结晶器振动
结晶器振动的超前量和负滑脱量的区别
结晶器振动的超前量和负滑脱量的区别
结晶器实施有规律的往复振动,可以防止拉坯时坯壳与结晶器黏结,同时获得良好的铸坯质量。
结晶器向上运动时,减少新生的坯壳与结晶器壁产生黏结,以防止坯壳受到较大的应力,减少铸坯表面出现裂纹;而结晶器向下运动时,借助结晶器壁与坯壳的摩擦,在坯壳上施加一定的压力,愈合结晶器上升时拉出的裂痕。
高效连铸对结晶器振动要求高频,小振幅,负滑脱时间不易太长,正滑脱时间里振动速度与拉速之差减小,合适的结晶器超前量。
在结晶器下振速度大于拉坯速度时,称为“负滑脱。
结晶器超前量指负滑脱时间里结晶器行程超过铸坯的那段距离。
研究认为,结晶器超前量取3—4mm较合适。
一方面,结晶器超前量应足够大,以确保坯壳在钢液面处能与结晶器较好地分离。
防止粘结;另一方面,结晶器超前量也不能太大,否则会产生深的、不均匀的振痕。
结晶器非正弦振动的优点:
拉速越高,保护渣的消耗量越低,润滑效果越差;尤其在结晶器液面附近发生漏钢的危险就越大。
如何能提高弯月液面下铸坯与结晶器的润滑就成为突出的问题。
结晶器非正弦振动波形使
正滑脱时间增长,负滑脱时间减少,减小拉坯阻力,增加保护渣的消耗量,增加铸坯与结晶器的润滑减少漏钢。
连铸结晶器振动参数取值限度问题
连铸结晶器振动参数取值限度问题连铸结晶器振动参数取值限度问题1 前⾔随着连铸技术的发展,结晶器振动技术亦不断发展,主要表现在振动参数的选择更加灵活,振动的⼯艺效果更好,尤其是振动参数更适合连铸⾼拉速的⼯艺要求。
结晶器振动的每⼀次完善都是突破原有振动参数的取值限度,以适应连铸更⾼的⼯艺要求。
随着结晶器⾮正弦振动形式的开发,本⽂讨论振动参数的取值限度问题。
2 结晶器振动参数的影响拉速Vc是连铸⼯艺控制的⼀个最关键的参数,因此结晶器振动参数的选择亦必须适合拉速的要求。
结晶器振动⼯艺参数对其⼯艺效果的影响如下:1)结晶器振动的负滑脱时T N控制铸坯表⾯的振痕深度,即两者呈增函数关系。
T N越长,振痕越深。
2)保护渣的消耗量与结晶器振动的正滑脱时间呈增函数关系,正滑脱时间越长,保护渣消耗量越⼤。
3)结晶器振动的负滑脱时间率、负滑动量、结晶器上振的最⼤速度都反映结晶器振动的⼯艺效果,但它们不是独⽴的参数,⽽且随着结晶器振动形式的确定,⼀般以其正、负滑脱时间来判定结晶器振动的⼯艺效果。
基于上述⼏点,为控制铸坯的振痕深度,希望T N短;⽽为保证结晶器的润滑效果,增加保护渣的消耗量,希望正滑脱时间长,为此⽬的开发了结晶器的⾮正弦振动形式,从⽽突破了结晶器正弦振动参数的取值限度。
3 问题的提出在结晶器⾮正弦振动中引⼊波形偏斜率α这⼀基本参数,增加了振动的独⽴参数,使振动参数的选择更灵活,更适合⾼速连铸的⼯艺要求。
即在⼀定的V C条件下,采⽤⾮正弦振动可以明显地降低振动频率f ,即可以保持f 不变,通过调整α来适合Vc的要求。
此外,⾮正弦振动可以分别构造结晶器的上振和下振速度曲线。
由此提出:在⼀定的Vc下,可否通过不断地增加α⽽⽆限地降低f 。
图1⽰出在⼀定V C和振幅S时,不同α所对应的t N – f 曲线。
可见α增加,t N – f 曲线左移。
图2为对应图1中某⼀t N值时,不同α和f 下的结晶器振动速度V m– 时间t曲线。
《2024年连铸结晶器非正弦振动装置的设计及研究》范文
《连铸结晶器非正弦振动装置的设计及研究》篇一摘要本文主要针对连铸过程中的结晶器振动装置展开设计与研究,通过深入探讨非正弦振动装置的工作原理及优点,提出了针对特定工艺条件下的优化设计方案。
文章从理论基础出发,结合实际应用场景,分析了装置的参数选择和结构设计,最终通过实验验证了设计方案的可行性和优越性。
一、引言在连铸工艺中,结晶器振动装置对于保证铸坯的质量、减少热裂纹等缺陷具有重要作用。
传统的正弦振动方式虽然在一定程度上满足了生产需求,但随着工艺技术的进步和产品质量的提升要求,非正弦振动方式逐渐成为研究的热点。
本文旨在设计并研究一种连铸结晶器非正弦振动装置,以适应现代连铸工艺的需求。
二、非正弦振动装置的理论基础非正弦振动装置基于连铸结晶过程中的热力学和动力学原理,通过改变振动的波形,达到优化结晶过程的目的。
其理论依据包括:1. 振动波形的选择与优化:非正弦波形能够更好地适应结晶过程中坯料的热收缩和膨胀,减少热应力的产生。
2. 振动参数的设定:包括振动频率、振幅、相位等参数的合理选择,对于保证铸坯质量和提高生产效率具有重要意义。
三、设计思路与参数选择针对连铸结晶器的非正弦振动装置设计,本文提出以下设计思路及参数选择原则:1. 装置结构设计:采用高精度、低维护的伺服电机驱动系统,配合特殊的振动波形发生器,实现非正弦波形的输出。
