⎪=Φ++⎪⎪=-+⎩(这就是N-S 方程) 对于粘性不可压缩均质流体的基本方程组为01divV dV F gradp V dt dTC k T dt νρρ⎧⎪=⎪⎪=-+∆⎨⎪⎪=Φ+∆⎪⎩其中, ,v k 分2P pI S μ=-+别是常数粘性系数及热传导系数,Φ是耗损函数,22S μΦ=,方程组有五个二阶偏微分方程,用来确定五个未知函数,,,V p T ,一般情况下,动力学元素p 与运动学元素v 和热力学元素T 相互影响,特别是流场受温度场影响,主要是粘性系数和温度有关体现出来,如果温度变化不大,则粘性系数可以去为常数,从而流场不受温度影响,流场可以独立与温度场而求解。

fluent零方程湍流模型

fluent零方程湍流模型

fluent零方程湍流模型标题:湍流的魅力:探索Fluent零方程湍流模型导语:湍流是自然界中普遍存在的现象,它的复杂性使得我们对其理解充满了好奇与挑战。

在工程领域中,湍流对流体流动的影响不可忽视。

而Fluent零方程湍流模型为我们提供了一种研究湍流现象的有效工具。

本文将以人类的视角,探索这一模型的魅力,展示湍流的奥秘。

第一部分:湍流的定义与特性湍流是一种随机、不规则的流动现象,它在自然界中广泛存在。

与层流相比,湍流的特点是流速和压力的空间和时间波动较大。

湍流的复杂性使得其研究变得困难,但也正是这种复杂性使湍流显示出了一些令人惊叹的特性,比如能量耗散和涡旋结构的形成。

第二部分:Fluent零方程湍流模型的原理与应用Fluent零方程湍流模型是一种简化的湍流模型,它基于湍流的能量耗散理论。

该模型通过假设湍流的能量耗散率与流体的速度梯度成正比,从而实现了对湍流的模拟。

这种模型在工程领域中得到广泛应用,可以帮助工程师预测湍流对流体流动的影响,从而优化设计和提高效率。

第三部分:探索湍流的奥秘湍流的复杂性使得我们对其理解充满了挑战,但也正是这种挑战使得湍流的研究变得更加有趣。

从大气中的湍流到海洋中的湍流,从飞机机翼上的湍流到燃烧过程中的湍流,湍流无处不在。

通过Fluent零方程湍流模型,我们可以更好地理解湍流的形成机制和特性,进而应用于实际工程中。

结语:湍流是自然界中一种复杂而神奇的现象,它的研究对我们理解流体动力学以及优化工程设计具有重要意义。

Fluent零方程湍流模型为我们提供了一种有效的工具,可以帮助我们模拟和预测湍流对流体流动的影响。

通过深入研究湍流的特性和应用,我们可以更好地掌握湍流的奥秘,为工程实践提供更优化的解决方案。

让我们一同探索湍流的魅力,感受科学与工程的交融之美。

fluent的空气湍流模型

fluent的空气湍流模型

fluent的空气湍流模型(实用版)目录一、引言二、Fluent 中的湍流模型概述1.湍流模型的种类2.湍流模型的选择三、Fluent 中的空气湍流模型1.k-模型2.sa 模型3.LES 模型四、Fluent 中湍流模型的应用1.边界层流动2.噪声模拟五、结论正文一、引言在计算机流体动力学(CFD)领域,湍流是一种常见的流动现象。

