江苏省十九届初中数学竞赛初一年级第一试(含答案)(扫描版)
苏科版七上初一数学竞赛系列训练题含答案
苏科版七上初一数学竞赛系列训练题含答案初一数学竞赛系列训练(12)一、多项选择题1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线()条a、 6b.7c.8d.92.平面上三条直线相互间的交点个数是()a、 3b。
1或3C。
1或2或3D。
不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有()a.36条b.33条c.24条d.21条4.已知平面上有n个点a、B和C在一条直线上,a、D、F和E四个点也在一条直线上。
除了一些,没有三点共线或四点共线。
如果将这n个点用作一条直线,则总共可以绘制38条不同的直线。
此时,n等于()(a)9(b)10(c)11(d)125.如果平行线AB和CD与相交线EF和GH相交,形成如图所示的图形,则相同的侧内角()a.4 vs.b.8 vs.c.12 vs.d.16 vs.6。
如图所示,如果已知FD‖be,∠ 1 + ∠ 2 - ∠ 3=()a.90°b.135°c.150°D.180°each二、填空gbfa3g2b1cca1edf2dbd第5题f问题6 e问题77.如图,已知ab∥cd,∠1=∠2,则∠e与∠f的大小关系;8.平面上有5个点,每两点都连一条直线,问除了原有的5点之外这些直线最多还有交点9.平面上的三条直线最多可分为三部分。
10.如图所示,ab‖CD‖EF,PS?GH在P,∠ FRG=110°,则acser第10题lhfgpqbd∠psq=。
11.假设a和B是直线L外的两点,则AB段的垂直平分线与直线之间的交点数为。
12.平面内有4条直线,无论其关系如何,它们的交点个数不会超过个。
三、回答问题13.已知:如图,de∥cb,求证:∠aed=∠a+∠b14.已知:如图,ab∥cd,求证:∠b+∠d+∠f=∠e+∠gdaaebfecgcbd第13题第14题15.如图所示,已知CB?AB,CE∠ BCD,de∠ CDA,∠edc+∠ecd=90°,求证:da?ab16.平面上两个圆和三条直线有多少个不同的交点?17.平面上5个圆两两相交,最多有多少个不同的交点?最多将平面分成多少块区域?18.直线上5分,直线外3分。
(完整版)2019年初中七年级数学竞赛试题及答案,推荐文档
对于任意一条直线 l ,在直线 l 从平面图形的一侧向另一侧平移的过程中,当图形被直线 l 分割后,设直线 l 两侧图形的面积分别为 S1,S2.两侧图形的面积由 S1<S2(或 S1>S2)的情形, 逐渐变为 S1>S2(或 S1<S2)的情形,在这个平移过程中,一定会存在 S1=S2 的时刻.因此,一定 存在一条直线,将一个任意平面图形分割成面积相等的两部分.---- ----15 分
--------------------15 分
18.(15 分)(1)在图中每画出一条给 0.5 分
-----------------2 分
(2)① -----------------------5 分
②
S1<S2 S1=S2 S1>S2
(3)存在.
S1<S2 S1=S2 S1>S2
-------------11 分 ---------------13 分
请你在图18中相应图形下方的横线上分别填写s1s2的数量关系式用182请你在图18中分别画出反映s1s2三种大小关系的直的横线上分别填写s1s2的数量关系式用3是否存在一条直线将一个任意的平面图形如图请简略说出理由184分割成面积相等的两部分19
2019 年初中七年级数学竞赛试题及答案
一、选择题(每小题 6 分,共 48 分;以下每题的 4 个结论中,仅有一个是正确的,请 将正确答案的英文字母填在题后的圆括号内.)
17.(15 分)设第一代表团有 a 人,第二代表团有 b 人,由题意得:
a 35m 15 , b 35n 20 ,其中 m、n 是自然数--------------------3 分
两个代表团共拍了 a×b 张照片,
数学竞赛试题初一及答案
数学竞赛试题初一及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a和b是两个非零实数,且a+b=5,那么a-b的最大值是多少?A. 5B. 4C. 3D. 23. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 44. 下列哪个选项是4的倍数?A. 7B. 8C. 9D. 105. 如果一个三角形的内角和为180°,那么一个四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 900°二、填空题(每题2分,共10分)6. 一个数的绝对值是它与____的距离。
7. 圆的周长公式是C=__。
8. 如果一个数的立方等于它本身,那么这个数可能是____。
9. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是____。
10. 一个数的倒数是1/这个数,那么1的倒数是____。
三、简答题(每题5分,共15分)11. 解释什么是有理数,并给出两个有理数的例子。
12. 什么是质数?请列出前5个质数。
13. 描述如何使用勾股定理来计算直角三角形的斜边长度。
四、计算题(每题10分,共20分)14. 计算下列表达式的值:(2+3)×(2-3)。
15. 解下列方程:2x + 5 = 13。
五、解答题(每题15分,共30分)16. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。
17. 一个班级有40名学生,其中1/4是男生,1/3是女生,剩余的是教师。
求男生、女生和教师的人数。
答案:一、选择题1. B2. A3. A4. B5. A二、填空题6. 07. 2πr(或πd,d为直径)8. 0, ±19. 5 10. 1三、简答题11. 有理数是可以表示为两个整数的比的数,例如1/2和3。
12. 质数是大于1的自然数,且除了1和它本身外,不能被其他自然数整除的数。
七年级数学竞赛班入学考试试题(含答案)