2. 参数选择:根据连铸工艺的具体要求,合理设定振动频率、振幅等参数,同时考虑设备的稳定性和可靠性。
3. 控制系统设计:采用先进的控制算法,实现精确的波形控制和参数调整,确保装置的稳定运行和铸坯质量的稳定。
四、装置的结构设计与实现根据上述设计思路和参数选择原则,本文提出了以下具体的结构设计方案:1. 驱动系统:采用高精度、高稳定性的伺服电机作为驱动源,确保振动的准确性和稳定性。
2. 振动波形发生器:采用数字信号处理技术,实现非正弦波形的生成和输出。
3. 连接与固定装置:设计合理的连接和固定方式,确保整个系统的稳定性和可靠性。
《2024年伺服电机驱动的连铸结晶器振动位移系统模糊控制研究》范文
《伺服电机驱动的连铸结晶器振动位移系统模糊控制研究》篇一一、引言在连铸生产过程中,结晶器振动位移系统的控制精度直接关系到铸坯的质量和生产的效率。
传统的控制方法往往难以满足高精度、高效率的生产需求。
因此,本研究采用模糊控制技术,对伺服电机驱动的连铸结晶器振动位移系统进行深入研究。
二、系统概述连铸结晶器振动位移系统主要由伺服电机、减速器、连杆机构、结晶器等部分组成。
伺服电机通过减速器和连杆机构驱动结晶器进行周期性振动,从而实现铸坯的连续铸造。
本研究的重点在于对这一系统的振动位移进行精确控制。
三、模糊控制技术模糊控制是一种基于模糊逻辑的控制方法,适用于处理复杂的非线性、时变系统。
在连铸结晶器振动位移系统中,由于各种因素的影响,系统的动态特性表现出强烈的非线性和时变性。
因此,采用模糊控制技术可以更好地实现对系统的精确控制。
模糊控制器主要由模糊化、规则库、推理机和反模糊化四个部分组成。
在模糊控制中,首先将输入的精确量模糊化,然后根据规则库中的规则进行推理,得出模糊输出,最后通过反模糊化将模糊输出转化为精确的控制量。
四、模糊控制策略设计针对连铸结晶器振动位移系统的特点,本研究设计了以下模糊控制策略:1. 确定输入输出变量:以振动位移和速度作为输入变量,以伺服电机的控制量为输出变量。
2. 设计模糊化方法:根据实际需求,将输入变量进行适当的量化处理,以适应模糊控制器的处理能力。
3. 建立规则库:根据连铸结晶器振动位移系统的动态特性和生产要求,建立合适的模糊规则库。
4. 推理机设计:采用适当的推理算法,根据输入变量的变化,实时调整输出变量的控制量。
5. 反模糊化处理:将模糊输出转化为精确的控制量,驱动伺服电机进行精确的振动位移控制。
五、实验与结果分析为了验证模糊控制策略的有效性,我们在实际生产线上进行了实验。
实验结果表明,采用模糊控制策略的连铸结晶器振动位移系统,在各种工况下均能实现高精度的振动位移控制。
与传统的控制方法相比,模糊控制策略具有更好的适应性和鲁棒性,能够更好地满足高精度、高效率的生产需求。
《2024年连铸结晶器非正弦振动波形分析与优化》范文
《连铸结晶器非正弦振动波形分析与优化》篇一一、引言连铸技术是现代钢铁工业的重要环节,其中结晶器的振动对铸坯的质量具有决定性影响。
传统的连铸结晶器多采用正弦振动波形,但在实际生产过程中,由于多种因素的影响,非正弦振动波形变得较为常见。
本文旨在分析连铸结晶器非正弦振动波形的特点及其对铸坯质量的影响,并探讨相应的优化措施。
二、非正弦振动波形分析1. 波形特征非正弦振动波形相较于传统的正弦波形,其特点在于波形的不规律性和复杂性。
在连铸过程中,结晶器的非正弦振动通常受到设备参数、铸坯特性以及外部环境等多重因素的影响。
非正弦波形的特征参数包括波峰数、波谷数、波峰波谷的幅度比等。
2. 影响因素(1)设备参数:结晶器本身的机械性能、振动系统的稳定性等都会对非正弦波形的形成产生影响。
(2)铸坯特性:铸坯的成分、温度分布等也会影响结晶器的振动波形。
(3)外部环境:如温度、湿度等环境因素也可能导致非正弦波形的出现。
三、非正弦振动波形对铸坯质量的影响1. 铸坯表面质量非正弦振动可能导致铸坯表面出现不规则的凹凸不平,增加表面缺陷的概率。
2. 内部组织结构非正弦振动波形可能影响铸坯的冷却速率和凝固过程,从而影响其内部组织结构。
四、优化措施1. 优化设备参数通过调整结晶器及振动系统的机械参数,如振动频率、振幅等,以达到改善非正弦波形的效果。
同时,对设备进行定期维护和检修,确保其运行稳定。
2. 调整铸坯成分与温度控制根据铸坯的成分和温度分布特点,调整连铸过程中的工艺参数,如浇注温度、冷却水流量等,以减少非正弦波形的产生。
3. 引入先进控制技术采用先进的控制算法和控制系统,如模糊控制、神经网络控制等,对连铸过程中的振动波形进行实时监测和调整,以实现更精确的波形控制。