由于其复杂性,工程师们通常需要使用湍流模型来模拟这种流动。

Fluent 是一款广泛应用于 CFD 领域的软件,它提供了多种湍流模型供用户选择。

本文将介绍 Fluent 中的空气湍流模型。

二、Fluent 中的湍流模型概述1.湍流模型的种类在 Fluent 中,湍流模型主要分为以下几类:k-模型、sa 模型、LES 模型、RSM 模型等。

这些模型分别适用于不同的流动情况,具有各自的优缺点。

2.湍流模型的选择选择合适的湍流模型是模拟流体流动的关键。

在实际应用中,需要根据流体的性质、流动区域、流动速度等因素来选择合适的湍流模型。

三、Fluent 中的空气湍流模型1.k-模型k-模型是一种基于涡旋随机化的湍流模型,适用于高速、非粘性流体流动。

在 Fluent 中,k-模型可以通过设置湍流粘性系数来调整模型的性能。

2.sa 模型sa 模型,即 Smagorinsky 模型,是一种基于涡旋随机化和湍流扩散的混合模型。

它在高速、非粘性流体流动方面具有较好的性能。

在 Fluent 中,sa 模型可以通过设置涡旋随机化参数和湍流扩散参数来调整模型的性能。

3.LES 模型LES 模型,即大涡模拟,是一种基于湍流涡旋结构的湍流模型。

它适用于高速、非粘性流体流动以及具有较强湍流特性的流动。

在 Fluent 中,LES 模型可以通过设置湍流涡旋参数来调整模型的性能。

四、Fluent 中湍流模型的应用1.边界层流动在边界层流动模拟中,湍流模型的选择尤为重要。

一般来说,对于有压力梯度的大范围边界层流动,可以选择 k-模型或 sa 模型;而对于强旋流和旋转流动,可以选择 LES 模型或 RSM 模型。

FLUENT培训教材08物理模型

FLUENT培训教材08物理模型

Partially Premixed
Eddy Dissipation Model (Species Transport) Premixed Combustion Model
Reaction Progress Variable*
化学反应
Fast Chemistry
Hale Waihona Puke Non-Premixed Equilibrium Model
Slug Flow
Bubbly, Droplet, or Particle-Laden Flow
Stratified / FreePneumatic Transport, Surface Flow Hydrotransport, or Slurry Flow
气/固 固
液/固 固
Sedimentation
Fluidized Bed
A Pera Global Company PERA China
FLUENT中的多相流模型
FLUENT 包括四种不同的多相流模型:
– Discrete Phase Model (DPM) – Volume of Fluid Model (VOF) – Eulerian Model – Mixture Model
A Pera Global Company PERA China
污染物模型
NOx 形成模型(预测定性的 NOx 形成趋势) – FLUENT 包括三种 NOx 产生机理
Thermal NOx Prompt NOx Fuel NOx
– NOx 还原模型 – 选择性非催化还原模型 (SNCR) l
Gas / Sand Gas
Contours of Solids Volume Fraction for High Velocity Gas/Sand Production

fluent的空气湍流模型

fluent的空气湍流模型

fluent的空气湍流模型摘要:一、Fluent 空气湍流模型的概述二、湍流模型的类型及选择三、设置湍流模型的步骤四、影响湍流模型的因素五、如何获取较好的湍流模型模拟结果正文:Fluent 是一款广泛应用于流体动力学模拟的软件,其中的空气湍流模型是解决实际工程问题的重要工具。

本文将详细介绍Fluent 中的空气湍流模型,包括模型的类型、设置方法以及影响模拟结果的因素。

一、Fluent 空气湍流模型的概述在Fluent 中,空气湍流模型主要分为以下几种:k-ε 模型、k-ω 模型、SST 模型、大涡模拟(LES)等。

这些模型都是基于实际湍流特性进行数学建模,用以预测和分析流体流动中的复杂现象。

二、湍流模型的类型及选择在选择湍流模型时,需要考虑流动特性、雷诺数、模拟精度等因素。

例如,k-ε 模型适用于广泛范围内的流动问题,但其精度相对较低;而k-ω 模型则适用于高速、大涡占主导的流动场合。

具体模型的选择可根据实际情况和需求进行。

三、设置湍流模型的步骤在Fluent 中设置湍流模型主要包括以下步骤:1.打开Fluent 软件,创建或导入计算模型。

2.在“Meshing”模块中,设置网格类型、尺寸和数量。

3.在“Boundary Conditions”模块中,设置进口、出口、壁面等边界条件。

4.在“Turbulence”模块中,选择合适的湍流模型,并设置模型参数。

5.设置其他物理参数,如压力、速度、密度等。

6.进行模拟计算。

四、影响湍流模型的因素湍流模型的选择和设置不仅取决于流动特性,还受到以下因素的影响:1.雷诺数:雷诺数是判断流动状态的重要参数,不同湍流模型适用于不同雷诺数的流动场合。