七年级数学竞赛班入学考试试卷考试时间:50分钟 总分:100分学校姓名 联系方式 得分基础巩固模块一、填空题。
(1-8题每空5分,共40分)1、甲数的43等于乙数的53,(甲数不等于0)甲数____乙数。
(用>,<号填空) 2、61<()5<32,( )里可以填写的最大整数是( )。
3、在自然数中,( )既是偶数又是质数;4、已知4x +8=10,那么2x +4=( )。
5、在括号里填入>、<或=。
1小时30分( )1.3小时6、在含盐率30%的盐水中,加入3克盐和7克水,这时盐水中盐和水的比是( )。
二、计算题。
(每小题5分)7、 25×1.25×328、列式计算:一个数的43比30的25%多1.5,求这个数。
竞赛之窗(9-16题每小题5分,共40分)9、(2004,江苏省竞赛)有3堆硬币,每枚硬币的面值相同,小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放入第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放入第1堆,这样每堆有16枚硬币,则原来第1堆有硬币 枚,第2堆有硬币 枚,第3堆有硬币 枚.10、有100个运动员,穿白色和黄色两种服装,带的帽子为红、绿两色。
若已知红帽白衣的队员有28人,绿帽的队员有62人,穿黄衣服的有36人,则绿帽黄衣的队员共有 人。
11、(2004,四川省联赛)有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支、练习本7本、圆珠笔1支共需6.3元,若购铅笔4支、练习本10本、圆珠笔1支共需8.4元。
现购铅笔、圆珠笔各1支,练习本1本,共需( )元。
A 、2.4B 、2.1C 、1.9D 、1.812、有4人对话如下:甲:我们当中只有1人说假话乙:我们当中只有2人说假话丙:我们当中只有3人说假话丁:我们都说假话则说假话的有 个人。
13、(2001,江苏省中考)用●表示实圆,用表示空心圆,现有若干实圆与空心圆按一定规律排列如下:●○●●○●●●○●○●●○●●●○●○●●○●●●○…,则前2001个圆中,有个空心圆。
2019年江苏省连云港市中考数学竞赛试题附解析
2019年江苏省连云港市中考数学竞赛试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,小敏在某次投篮中,球的运动路线是抛物线21 3.55y x =−+的一部分,若命中篮筐中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5 mD .4.6 m2.sin55°与 cos35°之间的关系( )A .0sin 55cos35o <B .00sin 55cos5>C .00sin 55cos351+=D .sin 55cos35o o = 3.如图,以□ABCD 对角线的交点为坐标原点,以平行于AD 边的直线为x 轴,建立直角坐标系.若点 D 的坐标为(3,2),则点B 的坐标为( ) A . (3,2) B . (2,3) C . (-3,-2) D . (-2,-3)4.下列图形中,一定是轴对称图形的是( )A .直角三角形B .平行四边形C .梯形D .等腰三角形 5.如图,AB ∥CD ,那么( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠46.王老师的一块三角形教学用玻璃不小心打破了(如图),他想再到玻璃店划一块,为了方便他只要带哪一块就可以了( )A .①B .②C .③D .④7.下列多项式的运算中正确的是( )A .222()x y x y −=−B .22(2)(22)24a b a b a b −−−−C . 11(1)(1)1222l a b ab +−=−D .2(1)(2)2x x x x +−=−− 8.把4根相同颜色的绳子握在手中,仅露出它们的头和尾,然后请另一个同学把 4 个头分成四组,把每组的两个头相接,4个尾也用同样的方法连结,放手后,4 根绳恰巧连成一个环的概率是( )A .14B . 18C .13D .23 9.下列各组代数式中,不是同类项的一组是( ) A .12−和0 B .213ab c −和2cab C .2xy 和2x y D .3xy 和xy − 10.下列叙述正确的是( )A .若||||a b =,则a b =B .若||a b >,则a b >C .若a b <,则||||a b <D .若||||a b =,则a b =±二、填空题11.某同学住在汇字花园 19 幢,一天,这位同学站在自家的窗口,目测了对面 22幢楼房的顶部仰角为 30°,底部俯角为 45°,又辆道这两幢楼房的间距是 4.5 m ,那么 22楼房的高度为 m .(精确到0.1 m)12.已知等腰梯形的周长为60.设高线长为 x , 腰长为2x ,面积为 y ,则y 与x 之间的函数关系式是 .13.对某中学同年级70名女生的身高进行了测量,得到了一组数据,其中最大值是169 cm ,最小值是145 cm ,对这组数据进行整理时,确定它的组距为2.5 cm ,则应分 组.14.观察卞列算式:22318−=,225316−=,229732−=,…,请将你发现的规律用式子表示出来 .15.在243y x =−中,如果6x =,那么x = . 16. 在△ABC 与A B C '''∆中,AB A B ''=,A A '∠=∠,要说明△ABC ≌△A ′B ′C ′,还需要增加条件 (只需写一个).17.某班a 名同学参加植树活动,其中男生b 名(b<a ),若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树_________棵.18.已知二元一次方程3210x y −=,用含y 的代数式表示x 得 ,并写出这个方程的部分解:①1__xy=⎧⎨=⎩;②__1xy=⎧⎨=⎩19.代数式12x−与326x+的和是 1,则x= .三、解答题20.如图,已知⊙O1、⊙O2相交于 A,、B,PE 切⊙O1于 P,PA、PB 交⊙O2于 C.D. 求证: CD∥PE.21.若函数比例函数23(2)m my m x−−=−是关于x的反比例函数.(1)求 m 的值并写出其函数解析式;(2)求当3y=时,x 的值.22.