4. 强化操作管理加强操作人员的培训和管理,提高其对连铸过程的理解和操作技能,减少人为因素导致的非正弦波形问题。
五、结论连铸结晶器的非正弦振动波形是影响铸坯质量的重要因素。
《伺服电机驱动的连铸结晶器振动位移系统模糊控制研究》范文
《伺服电机驱动的连铸结晶器振动位移系统模糊控制研究》篇一一、引言在连铸生产过程中,结晶器振动位移系统的控制精度直接关系到铸坯的质量和生产的效率。
传统的控制方法往往难以满足高精度、高效率的生产需求。
因此,本研究采用模糊控制技术,对伺服电机驱动的连铸结晶器振动位移系统进行控制研究。
本文旨在探讨模糊控制理论在连铸结晶器振动位移系统中的应用,为实际生产提供理论支持和技术指导。
二、连铸结晶器振动位移系统概述连铸结晶器振动位移系统是连铸生产过程中的重要组成部分,其作用是使结晶器在浇注过程中产生周期性的振动,从而促进铸坯的凝固和脱模。
该系统的性能直接影响到铸坯的质量和生产的效率。
传统的控制方法往往难以满足高精度、高效率的生产需求,因此需要寻求更加先进的控制技术。
三、模糊控制理论及其应用模糊控制是一种基于模糊集合理论的控制方法,其核心是通过建立模糊规则库,将不确定的、模糊的输入信号转化为确定的输出信号,从而实现精确的控制。
在连铸结晶器振动位移系统中应用模糊控制技术,可以有效地解决传统控制方法存在的缺陷,提高系统的控制精度和稳定性。
四、伺服电机驱动的连铸结晶器振动位移系统模糊控制设计4.1 模糊控制模型设计根据连铸结晶器振动位移系统的特点和要求,设计出适合的模糊控制模型。
该模型包括输入层、模糊化层、规则层和输出层。
其中,输入层接收系统的振动位移和速度信号;模糊化层将输入信号转化为模糊量;规则层根据模糊规则库进行推理和决策;输出层输出控制信号,驱动伺服电机进行精确的振动位移控制。
4.2 模糊规则库的建立模糊规则库是模糊控制的核心,其建立需要结合连铸结晶器振动位移系统的实际运行情况和专家经验。
通过分析系统的运行规律和影响因素,建立相应的模糊规则,如“如果振动位移过大,则减小伺服电机的驱动力”等。
这些规则可以根据实际需要进行调整和优化。
4.3 控制系统实现根据模糊控制模型和规则库,设计出相应的控制系统。
该系统包括硬件和软件两部分。
连铸结晶器振动工艺参数
异常情况的预警与处理
预警标准
设定异常参数的阈值,当实时监测数据超过阈值时, 发出预警信号。
预警方式
通过声、光、短信等方式提醒操作人员关注异常情况 。
处理措施
根据异常类型,采取相应的处理措施,如调整振动参 数、清洗结晶器等。
工艺参数的调整与优化建议
调整原则
根据实时监测数据和异常情况,及时调整结晶器的振动参数,确 保连铸过程的稳定性和产品质量。
初始阶段
早期的连铸机采用人工敲击的方式使结晶器振动,这种方 式效率低下且不稳定。
机械式振动阶段
随着机械技术的发展,人们开始采用机械传动装置来实现 结晶器的振动,出现了多种形式的机械式振动装置。
液压式振动阶段
液压技术的引入使得结晶器的振动更加平稳可控,液压式 振动装置逐渐成为主流。
智能化振动阶段
随着计算机技术和传感器技术的发展,结晶器的振动控制 逐渐实现智能化,能够根据实际生产情况自动调整振动参 数,提高铸坯质量和产量。
04
连铸结晶器振动工艺参数的优 化
基于实验的参数优化
实验设计
通过实验方法,对连铸结晶器振 动工艺参数进行优化,需要设计 合理的实验方案,包括选择合适 的实验参数、确定实验范围和实
验步骤等。
数据采集与分析
在实验过程中,需要采集各种数 据,如振动频率、振幅、波形等 ,并对数据进行处理和分析,以 确定各参数对结晶器振动效果的
总结词
随着连铸技术的不断发展,新型振动装置的开发与应 用成为研究重点。新型振动装置应具备更高的稳定性 和可靠性,能够实现更加灵活的振动模式和精确的工 艺参数控制。
详细描述
目前,新型振动装置的开发主要集中在智能化、模块 化和集成化等方面。例如,采用智能传感器和控制系 统,实现对结晶器振动状态的实时监测和自动调整; 采用模块化设计,方便对结晶器进行快速更换和维修 ;采用紧凑型设计,减小设备体积和重量,提高设备 的可靠性和稳定性。这些新型振动装置的开发将为连 铸结晶器振动工艺参数的研究提供更加先进和可靠的 实验平台。
(技师考试材料连铸课件)18结晶器振动
结晶器下振最大速度
对于正弦振动
Vm 2fA
负滑脱率
• 计算
Vm Vc 100%
Vc Vm 2 fA
振痕间距
• V/f
– 正弦 – 非正弦
方式
正弦
•图 • 机构
– 偏心轮连杆
• 优点
– 高频率小振幅
• 适用
– 普通质量 – 低速连铸 – 负滑脱率20~40% – 不能解决防止 拉漏和减轻振痕 深度的矛盾