2.边界条件:边界条件的设置会影响湍流模型的表现,尤其是壁面边界层的影响。

3.网格质量:网格质量直接影响数值模拟的准确性和稳定性,选用合适的网格类型和尺寸至关重要。

五、如何获取较好的湍流模型模拟结果1.选择合适的湍流模型:根据实际流动特性和需求,选择适合的湍流模型。

fluent的空气湍流模型

fluent的空气湍流模型

fluent的空气湍流模型摘要:1.Fluent 软件概述2.湍流模型的概述3.Fluent 中的湍流模型分类4.各类湍流模型的特点及适用范围5.如何选择合适的湍流模型6.结论正文:一、Fluent 软件概述Fluent 是一款由美国CFD 公司(Computational Fluid Dynamics)开发的计算流体动力学(CFD)软件,广泛应用于工程领域,如航空航天、能源、化工、环境等。

Fluent 可以模拟流体的层流和湍流状态,为研究流体流动提供了强大的工具。

二、湍流模型的概述湍流是指流体在高速流动时,由于粘性力的不稳定性,产生的无规则、高度混合的流动状态。

在实际工程中,大部分流体流动都处于湍流状态。

为了模拟这种复杂的流动现象,Fluent 提供了多种湍流模型供用户选择。

三、Fluent 中的湍流模型分类Fluent 中的湍流模型主要分为以下几类:1.k-ε模型:基于k-ε两方程模型,其中k 为湍流动能耗散率,ε为湍流能量耗散率。