如图,已知△ABC、△DEF均为正三角形,D、E分别在AB、•BC上,请找出所有与△DBE相似的三角形,并找一对进行证明.23.如图,在正方形 ABCD中,AB=4,E 是 BC上一点,F 是CD 上一点. 且AE=AF,设△AEF 的面积为 y,EC=x.(1)求y与x 的函数关系式,并求出自变量x的取值范围;(2)当AEF 72S ∆=时,求 CE 的长度.24.如图,在梯形ABCD 中,AD ∥BC ,AB=AD+BC ,点E 为CD 的中点.求证:(1)AE ⊥BE ;(2)AE ,BE 分别平分∠BAD 、∠ABC .25.先化简,再求出近似值(结果保留4个有效数字) (1) 123127−+ (2) 154315÷−26. 计算: 61510 1112133 (3)3(33)128(4)(22)(322)+;281()17−(6)1112()312÷−;(7)(236)(326)−−⨯−−27.物体自由下落时,下落距离 h(m)可用公式25h t=来估计,其中 t(s)表示物体下落所经过的时间,一个物体从 120 m 的塔顶自由下落,落到地面需多长时间 (精确到0.1 s)?28.如图,古代有一位将军,他每天都要从驻地M处出发,到河边饮水,再到河岸同侧的军营A处巡视.他该怎样走才能使路程最短?你能帮助这位将军解决这个问题吗?29.利用等式的性质解下列方程,并写出检验过程.(1)9x=8x-6(2)253 3x−=(3)11 232 x+=30.已知31x=,31y=,求代数式2222x yx y xy−+的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.D5.C6.A7.D8.C9.C10.D二、填空题7.112.2230y x x =−+13.1014.22(21)(21)8n n n +−−=(n 为正整数)15.5x γ+=0;316.略17. 15b a b −18. 2103y x +=,①72−;②4 19. 76三、解答题20.作直径 PT ,连结 AT 、AB.∴∠PAT=90°,∠T+∠TPA=90°.∵PE 切⊙O 1 于点P.∴∠TPA+∠EPA=90°,∴∠EPA=∠T ,∵∠T=∠B ,∠B=∠C ,∴∠EPA=∠C ,∴CD ∥PE .21.(1)由22031m m m −≠⎧⎨−−=−⎩,得m=-1,∴3y x −=; (2)当3y =33x ==−△ADG, △GFH, △HEC .23.(1) ∵AE=AF, ∠B=∠D= 90°,AD=AB ,∴△ABE ≌△ADF.∴DF=BE= 4-x.AEF ABCD ABE EFC ADF S S s s s ∆∆∆∆=−−−正方形 ∴22211144(4)24222y x x x x =−⨯⨯−⨯−=−+ x 的取值范围:0<x<4(2)∵AEF 72S ∆=,∴217422x x −+=,解得:x 1= 1,x 2 = 7(不合题意,舍去) ∴x =1,即 CE 的长度为 1 24.略25.⑴2.309;⑵-4.472.26.(1) 30;(2318;(4)25)1517;(6)12;(7)1+ 27.4.9s28.略29.(1)6x =−检验略 (2)x =12 (3)13x = 30.1。
初一数学竞赛试题及答案
初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 2答案:A3. 如果一个角的补角是它的两倍,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:C4. 以下哪个选项表示的是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A5. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C6. 一个数的立方是-27,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:B7. 以下哪个选项是方程2x + 3 = 9的解?A. x = 3B. x = 6C. x = -3D. x = 0答案:A8. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 下列哪个选项是不等式2x - 5 > 3的解集?A. x > 4B. x > 2C. x < 4D. x < 2答案:A10. 如果一个三角形的两边长分别是3和4,那么第三边的长度可以是:A. 1B. 2C. 3D. 4答案:C二、填空题(每题3分,共30分)1. 一个数加上它的相反数等于______。
答案:02. 一个数的绝对值是它本身,这个数是______。
答案:非负数3. 一个角的补角是它的三倍,那么这个角的度数是______。
答案:45°4. 一次函数y = 2x + 1的图象经过点(0,1),则这个点是该函数的______。
答案:截距5. 一个数的平方是16,这个数是______。
答案:±46. 一个数的立方是8,这个数是______。
答案:27. 方程3x - 7 = 2的解是______。
江苏数学竞赛初中试题及答案
江苏数学竞赛初中试题及答案试题一:代数基础题题目:已知 \( a \) 和 \( b \) 是两个正整数,且 \( a^2 - b^2 = 21 \),求 \( a \) 和 \( b \) 的值。
答案:根据差平方公式,\( a^2 - b^2 = (a+b)(a-b) \)。
已知\( a^2 - b^2 = 21 \),我们可以将21分解为两个因数的乘积,即\( 21 = 3 \times 7 \)。
考虑到 \( a \) 和 \( b \) 是正整数,我们可以得出 \( a = 7 \),\( b = 3 \)。
试题二:几何题题目:在一个直角三角形中,如果一个锐角是另一个锐角的两倍,求这个三角形的三个角度数。
答案:设较小的锐角为 \( x \) 度,则较大的锐角为 \( 2x \) 度。
根据直角三角形的性质,三个角的和为180度,因此有 \( x + 2x + 90 = 180 \)。
解这个方程,我们得到 \( 3x = 90 \),所以 \( x = 30 \)。