(技师考试材料连铸课件)18结晶器振动
结晶器振动
• 目的 • 要求 • 参数 • 方式 • 机构 • 快速更换台架
目的
–防止漏钢 –保证润滑 –减少横裂纹 –液面波动大卷渣
目的
要求
– 负滑脱 • 结晶器下降速度>拉坯速度 • 脱模
– 上下振动 – 弧线振动
负滑脱
• 结晶器下降速度>拉坯速度
润滑
润滑
振动参数
结晶器下降最大速度
Vm
fA K11
负滑)V c ] 2 fA
或者
tN
1 f
cos
1[ (1 )V c ] 2 fA
正滑脱时间
tp
1 f
{1 1
cos
1[ (1 )V c ]} 2 fA
振痕间距
p Vc f
结晶器上升最大速度
负滑脱
• 结晶器下降速度>拉坯速度
参数
– 振幅 – 频率 – 波形偏斜率 – 负滑脱率 – 结晶器下振最大速度 – 负滑脱时间 – 正滑脱时间 – 结晶器上振最大速度 – 振痕间距
振幅
• 最高——最低点间距
– 行程一半
•小
– 铸坯表面平滑
结晶器振动参数优化
连铸技术
正弦振动同步控制模型
(1)正弦振动同步控制模型的概念 拉速同频率、振幅的对应关系称为同步控制 模型。由于振幅在生产时不便于调整,而振动 频率的调整却可以通过调整电机转数实现。 拉速—频率同步控制模型的建立是在不同工况下 对频率的动态选择。因此,它的建立仍然是以 工艺参数 tN、Ns 为基础。
12
连铸技术
13
连铸技术
通过Tn -f曲线可以看出,当振动频率 f 较低时, 振幅和拉速的变化对负滑脱的影响很大,振动 频率的波动对负滑脱时间也有很大影响;但当 振动频率提高到一定值后,振幅、拉速、振动 频率的变化对负滑脱时间几乎没有影响,负滑 脱时间也趋于相同。
14
连铸技术
负滑脱时间率 NSR
6
连铸技术
③正弦振动 结晶器振动时的运动速度随时间的变化呈一条正 弦曲线。其特点是:结晶器在整个振动过程中 速度一直是变化的,即铸坯与结晶器时刻都存 在相对运动。在结晶器下降过程中有一段负滑 动,能防止和消除粘结,具有脱模作用;由于 结晶器的运动速度是按正弦规律变化的,加速 度必然按余弦规律变化,所以过度比较平稳, 冲击力也较小。
35
连铸技术
(2)非正弦振动工艺参数 )
结晶器非正弦振动具备最佳振动模型的全部特 征,反映该特征的全部参数即为非正弦振动的 工艺参数。 其工艺参数有负滑动时间 tN、负滑动率Ns、负 滑动时间率 NSR、负滑动超前量 NSA 和正 滑动速度差△v。
36
连铸技术
①负滑动时间 tN
在其它参数为常数时,α 越大,负滑脱时间越短,振痕 越浅。目前,正弦振动 tN的取值已从过去的 0.5s 减少 到 0.25~0.10s,甚至更短。但如 tN过短将不利于脱模 及拉裂坯壳的“愈合”。一般对于低碳钢 tN应不小于 0.1s,而中碳钢 tN应不小于 0.07~0.10s 。
结晶器正弦振动装置的形式及其特点
图3-8 四偏心轮是振动机构 1—偏心轮及连杆 2—定中心弹簧板 3—铸皮外弧 4—振动台 5—涡轮副 6—直流电机
3
. 结 晶 器 的 导 向 机 构
5
四偏心振动机构
这种振动机构的最大优点是偏心轮连 杆的椎力作用于振动台的四角,使结晶 器的运动非常平稳,不会由于结晶器内 阻力作用点的偏移而使结晶器作不平稳 的运动。其缺点是运动零件较多,机构 比较复杂。
1
正弦振动的定义
当结晶器的运动速度与时 间的关系为一条正弦曲线时称 这种振动为正弦振动。
结晶器的正弦振动曲线
2. 结晶器的正弦振动
2
正弦振动的特点
正弦振动的主要特点是:结晶器在整个振动过程中速度一直 是变化的,即铸坯与结晶器间时刻都在相对运动。在结晶器下降 时还有一小段负滑动,因此能消除和防止粘结。另外,由于结晶 器的运动速度是按正弦规律变化的,加速度则必然按余弦规律变 化,所以,过度比较平稳,冲击比较小。它与梯速振动相比,坯 壳处于负滑动状态的时间较短,且结晶器上升时间占振动周期的 一半,故增加了坯壳断裂的可能性。为了弥补这一弱点应充分发 挥加速度较小的长处,亦可采用高频率振动以提高脱模的效果。
3
. 结 晶 器 的 导 向 机 构
2
导轨式振动机构
图3-4 直线导轨振动机构
虽然近年来导轨式振动机构又在罗可普连铸机上得到了 应用。但是导航式振动机构所固有的缺点在生产中依旧暴露 无遗,使一些生产厂家不得不对其进行改造。
3
. 结 晶 器 的 导 向 机 构
3
差动齿轮振动机构