2.k-ω模型:基于k-ω两方程模型,其中k 为湍流动能耗散率,ω为湍流旋涡耗散率。

3.SST 模型:基于Spalart-Allmaras 三维湍流模型,考虑了流场中的旋涡和湍流扩散。

4.RSM 模型:基于大涡模拟(LES)的湍流模型,考虑了湍流尺度的空间分布。

5.VOF 模型:基于体积分数(Volume of Fluid)的湍流模型,适用于两相流问题。

6.Mixture 模型:基于混合长度理论的湍流模型,适用于多相流问题。

四、各类湍流模型的特点及适用范围1.k-ε模型:计算精度较高,适用于大部分工程问题。

特别适用于湍流强度较低、流动平稳的问题。

2.k-ω模型:考虑了湍流旋涡的耗散,适用于湍流强度较高、流动剧烈的问题。

例如,涡轮机、喷气发动机等。

3.SST 模型:计算精度较高,适用于考虑湍流旋涡耗散的问题。

例如,飞机翼型、汽车尾翼等。

4.RSM 模型:适用于湍流强度较高、流动剧烈的问题,特别是具有强旋流和旋转的流体。

fluent 湍流模型

fluent 湍流模型

10.10.1 湍流选项湍流模型可用的不同的选项在10.3到10.7节已经详细的介绍过了。

这里将提供这些选项的用法。

如果你选择的是Spalart-Allmaras 模型,下列选项是有用的:● Vorticity-based production (基于漩涡的产出)● Strain/vorticity-based production (基于应变/漩涡的产出)● Viscous heating (对耦合算法总是激活)如果你选择的是标准的ε-k 模型或是可实行的ε-k 模型,下列选项是有用的: ● Viscous heating (对耦合算法总是激活)● Inclusion of buoyancy effects on ε(包含浮力对ε的影响)如果你选择的是RNG ε-k 模型,下列选项是有用的:● Differential viscosity model (微分粘性模型)● Swirl modification (涡动修正)● Viscous heating (对耦合算法总是激活)● Inclusion of buoyancy effects on ε(包含浮力对ε的影响)如果你选择的是标准的ω-k 模型,下列选项是有用的:● Transitional flows● Shear flow corrections● Viscous heating (对耦合算法总是激活)如果你选择的是剪切-应力传输ω-k 模型,下列选项是有用的:● Transitional flows (过渡流)● Viscous heating (对耦合算法总是激活)如果你选择的是雷诺应力模型(RSM ),下列选项是有用的:● Wall reflection effects on Reynolds stresses (壁面反射对雷诺应力的影响) ● Wall boundary conditions for the Reynolds stresses from the k equation (雷诺应力的壁面边界条件来自k 方程)● Quadratic pressure-strain model (二次的压力-应变模型)● Viscous heating (对耦合算法总是激活)● Inclusion of buoyancy effects on ε(包含浮力对ε的影响)如果你选择的是增强壁面处理(对ω-k 模型和雷诺应力模型可用),下列选项是有用的:● Pressure gradient effects (压力梯度的影响)● Thermal effects (热影响)如果你选择的是大漩涡模拟(LES ),下列选项是有用的:● Smagorinsky-Lilly model for the subgrid-scale viscosity● RNG model for the subgrid-scale viscosity● Viscous heating (对耦合算法总是激活)10.2.4 The Spalart-Allmaras 模型Spalart-Allmaras模型是设计用于航空领域的,主要是墙壁束缚流动。

FLUENT常用的湍流模型及壁面函数处理

FLUENT常用的湍流模型及壁面函数处理

FLUENT常用的湍流模型及壁面函数处理本文内容摘自《精通CFD工程仿真与案例实战》。

实际上也是帮助文档的翻译,英文好的可直接参阅帮助文档。

FLUENT中的湍流模型很多,有单方程模型,双方程模型,雷诺应力模型,转捩模型等等。

这里只针对最常用的模型。

1、湍流模型描述2、湍流模型的选择有两种方法处理近壁面区域。

一种方法,不求解粘性影响内部区域(粘性子层及过渡层),使用一种称之为“wall function”的半经验方法去计算壁面与充分发展湍流区域之间的粘性影响区域。

采用壁面函数法,省去了为壁面的存在而修改湍流模型。

另一种方法,修改湍流模型以使其能够求解近壁粘性影响区域,包括粘性子层。

此处使用的方法即近壁模型。

(近壁模型不需要使用壁面函数,如一些低雷诺数模型,K-W湍流模型是一种典型的近壁湍流模型)。

所有壁面函数(除scalable壁面函数外)的最主要缺点在于:沿壁面法向细化网格时,会导致使数值结果恶化。

当y+小于15时,将会在壁面剪切力及热传递方面逐渐导致产生无界错误。

然而这是若干年前的工业标准,如今ANSYS FLUENT采取了措施提供了更高级的壁面格式,以允许网格细化而不产生结果恶化。

这些y+无关的格式是默认的基于w方程的湍流模型。

对于基于epsilon方程的模型,增强壁面函数(EWT)提供了相同的功能。

这一选项同样是SA模型所默认的,该选项允许用户使其模型与近壁面y+求解无关。

(实际上是这样的:K-W方程是低雷诺数模型,采用网格求解的方式计算近壁面粘性区域,所以加密网格降低y+值不会导致结果恶化。

k-e方程是高雷诺数模型,其要求第一层网格位于湍流充分发展区域,而此时若加密网格导致第一层网格处于粘性子层内,则会造成计算结果恶化。

这时候可以使用增强壁面函数以避免这类问题。

SA模型默认使用增强壁面函数)。

只有当所有的边界层求解都达到要求了才可能获得高质量的壁面边界层数值计算结果。

这一要求比单纯的几个Y+值达到要求更重要。

第08章 fluent基本物理模型

第08章 fluent基本物理模型

基本物理模型本章介绍了FLUENT 所提供的基本物理模型以及相关的定义和使用。

基本物理模型概述FLUENT 提供了从不可压到可压、层流、湍流等很大范围模拟能力。

在FLUENT 中,输运现象的数学模型与所模拟的几何图形的复杂情况是结合在一起的。

FLUENT 应用的例子包括层流非牛顿流的模拟,涡轮机和汽车引擎的湍流热传导,锅炉内煤炭粉碎机的燃烧,可压射流,空气动力外流,以及固体火箭发动机的可压化学反应流。