因此,较小的锐角是30度,较大的锐角是60度,直角是90度。
试题三:数列题题目:一个数列的前三项为 \( 2, 4, 7 \),从第四项开始,每一项都是前三项的和。
求第10项的值。
答案:根据题意,数列的前几项为:2, 4, 7, (2+4+7), (4+7+13), ...即:2, 4, 7, 13, 24, 41, 75, 130, 231, ...第10项的值为 \( 231 \)。
试题四:逻辑推理题题目:有5个盒子,每个盒子里都装有不同数量的球,分别是1个,2个,3个,4个和5个。
现在有5个人,每个人从每个盒子里都拿了一个球,但没有人拿到两个相同数量的球。
每个人拿的球的总数都是6个。
问每个人分别从哪些盒子里拿球?答案:设5个人分别为A、B、C、D、E。
根据题意,每个人拿的球的总数都是6个,且没有人拿到两个相同数量的球。
我们可以列出以下可能的组合:- A: 1, 2, 3- B: 1, 3, 4- C: 1, 4, 5- D: 2, 3, 5- E: 2, 4由于每个人拿的球的总数都是6个,我们可以排除E的组合,因为2+4=6,没有第三个球。
2019年江苏省淮安市中考数学竞赛试卷附解析
2019年江苏省淮安市中考数学竞赛试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题如图是一个正方体纸盒的平面展开图,每一个正方形内部都有一个单项式.当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所表示的单项式是( )A .bB .cC .dD .e2.在Rt ⊿ABC 中,∠ACB =90°,∠A =30°,AC =3cm ,则AB 边上的中线为( )A .cm 1B .cm 2C .cm 5.1D .cm 3 3.如图所示,0为□ABCD 两对角线的交点,E ,F 分别为OA ,0C 的中点,图中全等的三角形有 ( )A .3对B .4对C .6对D .7对 4.若a b是二次根式,则应满足的条件是( ) A . a ,b 均为非负数 B .0a ≥且0b > C .0a b > D .0a b≥ 5.等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是( )A .15B .15或7C .7D .11 6.如图,已知直线AB ∥CD ,∠C=72°,且BE=EF ,则∠E 等于( )A . 18°B .36°C .54°D . 72°7.把多项式2(2)(2)m a m a −+−分解因式等于( )A .2(2)()a m m −+B .2(2)()a m m −− C .(2)(1)m a m −− D .(2)(1)m a m −+ 8.王老师的一块三角形教学用玻璃不小心打破了(如图),他想再到玻璃店划一块,为了方便他只要带哪一块就可以了( )A .①B .②C .③D .④9.不解方程判断方程21230111x x x −+=+−−的解是( ) A .O B .1 C .2 D .1310.在一次美化校园的活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?若设支援拔草的有x 人,则下列方程中正确的是 ( )A .32+x=2×18B .32+x=2(38-x )C .52-x =2(18+x )D .52-x=2×18二、填空题11.如图是由8块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,则蚂蚁停留在黑色瓷砖上的概率是 .12.如图所示, ∠1、∠2、∠3、∠4 之间的关系是 .13.若⊙O 的直径为 10 cm ,弦 AB 的弦心距为3 cm ,则弦 AB 的长为 cm .14. 函数22(2)2y x =++有最 值,最值为 ,当x 时,y 随x 的增大而增大.15.如图,每个小正方形的边长为 1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是 .解答题16.在四边形ABCD 中,若∠A :∠B :∠C :∠D=1:2:3:4,则∠C=________.17.如图,从2街4巷到4街2巷,走最短的路线的走法共有 种.18.鸡免同笼,共有 8个头、26条腿,则鸡、兔的只数依次分别是 .19.从A村到B 村有三种不同的路径,再从 B村到C村又有两种不同的路径.因此若从A村经B村去C村,则A村到C村有种可能路径.20.城镇人口占总人口比例的大小表示城镇化水平的高低,由如图统计图可知,我国城镇化水平提高最快的时期是.21.底数是2−,指数是 3 的幂是.322.比21−小 2 的数是.523.已知||2x≤,且x为整数,那么x为.三、解答题24.已知函数y=-x2-2x+3,求该函数图象的顶点坐标、对称轴及图象与两坐标轴的交点坐标.顶点(-1,4),对称轴为直线x=-1,与坐标轴的交点(0,3),(1,0),(-3,0).25.如图,在矩形 ABCD 中,AB =6 cm,BC=12 cm,点P从点A出发,沿 AB 边向点 B 以1cm/s的速度移动,同时点 Q从点B 出发沿 BC 边向点C 以2cm/s 的速度移动,回答下列问题:(1)设运动后开始第 t(s)时,五边形 APQCD 的面积为 S(m2),写出 S与t的函数关系式,并指出自变量 t 的取值范围;(2)t 为何值时S最小?求出 S的最小值.26.已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x轴交于点B(3,0).(1)求这两个函数的解析式;(2)画出它们图象.27.经市场调查,某种质量为(50.5±)kg的优质西瓜最为畅销.为了控制西瓜的质量.农科所分别采用A、B两种种植技术进行试验.现从这两种技术种植的西瓜中各随机抽取20个,记录它们的质量(单位:kg)如下:A:4.1,4.8,5.4.4.9,4.7,5.0.4.9,4.8,5.8.5.2,5.0.4.8,5.2,4.9,5.2,5.0,4.8.5.2,5.1,5.O.B:4.5,4.9,4.8,4.5,5.2,5.1.5.0,4.5,4.7,4.9,5.4,5.5,4.6,5.3,4.8,5.0,5.2,5.3,5.0,5.3.