如图3-5所示,结晶器固定在由弹簧7支撑的振动框架1上, 用凸轮或偏心轮8强迫框架下降,利用弹簧的反力使其上升。振 动框架的内、外弧侧面,装有齿条6,分别与节圆半径相等的小 齿轮2、4相啮合。装在小齿轮轴上的扇形应轮3及5有不同的节 圆半径,内弧侧的节圆半径较大,相互啮合的扇形齿轮3及5摆 动时、就使与其相连的两个小齿轮2及4产生个同的线速度。 反应在振动框架两侧的 齿条上,其上下运动的线速 度也不一样,因而可使结晶 器产生弧线运动,由于它结 构复杂,齿轮与导向件磨损 较严重等原因而未能得到推 广。但劳动原理却在后来的 四偏心机构上得到了应用。
连铸机结晶器非正弦振动参数分析及动力学仿真
摘要结晶器是连铸机的关键设备之一,结晶器振动是影响连铸生产质量和产量的重要因素。
因此,对结晶器振动系统进行研究有着重要意义和实用价值。
本文介绍了结晶器振动技术的发展以及结晶器非正弦振动技术在国内外的研究与应用,并在了解国内外结晶器非正弦振动系统和分析结晶器非正弦振动规律以及工艺参数的基础上,结合某板坯连铸机采用的短杆式结晶器液压振动系统,着重于研究结晶器液压非正弦振动系统的动态特性以及结晶器四连杆振动机构的运动学、动力学特性,主要进行了以下几个方面的工作:1)在全面了解结晶器液压振动系统、液压伺服系统的建模方法和仿真的基础上,研究了结晶器液压振动系统的工作原理,建立了相应数学模型。
2)根据建立的数学模型,利用软件Matlab中的SIMULINK模块实现系统动态结构图,通过对液压振动系统进行动态仿真计算分析,得到了系统主要控制量的仿真曲线,研究了系统中主要参数的变化对结晶器液压非正弦振动系统性能的影响。
3)利用三维实体建模软件Pro/E和机械系统动力学分析软件ADAMS,建立了结晶器平行四连杆振动装置的三维虚拟样机模型,通过对平行四连杆振动机构的动力学仿真,得到了在不同振幅,不同振动频率条件下机构的运动学、动力学规律以及相关特性。
对结晶器液压非正弦振动系统的动态特性仿真研究以及对结晶器四连杆振动机构的动态行为仿真研究,其计算结果为连铸机结晶器液压非正弦振动装置的设计、改进及维护提供了数据,也为结晶器液压非正弦振动装置实现高频、小振幅的振动条件提供了理论依据。
关键词:连铸结晶器;非正弦振动;液压振动系统;SIMULINK;ADAMS;动态仿真ABSTRACTThe mould is one of the key devices of continuous casting machine,and the yield and quality of continuous casting mainly depend on the vibration of mould.Therefor,it is quite significant to study mould vibration system.The development of mould vibration technology and the mould non-sine wave vibration technology at home and broad are introduced in the bined with short lever electro-hydraulic mould vibration system,the whole research on dynamic characteristics of mould hydraulic non-sine vibration system and kinematics and dynamics characteristics of mould four-link vibration mechine are based on both the acquirment of mould non-sine vibration system and analysis of mould non-sine vibration regularity. This study puts emphasis upon several parts:1) On basis of knowing about mould hydraulic vibration system and modeling methodologies and simulation and optimization of draulic servo system,study the structure of mould hydraulic vibration and build mathematic model.2) According to the mould hydraulic vibration mathematics model,analyzed the dynamic characteristic of the mould hydraulic