为了与工业应用相结合,FLUENT 提供了很多有用的功能。

如多孔介质,块参数(风扇和热交换),周期性流动和热传导,涡流,以及移动坐标系模型。

移动参考系模型可以模拟单一或者多个参考系。

FLUENT 还提供了时间精度滑动网格方法以及计算时间平均流动流场的混合平面模型,滑动网格方法在模拟涡轮机多重过程中很有用。

FLUENT 中另一个很有用的模型是离散相模型,这个模型何以用于分析喷雾和粒子流。

,多项流模型可以用于预测射流的破散以及大坝塌陷之后流体的运动,气穴现象,沉淀和分离。

湍流模型是FLUENT 中很重要的一部分,湍流会影响到其它的物理现象如浮力和可压缩性。

湍流模型提供了很大的应用范围,而不需要对特定的应用做出适当的调节,而且它涵括了其它物理现象的影响,如浮力和可压缩性。

通过使用扩展壁面函数和区域模型,它可以对近壁面的精度问题有很好的考虑。

各种热传导模式可以被模拟,其中包括具有或不具有其它复杂性如变化热传导的,多孔介质的自然的、受迫的以及混合的对流。

模拟相应介质的辐射模型及子模型的设定通常可以将燃烧的复杂性考虑进来。

FLUENT 一个最强大的功能就是它可以通过耗散模型或者和概率密度函数模型来模拟燃烧现象。

对于燃烧应用十分有用的其它模型也可以在FLUENT 中使用,其中包括碳和液滴的燃烧以及污染形成模型。

连续性和动量方程对于所有的流动,FLUENT 都是解质量和动量守恒方程。

对于包括热传导或可压性的流动,需要解能量守恒的附加方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T f ~
T
f
k
2
T
f k
3、Spalart-Allmaras 模型
• Spalart-Allmaras 是一种低耗的求解关于改进的涡粘输运方程的RANS 模型 • 主要用于空气动力学/涡轮机, 比如机翼上的超音速/跨音速流动, 边界层流动
等等 • 是一个相对新的一方程模型,不需求解和局部剪切层厚度相关的长度尺度 • 为气动领域设计的,包括封闭腔内流动
– RSM 对复杂的 3D湍流流动更有效,但是模型更加复杂, 计算强度 更大, 比涡粘模型更难收敛
2、 RANS 模拟
计算湍流粘性
• 基于量纲分析, μT 能够由 湍流时间尺度 (或速度尺度) 和空间尺度来决 定
– 湍流动能 [L2/T2] – 湍流耗散率 [L2/T3] – 比耗散率 [1/T]
Spalart-Allmaras 模型为单方程湍流模型:
湍流粘度:
湍流产生项
Spalart-Allmaras 模型默认常数
3、Spalart-Allmaras 模型
激活Spalart-Allmaras 模型的方法如下: 1)选择粘性模型面板中的 Spalart-Allmaras(1 equ); 2)选择Spalart-Allmaras模型中产生湍流 方法:Vorticity-Based; Strain/Vorticity-Based; 3)设置模型常数(Model Constants)
• 直接数值模拟 (DNS) – 理论上来说,所有的紊流流动能够由数值解出所有的N-S方程来模拟 – 解出尺寸频谱,不需要任何模型 – 花费太高! 对工程流动不实用 ,目前 DNS 在 Fluent中不可用。
• 现在没有一种简单而实用的湍流模型能够可靠的预测出具有充分精度的所有湍流流 动
1、湍流概述
Rij
uiuj
T
ui x j
u j xi
2 3
T
uk xk
ij
2k 3
ij
– Boussinesq假设 – Reynolds 应力 通过使用涡流粘性(湍流粘性)μT 模拟, 对简单湍流剪切流来说假设是合理的,例如 边界层、 圆形射 流、 混合层、 管流 等等。(S-A, k–ε )
(2) 雷诺德应力模型 (通过雷诺应力输运方程)