(1)若质量为(50.25±)kg的优质西瓜为优等品,根据以上信息完成表3.表3优等品数量/个平均数/kg方差A 4.9900.103B 4.9750.093看,你认为推广哪种种植技术较好?28.解下列分式方程:(1)1144−=+x x (2)13213231x x −=−−29.有个均匀的正十二面体的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,2个面标有“4”,1个面标有“5”,其余面标有“6”,将这个骰子掷出后:(1)掷出“6”朝上的的可能性有多大?(2)哪些数字朝上的可能性一样大?(3)哪些数字朝上的可能性最大?30.如图,0A 为圆的半径,以0A 为角的一边,0为角的顶点画∠AOB=72°,0B 交圆周于点B ,然后依次画∠BOC=∠COD=∠DOE=72°,分别交圆周于点C 、D 、E ,每隔一点连结两点之间的线段,观察所成的图形是一个什么图案.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.D4.D5.C6.B7.C8.A9.A10.B二、填空题21 12. ∠2>∠1=∠4>∠3.13.814.小,2,≥-215..108°17.618.3、519.620.1990年~2002年21.827−22. 235−23.-2,-1,0, 1, 2三、解答题24.25.(1) PBQ ABCD S S S ∆=−矩形=1126(6)22t t ⨯−−⋅=2672t t −+, t 的取值范围为 0≤t<6.(2) 2672s t t =−+2(3)63t =−+,∴当 t=3 时,63s =最大值cm 2. 26.(1)y=4x ,y=-2x+6;(2)图略(1)表中所填数据从上到下依次为16,10.(2)从优等品数量的角度看,∵A 种技术种植的西瓜优等品数量较多,∴A 种技术较好; 从平均数的角度看,∵A 种技术种植的西瓜质量的平均数更接近5妇.∴A 种技术较好; 从方差的角度看,∵B 种技术种植的西瓜质量的方差较小,∴曰种技术种植的西瓜 质量更为稳定;从市场销售的角度看,∵优等品更畅销,A 种技术种植的西瓜优等品数量 更多,且平均质量更接近5 kg ,因而更适合推广A 种种植技术.28.(1)38=x ,(2)13x =−29.(1)41;(2)1和5,2和4,3和6;(3)3和6. 30.五角星。
江苏省第十九届初中数学竞赛初一年级
江苏省第十九届初中数学竞赛初一年级 第1试2004年12月5月 上午8:30—10:30一、选择题(每小题7分,共56分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内. l .20042003(2)3(2)-+⨯-的值为( )(A )20032-(B )20032 (C )20042- (D )200422.已知23450ab c d e <,下列判断正确的是( )(A )0abcde <(B )240ab cd e <(C )20ab cde < (D )40abcd e <3.如果11x x -=-,那么( )(A )x <1(B )x >1(C )x ≤1(D )x ≥14.已知m 是小于l 的正数,11a m=-,11b m=-,1d m m=-,那么( )(A )c <d <a <b (B )b <c <d <a (C )c <a <b <d (D )a <c <b <d 5.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3:00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有( ) (A )1次 (B )2次 (C )3次 (D )4次 6.下面所说的“平移”,是指只沿方格的格线(即上下或左右)运动,将图中的任一条线段平移1格称为“1步”.要通过平移,使图中的3条线段首尾相接组成一个三角形,最少需要移动( )(A )7步 (B )8步 (C )9步 (D )10步7.如图,正方形ABCD 和CEFG 的边长分别为m 、n ,那么△AEG 的面积的值( )(A )只与m 的大小有关 (B )只与n 的大小有关 (C )与m 、n 的大小都有关 (D )与m 、n 的大小都无关8.如图(1),将正方体的左上部位切去一个小三棱拄(图中M 、N 都是正方体的棱的中点),得到如图(2)所示的几何体.设光线从正前方、正上方、正左方照射图(2)中的几何体,被光照射到的表面部分面积之和分别为S 前、S 上、S 左.那么( ) (A )S 前=S 上=S 左 (B )S 前<S 上=S 左 (C )S 上<S 左<S 前 (D )S 上<S 左=S 前 二、填空题(每小题7分,共84分)9.计算:555111(139)(139)993311993311++÷++=.10.在有5个正约数的正整数中,最小的一个是.11.如果两个正数的最大公约数是72,最小倍数是864,那么这两个数是.12.把从1开始的2004个连续正整数顺次排序,得到一个多位数N=123456789101112 (20032004)那么,N除以9所得的余数是.13.如图,把一张长方形纸片ABCD折叠,使点C与点A重合,折痕为EF.如果∠DEF =123°,那么∠BAF=°.14.如果3个连续的三位正整数a、b、c的平方和的个位数字是2,那么b的最小值是.15.如图,由12根铅丝焊接成一个正方体框架.现要将每个正方形的4根铅丝分别涂上红、黄、蓝、白4种颜色.如果已将AD涂成红色,BF涂成黄色,GH涂成蓝色,那么该涂成白色的铅丝有.16.有3种新书,单价分别为4元、5元、9元.某班有43名学生,每人都从中选购了自己所喜爱的书(可以不止1种,但不重复),那么至少有名学生所付的书款相同.17.把图(1)中的正方体沿图中用粗线画出的7条棱剪开,即可将其表面展开在平面上.在图(2)中按已确定的一个面ABCD的位置,画出这个平面展开的示意图.18.某旅游团一行50人到某旅社住宿,该旅社有三人间、双人间和单人间三种客房,其中三人间每人每晚20元,双人间每人每晚30元,单人间每晚50元.已知该旅行团住满了20间客房,且使总的住宿费用最省.那么这笔最省的住宿费用是元,所住的三人间、双人间、单人间的间数依次是.19.