vibration system with the MATLAB/Simulink module,figured out the simulation curve of main controlled variable.Effect of main parameters to the system performances is analyzed.3) Based on the 3D prototyping model of mould four-link vibration mechine with Pro/E and ADAMS and dynamic simulation ,study the kinematics and dynamics characteristics of mechine with different frequencies and amplitedes.Results of dynamic characteristic analysis will provide theoretic data for design and improvement to the continuous caster. It will provide theoretic support for the oscillating mechanism using high frequency and short stroke oscillation parameters.Key Words:Contunuous casting mould;Non-sine vibration;Hydraulic vibration system;SIMULINK;ADAMS;Dynamic simulation目录第一章绪论 (1)1.1 连铸及结晶器简介 (1)1.2 结晶器振动技术的发展 (2)1.3 连铸结晶器非正弦振动技术在国内外的研究与应用 (4)1.4 课题来源及研究意义 (6)1.5 课题主要研究内容 (6)第二章连铸结晶器非正弦振动理论分析 (8)2.1 结晶器非正弦振动产生机理 (8)2.1.1 结晶器润滑机理 (8)2.1.2 结晶器最佳振动波形产生机理 (9)2.2 结晶器非正弦振动波形及数学表达式 (11)2.2.1 三角形振动波形 (11)2.2.2 普通非正弦波 (13)2.2.3 复合正弦波 (15)2.3 结晶器非正弦振动参数分析 (16)2.3.1 非正弦振动工艺参数分析 (16)2.3.2 非正弦振动工艺参数的确定 (17)2.3.3 非正弦振动基本参数的确定 (18)第三章连铸结晶器液压振动系统研究 (20)3.1 结晶器液压振动系统组成及原理 (20)3.2 结晶器液压振动系统的技术要求 (21)3.3 结晶器液压振动系统建模 (22)3.3.1 液压系统常用建模方法 (22)3.3.2 结晶器液压振动系统简化 (24)3.3.3 结晶器液压伺服系统数学模型 (24)3.4 系统参数的确定 (27)3.4.1 系统基本参数 (27)3.4.2 参数的计算说明 (28)第四章连铸结晶器液压振动系统仿真分析 (29)4.1 仿真软件的选用及模型实现 (29)4.2 仿真结果及动态特性分析 (32)4.2.1 不同输入信号下动态特性分析 (32)4.2.2 不同系统参数下动态特性分析 (34)第五章连铸结晶器四连杆振动机构动态仿真 (36)5.1 三维虚拟样机模型的建立 (36)5.1.1 建模及仿真软件简介 (36)5.1.2 机构中零部件三维造型及装配 (37)5.1.3 机构间运动副、约束力及运动激励的施加 (38)5.2 四连杆振动机构运动学分析 (39)5.2.1 杆件角速度及角加速度仿真结果分析 (40)5.2.2 结晶器速度及加速度仿真结果分析 (42)5.3 四连杆振动机构动力学分析 (43)5.3.1 各构件动支反力仿真结果 (44)5.3.2 构件动支反力变化规律分析 (45)第六章结论 (47)参考文献 (48)致谢 (51)个人简历及在学发表论文 (52)第一章绪论1.1 连铸及结晶器简介连铸即连续铸钢技术,是指将高温钢液连续的浇铸到一个或多个强制水冷的金属型腔内。
连铸结晶器振动工艺参数
06
研究展望与未来发展趋势
结晶器振动工艺参数研究的现状与不足
要点一
现状
要点二
不足
连铸结晶器振动工艺参数是提高铸坯质量、减少裂纹 等缺陷的关键因素。目前,国内外研究者已经开展了 大量研究,取得了一定的成果。
优化建议
根据实际生产需要选择合适的波形,如方波适用于高碳钢等硬度较 大的材质,正弦波适用于低碳钢等韧性较好的材质。