– 可以很好计算有反向压力梯度的边界层流动 – 在旋转机械方面应用很广 • 对于有壁面边界空气动力学流动应用较好 – 在有逆压梯度的情况下给出了较好的结果 – 在涡轮机应用中很广泛 • 局限性 – 不可用于所有类型的复杂工程流动 – 不能预测各向同性湍流的耗散
3、Spalart-Allmaras 模型
FLUENT支持的湍流模型
Spalart-Allmaras K-epsilon: Standard RNG
K-omega: Standard; SST
Realizable
Transitodel Linear pressure-strain RSM model
湍流模型
1、湍流概述
• 非定常,无规律 (无周期) 运动,输运量 (质量, 动量, 组分) 在时间和空间中波动 – 湍流漩涡. – 增强的混合(物质,动量 能量,等等)效果
• 流动属性和速度呈现随机变化 – 统计平均结果 – 湍流模型
• 包括一个大范围的湍流漩涡尺寸 (比例频谱). – 大涡的尺寸和速率与平均流动在一个量级 • 大涡流动从平均流动中得到能量 – 能量从大涡向小涡转移 • 在最小尺度的涡中,湍流能量随着粘性耗散转移为内能
2、 RANS 模拟
• 将N-S方程中的瞬时变量分解成平均量和脉动量:
ui
x, t
lim
N
1 N
N
uinx,t
n1
ui x,t ui x,t uix,t
ui x,t
瞬时项
时均项
波动项
• Reynolds-averaged 动量方程如下
uix, t ui x,t
Example: 完全发展 湍流管流 速度分布
Reynolds stress models Quadratic pressure-strain RSM model
Stress-omega RSM model Scale-Adaptive Simulation (SAS) model
Detached eddy simulation (DES) mode Large eddy simulation (LES) model
where
Ra
g L3 T
2 Cp g L3 T
is the Rayleigh number
k
Pr Cp k
is the Prandtl number
1、湍流概述
湍流结构
Small structures
Large structures
Energy Cascade Richardson (1922)
k uiui 2
ui xj ui xj uj xi
k
• 每种湍流模型用不同的方法计算 μT – Spalart-Allmaras • 解模拟湍流粘性的输运方程 – 标准 k–ε, RNG k–ε, Realizable k–ε • 解关于 k 和 ε的输运方程. – 标准 k–ω, SST k–ω • 解关于 k 和 ω的输运方程.
1、湍流概述
1、湍流概述
计算方法总览
• 雷诺德平均NS模型(RANS) – 解总体均值(或者时间均值)纳维-斯托克斯方程 – 在RANS方法中,所有湍流尺度都进行模拟 – 在工业流动计算中使用得最为广泛
• 大涡模拟 (LES) – 解算空间平均 N-S 方程,大涡直接求解, 比网格尺度小的涡通过模型得到 – 计算消耗小于DNS,但是对于大多数的实际应用来说占用计算资源还是太大了
ui t
uk
ui xk
p xi
x j
ui x j
Rij x j
Rij uiuj
(Reynolds 应力张量)
– Reynolds 应力是由附加的平均过程引起的,因此为了封闭控制方程组,必须对 Reynolds应力建模
2、 RANS 模拟
• RANS 模型能够用下列方法封闭
• (1) 涡粘模型 (通过 Boussinesq 假设)
1、湍流概述
流动是否为湍流
外部流动 Re x 500,000 沿着表面 Re d 20,000 沿着障碍物
内部流动
其中
Re L
U
L
L x, d, dh , etc.
其它因素比如自由流动湍流,,表 面条件,扰动等,在低雷诺数下 可能导致转变为紊流
Re dh 2,300
自然对流 Ra 109 Pr
相关文档
最新文档