甲、乙、丙三辆车均在A、B两地间往返行驶,三辆车在A、B两地间往返一次所需时间分别为5小时、3小时和2小时.三辆车第一次同时汇合于A地时,甲车先出发,经过1小时后乙车出发,再经过2小时后丙车出发.那么丙车出发小时后,三辆车将第三次同时汇合于A地.20.池塘里有3张荷叶A、B、C,一只青蛙在这3张荷叶上跳来跳去.若青蛙从A开始,跳k(k≥2)次后又回到A,并设所有可能的不同跳法种数为a k,则当k>2时,a k与a k-1之间的关系式是,a8的值是.参考答案:1.每题7分,满分140分.2.第11、18、20题,7分按4、3分配,第15题,7分按3、2、2分配且错填1条棱扣2分.9.1.0410.1611.72、864或216、28812.313.2414.11015.AB、DH、FG16.817.如图18.1150,15、O、519.5220.a k=2k-1-a k-1,86。
2019—2020年苏科版七年级数学上学期五校联考竞赛试题及答案.docx
最新苏科版七年级上学期数学竞赛试题一、耐心填一填(每题5分,共50分)1、某天,5名同学去打羽毛球,从上午8:45一直到上午11:05,若这段时间内,他们一直玩双打(即须4人同时上场),则平均一个人的上场时间为________分2、已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,则∠AOC=___________度3、()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯。
4、定义a*b=ab+a+b,若3*x=27,则x的值是________。
5、有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。
问:F 的对面是_______。
FA DBCAED C6 A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是________。
7、 正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为 ________。
8、小李同学参加了学校组织的名为“互帮互助向未来”活动,为此小李自己在家制作了四份小礼物,准备送给他的新同学,四份小礼物分别装在形状完全一样的小长方体的盒子里,每个小长方体的长、宽、高分别是3、1、1,然后把这四个小长方体盒子用漂亮的丝带捆绑成一个大长方体,那么这个大长方体的表面积可能有 ________ 中不同的值,其中最小值为 ________。
9、 当 a ______时,方程组223196922x y a a x y a a ⎧+=+-⎪⎨-=-+⎪⎩的解是正数。
10、如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是________平方厘米。
江苏省第十九届初中数学竞赛试题与答案
江苏省第十九届初中数学竞赛试题与答案初三年级(第2试)一、选择题(每小题7分,共42分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后圆括号内.1、已知整数,x y =,那么整数对(,)x y 的个数是( D )(A )0 (B )1 (C )2 (D )32、方程222x x x-=的正根的个数是 ( A )(A )0 (B )1 (C )2 (D )33、在直角坐标系中,已知两点A (8,3)-、B (4,5)-以及动点C (0,)n 、D (,0)m ,则当四边形ABCD 的周长最小时,比值mn 为 ( C )(A )23-(B )2- (C )32-(D )3-4、设一个三角形的三边长为正整数,,a n b ,其中b n a ≤≤。
则对于给定的边长n ,所有这样的三角形的个数是( D )(A )n (B )1n + (C )2nn + (D )1(1)2n n +5、甲、乙、丙、丁4人打靶,每人打4枪,每人各自中靶的环数之积都是72(中靶环数最高为10),且4人中靶的总环数恰为4个连续整数,那么,其中打中过4环的人数为( C )(A )0 (B )1 (C )2 (D )36、空间6个点(任意三点不共线)两两连线,用红、蓝两色染这些线段,其中A 点连出的线段都是红色的,以这6个点为顶点的三角形中,三边同色的三角形至少有 ( C )(A )3个 (B )4个 (C )5个 (D )6个 二、填空题(每题7分,共56分) 7、已知1222Sx x x =--++,且12x -≤≤,则S 的最大值与最小值的差是 1 。
8、已知两个整数a 、b ,满足010b a <<<,且9a a b+是整数,那么数对(,)a b 有 7 个。
9、方程22229129xy x y xy ++-=的非负整数解是23x y =⎧⎨=⎩,03x y =⎧⎨=⎩,10x y =⎧⎨=⎩,16x y =⎧⎨=⎩.10、密码的使用对现代社会是极其重要的。
2019年江苏省中考数学竞赛试卷附解析
2019年江苏省中考数学竞赛试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.张华的哥哥在西宁工作,今年“五一”期间,她想让哥哥买几本科技书带回家,于是发短信给哥哥,可一时记不清哥哥手机号码后三位数的顺序,只记得是0,2,8三个数字,则张华一次发短信成功的概率是()A.16B.13C.19D.122.正方形具有而菱形不一定具有的特征有()A.对角线互相垂直平分B.内角和为360°C.对角线相等D.对角线平分内角3.将一个有40个数据的样本经统计分成6组,若某一组的频率为0.15,则该组的频数为()A.6 B.0.9 C.6 D.14.如图,下列条件中能得到△ABC≌△FED的有()①AB∥EF,AC∥FD,BD=CE;②AC=DF,BC=DE,AB=EF;③∠A=∠F,BD=CE,AB=EF;④BD=CE,BA+AC=EF+FD,BA=EF.A.1个B.2个C.3个D.4个5.已知点A(0,-l),M(1,2),N(-3,0),则射线AM和射线AN组成的角度数()A.一定大于90° B.一定小于90°C.一定等于90° D.以上三种情况都有可能6.