振动方向的控制与优化
01
纵向振动
能够提高铸坯的纵向均匀性,但脱模效果较差。
02
横向振动
能够提高铸坯的横向均匀性,但可能增加振痕深度。
03
优化建议
根据铸坯的形状和用途选择合适的振动方向,如矩形坯多采用纵向振动
连铸结晶器振动工艺参数
2023-11-09
目录
• 结晶器振动概述 • 结晶器振动工艺参数 • 结晶器振动工艺参数的选择与优化 • 结晶器振动工艺参数的监控与调整 • 结晶器振动工艺参数对铸坯质量的影响及控制措
施 • 研究展望与未来发展趋势
01
结晶器振动概述
结晶器振动的重要性
提高产品质量
通过振动,可减少铸坯表面缺 陷,提高产品质量。
振动幅度
总结词
振动幅度是结晶器振动工艺中的另一个重要参数,它决 定了坯壳与结晶器之间的相对位移。
详细描述
振动幅度是指结晶器振动时坯壳与结晶器之间的最大相 对位移,通常以毫米(mm)为单位表示。在连铸过程 中,适当地增大振动幅度可以增加坯壳与结晶器之间的 相对运动,有利于减小坯壳与结晶器之间的摩擦力,降 低坯壳表面的传热速率。然而,过大的振动幅度可能导 致坯壳过热或破裂,影响连铸坯的质量和结晶器的使用 寿命。
结晶器振动
连铸技术
③正弦振动 结晶器振动时的运动速度随时间的变化呈一条正
弦曲线。其特点是:结晶器在整个振动过程中 速度一直是变化的,即铸坯与结晶器时刻都存 在相对运动。在结晶器下降过程中有一段负滑 动,能防止和消除粘结,具有脱模作用;另外, 由于结晶器的运动速度是按正弦规律变化的, 加速度必然按余弦规律变化,所以过度比较平 稳,冲击力也较小。
26
连铸技术
27
连铸技术
① 全部 tN 曲线与 Ns=-0.024 的射线交于顶点,在一 定的拉速范围内,对于任何一拉速和 tN 曲线都有两 个交点,它们分别对应一个高频率和一个低频率。这 两个频率对应相同的负滑动时间。
② 全部 tN、Ns 曲线相交于坐标系原点 0 点,曲线的 下部相互靠近,并重合于 Ns=-0.3634(负滑动率极 限值)曲线。s 值越大它们越靠近,tN值越小它们重 合的线段越长,tN=0 时与 Ns=-0.3634 曲线全部 重合。
34
(2)非正弦振动工艺参数
连铸技术
结晶器非正弦振动具备最佳振动模型的全部特
19
2.2振动参数对铸坯质量的影响
连铸技术
(1)结晶器振动参数对铸坯振痕的影响
由结晶器振动在铸坯表面形成的横向痕迹称为振 痕。振痕深度是衡量铸坯表面质量的重要标准 之一,过深的振痕会造成铸坯表面裂纹和成分 的偏析。大量的实验表明,振痕深度与负滑脱 时间有关,负滑脱时间越短,振痕深度就越浅。 缩短负滑脱时间、降低振幅和提高振动频率均 可以减少铸坯的振痕,改善铸坯质量
④当 NS<2.4%时,负滑动时间曲线随频率 f 的增加 而下降,特别是当 z 值较小时,如 z<5 时,曲线下 降得非常缓慢。
25
正弦振动同步控制模型
结晶器和结晶器震动设备的作用
结晶器应具备要求:
(1)结晶器内壁应具备良好的导热性和耐
磨性。 (2)结晶器应具有一定的刚度,以满足巨 大的温差和各种力作用引起的变形,从而 保证铸坯精确的断面形状。 (3)结构简单,易于制造、装拆和调试。 (4)重量要轻,以减少振动时产生的惯性 力,震动平稳可靠。
主要参数:
材质:
结晶器内层是钢水凝固时进行热交换并使
钢水成型的关键部件,因此要求采用导热 性能良好的材质制成。紫铜板导热性能良 好,但强度和硬度都低,尤其在高温下强 度就更低,因而其寿命较短。为了提高寿命, 普遍采用铜合金,如:铜银合金、铜一铬 一锆一砷合金、铜一镁一锆合金等。
结晶器的润滑:晶器和结晶器震动设备的作用
制作:李劭轩
结晶器:
结晶器是连铸机非常重要的部件,是一个强制 水冷的无底钢锭模。称之为连铸设备的“心
脏”。 结晶器的作用: (1)使钢液逐渐凝固成所需要规格、形状的 坯壳; (2)通过结晶器的振动,使坯壳脱离结晶器 壁而不被拉断和漏钢; (3)通过调整结晶器的参数,使铸坯不产生 脱方、鼓肚和裂纹等缺陷; (4)保证坯壳均匀稳定的生成。
(1)结晶器的断面形状和尺寸。
(2)结晶器的倒锥度。
(3)结晶器的长度。 (4)结晶器的水缝面积。
结晶器的结构:
按结晶器本身结构来说,可分为3种类型: 管式结晶器:它是用壁厚为6~12mm的铜管制成所需要
的断面,在铜管外面,套有套管以形成5~7mm的冷却水 通路,保证冷却水流速为每分钟6~10m。这种结晶器结 构简单,制造方便,广泛用于小方坯连铸机上。 整体式结晶器:它是用整块铜锭刨削制成的,在其内腔 四周钻有许多小孔用以通冷却水。这种结晶器刚性好, 易维护,寿命较长,但制造成本高,耗铜多,近几年已 不采用。 组合结晶器:它是由4块铜板组合成所需要的内腔。在 20~50㎜的钢板上刨槽,并与一块钢板联结起来,冷却 水在槽中通过。大方坯和板坯连铸机都用这种形式的结 晶器。