如图所示,已知AD=CB,∠AD0=∠CB0,那么可用“SAS”全等识别法说明的是()A.△AD0≌△CB0 B.△AOB≌△COD C.△ABC≌△CDA D.△ADB≌△CBD7.下列式子中正确的是()A.x-(y-z)=x-y-z B.-(x-y+z) =x-y-zC.x+2y-2z=x-2(y+z) D.-a+c+d-b=-(a+b)+(c+d)8.9的算术平方根是()A.±3 B. 3 C.-3 D.3二、填空题9.如图,在黑暗的房间里,用白炽灯照射一个足球,则球在地面上的投影是一个,当球离地面越来越近时,地面上的投影会.10.若函数23=−是关于x的反比例函数,则m= .(2)m my m x−−11.若关于x的方程x2+mx+1=0有两个相等的实数根,则m=.12.在△ABC 中,∠= 90°,若 AB= 8,BC=1,则 AC= .13.如果不等式2(1)3−−≤的正整数解是 1、2、3,那么a的取值范围是.x a14.如图,正方体的棱长为1,用经过A、B、C三点的平面截这个正方体,所得截面中∠CAB=_______度.答案:60°15.用x、y分别表示 2辆三轮车和3辆卡车一次运货的吨数,那么5辆三轮车和4辆卡车共能运货24吨所表示的数量关系式是 .16.在如图所示的方格纸中,已知△DEF是由△ABC经相似变换所得的像,则△DEF的每条边都扩大到原来的倍.17.如图所示,△ABC中,DE是AC的中垂线,AE=5,△ABC的周长为30,则△ABD的周长是.18.如图所示,△ABC三条中线AD、BE、CF交于点0,S△ABC=l2,则S△ABD= ,S△AOF= .19.a、b、c三个数在数轴上的位置如图所示,化简||||++++−= .a cb ac a20.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_______.解答题三、解答题21.如图,水坝的横断面是梯形,迎水坡BC的坡角30B∠=°,背水坡AD的坡度为1:2,坝顶DC宽25米,坝高CE是45米,求:坝底AB的长,迎风坡BC的长以及BC的坡度.(答案可以带上根号)22.如图,已知∠B=∠AEF=40°,∠C=58°,求∠BAC与∠F的度数.23.如图,在△ABC 中,∠C = 40°,∠DEC =35°,∠A = 105°,那么DE 与 AB 是否平行?请说明理由.24.有一个两位数,个位上的数字与十位上的数字之和是11,如果把十位上的数字与个位上的数字对调,那么所得的两位数比原两位数大9,求原来的两位数.25. 已知△ABC 和直线m ,以直线m 为对称轴,画△ABC 轴对称变换后所得的图形.26.探索规律:(1)计算并观察下列每组算式: 88___79___⨯=⎧⎨⨯=⎩,, 55___46___⨯=⎧⎨⨯=⎩,, 1212___1113___⨯=⎧⎨⨯=⎩,. (2)已知25×25=625,那么24×26 = .(3)从以上的计算过程中,你发现了什么规律;你能用语言叙述这个规律吗?你能用代数式表示出这个规律吗?27.如图,O 是线段AC ,BD 的交点,并且AC=BD ,AB=CD ,小刚认为图中的两个三角形全等,他的思考过程是:在△AB0和△DC0中,AC=BD ,∠AOB=∠DOC ,AB=CD =>△AB0≌△DC0.你认为小刚的思考过程正确吗?如果正确,指出他用的是哪种三角形全等识别法;如果不正确,请你增加一个条件,并说明你的思考过程.AB mC28.计算:1152052精确到 0.01)(2)1(384)(27323)2−(精确到 0.01)29.据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率.(取2≈1.41)30.2(44)(2)a a a−+÷−= .2a−【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.C4.C5.C6.D7.D8.B二、填空题9.圆,变小10.一111.2± 12..13a ≤<14.15.542423x y +=16. 217.2018.6,219.2a b c +−20.3和13三、解答题21.解:45AF ∵,AF = 30tan 45=BE ,BE =25AB =+∴(米),又451sin 302BC ==∵°90BC =(米),BC 的坡度为22.∠BAC=82°,∠F= 42°23.DE ∥AB(同位角相等,两直线平行)24.设这个两位数十位上、个位上的数字分别是x 、y ,则11(10)(10x )9x y y x y +=⎧⎨+−+=⎩,解这个方程组得56x y =⎧⎨=⎩,经检验,符合题意, 答:这个两位数是 5625.略.26.(1)略;(2)624;(3)2n n n−+=−(1)(1)127.不正确,增加一个∠A=∠D(或∠B=∠C)的条件即可通过“AAS”证明,或增加一个A0=0D(或BO=OC)的条件即可通过“SAS”证明三角形全等.28.(1)4.02 (2)—2.4629.解:设我省每年产出的农作物秸杆总量为a,合理利用量的增长率是x,由题意得:30%a(1+x)2=60%a,即(1+x)2=2∴x1≈0.41,x2≈-2.41(不合题意舍去),∴x≈0.41即我省每年秸秆合理利用量的增长率约为41% .30.a−2。
江苏省第十九届初中数学竞赛试卷
江苏省第十九届初中数学竞赛试卷初二年级(2004年12月26日8:30—-—--11:00)一、选择题(每小题7分,共56分)以下每题的4个结论中,仅有一个是正确的,请将正确的答案的英文字母填写在题后的圆括号内。
1.数学大师陈省身于2004年12月3日在天津逝世,陈省身教授在微分几何等领域做出了杰出的贡献,是获得沃尔夫奖的惟一华人,他曾经指出,平面几何中有两个重要定理,一个是勾股定理,另一个是三角形内角和定理,后者表明平面三角形可以千变万化,但是三个内角的和是不变量,下列几个关于不变量的叙述:(1)边长确定的平行四边形ABCD,当A变化时,其任意一组对角之和是不变的;(2)当多边形的边数不断增加时,它的外角和不变;(3)当△ABC绕顶点A旋转时,△ABC各内角的大小不变;(4)在放大镜下观察,含角α的图形放大时,角α的大小不变;(5)当圆的半径变化时,圆的周长与半径的比值不变;(6)当圆的半径变化时,圆的周长与面积的比值不变.其中错误的叙述有()(A) 2个(B)3个(C) 4个(D)5个2.某种细胞在分裂过程中,每个细胞一次分裂为2个,1个细胞第一次分裂为2个,第2次继续分裂为4个,第3次继续分裂为8个,……则第50次分裂后的细胞的个数最接近()(A)1015(B)1012(C)1083.如图,在五边形ABCDE中,BC∥图中与△ABC面积相等的三角形有(A)1个(B) 2个(C) 3个(D)4.如图,四边形ABCD是正方形,直线l1,l2A,B,C三点,且l1∥l2∥l3,若l1与l2距离为7,则正方形ABCD的面积等于144 (D) 1485,一球从AB边上某处P击出,分别撞击球桌的边BC、DA各1次后,又回到出发点P处,每次球撞击桌边时,撞击前后的路线与桌边所成的角相等(例如图∠α=∠β)若AB=3,BC=4,则此球所走路线的总长度(不计球的大小)为( )(A)不确定(B)12 (C) 11 (D)106.代数式2x2-6xy+5y2,其中x、y 可取任意整数,则该代数式不大于10的值有()(A)6个(B)7个(C)8个(D)10个7.在2004,2005,2006,2007这四个数中,不能表示为两个整数平方差的数是()(A)2004 (B) 2005 (C)2006 (D)20078.已知关于x的不等式组⎪⎩⎪⎨⎧<≥-23bxax的整数解有且仅有4个:-1,0,1,2,那么适合这个不等式组的所有可能的整数对(a,b)的个数有()(A)1 (B)2 (C)4 (D)6二、填空题(每小题7分,共56分)9.在公路沿线有若干个黄沙供应站,每两个黄沙供应站之间有一个建筑工地,一辆载着黄沙的卡车从公司出发,到达第1个黄沙供应站装上沙,使车上的黄沙增加1倍,到达第1个建筑工地卸下黄沙2吨,以后每到达黄沙供应站装沙,使车上黄沙增加1倍,每到达建筑工地卸下黄沙2吨,这样到达第3个建筑工地将黄沙下好卸光,则卡车上原来装有黄沙吨10.有20个队参加比赛,每队和其他各队都只比赛1场,每场比赛裁定有1队胜,即没有平手,获胜1场得1分,败者得零分,则其中任意8个队的得分和最多是分。
初一数学竞赛测试题及答案
初一数学竞赛测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于这个数本身,那么这个数可能是:A. 0B. 1C. -1D. 2答案:A、B3. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 零D. 正数或零答案:D4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/9答案:C5. 如果一个三角形的三个内角分别为x°,y°和z°,那么x+y+z的值是:A. 180°B. 360°C. 90°D. 270°答案:A二、填空题(每题3分,共15分)6. 一个数的平方根是它本身,这个数可以是______。
答案:0或17. 如果a和b是两个连续的自然数,且a>b,那么a-b的值是______。
答案:18. 一个数的立方等于它本身,这个数可能是______。
答案:1或-1或09. 如果一个数的相反数是它本身,那么这个数是______。
答案:010. 一个数的绝对值等于它本身,这个数是非负数,即这个数是______。
答案:正数或零三、计算题(每题5分,共20分)11. 计算下列各题:(1) (-3) × (-4) = ______。
答案:12(2) 5 - (-3) = ______。
答案:8(3) (-2)² = ______。
答案:4(4) √16 = ______。
答案:4四、解答题(每题10分,共30分)12. 一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,斜边长度为√(3² + 4²) = √(9 + 16) = √25 = 5厘米。
13. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
求第10项的值。
数学竞赛试卷七年级【含答案】
数学竞赛试卷七年级【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个数的平方根是9,那么这个数是:A. 81B. 9C. 3D. -92. 下列哪个数是有理数?A. √2B. √3C. √5D. √93. 下列哪个数是整数?A. 3.5B. 2.7C. 1.2D. 0.94. 下列哪个数是无理数?A. 1/2B. 1/3C. 1/4D. 1/55. 下列哪个数是负数?A. -1B. 0C. 1D. 2二、判断题(每题1分,共5分)1. 任何数的平方都是正数。
()2. 两个负数相乘的结果是正数。
()3. 0的平方是0。
()4. 任何数的平方根都是正数。
()5. 两个正数相乘的结果是负数。
()三、填空题(每题1分,共5分)1. 如果一个数的平方是16,那么这个数是______。
2. 两个负数相乘的结果是______。
3. 0的平方根是______。
4. 任何数的平方都是______。
5. 两个正数相乘的结果是______。
四、简答题(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述无理数的定义。
3. 请简述整数的定义。
4. 请简述负数的定义。
5. 请简述正数的定义。
五、应用题(每题2分,共10分)1. 一个数的平方是25,请问这个数是多少?2. 两个负数相乘的结果是什么?3. 0的平方是多少?4. 两个正数相乘的结果是什么?5. 一个数的平方是9,请问这个数是多少?六、分析题(每题5分,共10分)1. 请分析并解释为什么两个负数相乘的结果是正数。
2. 请分析并解释为什么0的平方是0。
七、实践操作题(每题5分,共10分)1. 请计算并填写下表中的空缺部分:| 数字 | 平方 | 平方根 |--|| 4 | 16 | 2 || 9 | ? | ? || 16 | ? | ? |2. 请计算并填写下表中的空缺部分:| 数字 | 平方 | 平方根 |--|| -2 | 4 | ? || -3 | 9 | ? || -4 | 16 | ? |八、专业设计题(每题2分,共10分)1. 设计一个数学游戏,要求游戏中包含至少三种不同的数学运算。