连铸结晶器振动与铸坯表面质量
正脱模时间较长,可增加保 护渣消耗,有利于结晶器润 滑,减小结晶器施加在坯壳 上的摩擦力,防止拉裂。
负滑脱作用强,脱模和坯壳 拉裂愈合好,有利于提高拉 速。
图2 正弦及非正弦速度曲线
TP
(4)描述结晶器振动的基本参数
振动频率f 0—400/min
1-矩形速度规律2-梯形速度规律
② 梯形速度规律
如图1中2所示其特点:
有负滑脱运动,坯壳中 产生压应力,有利于断 裂处焊合和脱模。
结晶器上升和下降转折 点速度变化较缓和,提 高振动机构较平稳。
图1 矩形及梯形速度规律曲线
1-矩形速度规律2-梯形速度规律
③正弦速度规律
如图2所示,正弦速度规律特点:
由表可知在相同板坯断面和拉速条件下,结晶器采用高频率(120次 /min)、小振幅(±3mm),比采用低频率(71次/min)大振幅 (±5mm),浇微合金钢其振动深度由0.58mm,降到0.425mm, 减少了27%,有利于减少板坯边部横裂纹。
(3)合适二冷强度
对于C-Mn-Al钢:如图 12,温度<900℃, 钢高温塑性RA突然下 降,这是因为: ①δ→α相变,在奥氏体 周围铁素体析出。 ②在晶界有AlN质点析 出。 使钢高温塑性 (RA值)降低,裂纹 敏感性增强。
增加了晶界脆
性(图10);
③ 沿振痕波谷处,S、P呈正偏析,降低了钢的高温强度; ④ 铸坯在运行过程中受到弯曲(内弧受压,外弧受张力)
和矫直(内弧受张力,外弧受压力)以及鼓肚作用, 铸坯刚好处于低温脆性区(<900℃),又加上相当 于应力集中 “缺口效应”的振痕,受到拉伸应力作用 的应变量如果超过1.3%,在振痕波谷处就产生横裂 纹。裂纹沿奥氏体晶界扩展直到具有良好塑性的温度 为止。 ⑤由于拉坯阻力过大或者由于结晶器锥度过大而致使铸坯 拉裂,也是形成横裂纹的原因之一。
结晶器振动参数计算
1)结晶器振动的正弦速度曲线的数学表达式为:V=(πfS/1000)sim((2πf/60)t);式中V( m/min)为结晶器运动速度、S=2A( mm)为振程即2倍于振幅A、f( 1/min)为振动频率。
2)当V=Vc时:负滑动(脱)时间=下降的速度大于拉速的下降时间tn=60/(πfd)arccos(1000Vc/s/π/fd)。
3)设:Z=S/Vc( mm*min/m);则tn=60/(πfd)arccos(1000/s/π/fd/Z)。
A为振幅,单位mm,Vc为拉速,单位m/min,f为频率,单位1/min。
取不同的Z值可画出负滑动时间随振动频率变化的曲线,称为负滑动曲线( tn——f)。
4)据有关资料和厂家的数据,负滑动时间取值范围在0.1~0.25s,认为对于不同的钢种最佳负滑动时间为0.1s左右。
且一般对于底碳钢负滑动时间不小于0.1s,而中碳钢负滑动时间应不小于0.07~0.1s。
1)负滑动率NS=(Vc-Vm)/Vc×100%,式中:Vc为拉坯速度( m/min),Vm为结晶器振动平均速度(Vm=2Vmax/π=2fS/1000;m/min),Vmax为结晶器振动最大速度(Vmax=πfS/1000; m/min)。
正弦NS:20~-240%;非正弦NS:-53.4~-108.8%(有关文献报道的日本钢管公司福山厂5号连铸机)。
2)NS=1-(2Vmax/πVc);当Vc=Vmax时,结晶器中的坯壳处于受拉和受压的临界状态。
此时NS=36.34%为负滑动率的极限值,当Vc>Vmax时,即NS>36.34%时,结晶器对坯壳不产生负滑动;NS<36.34%时产生负滑动。
通过采用数值法上计算机可求得:当NS=2.4%时负滑动时间取得最大值。
3)tn=60/(πfd)arccos(2/π(1-NS));在NS值给定的情况下,tn与f成反比双曲线关系;该曲线称为负滑动率等值曲线。
结晶器振动故障最佳操作法(工程师培训)
连铸机结晶器振动最佳维护法连铸机结晶器振动是由意大利达涅利公司提供设计、设备成套、程序设计的全自动化、全液压的一套连铸机结晶器振动装置。
该套连铸机结晶器振动装置的特点是:振动平稳,振幅误差<0.5mm(正弦波)。
有振频随拉矫机拉速变化的控制功能。
有振幅设定值和振频随所浇钢种变化的控制功能。
有结晶器振动装置试验功能,可在非浇钢状态下测试结晶器振动装置。
根据这几年自己对该套结晶器振动装置维护工作的经验和体会,特总结如下最佳维护法。
结晶器振动装置的油路和液压控制设备油路和液压控制设备由液压站供出的供油管路、油压检测仪表、P控制阀、T控制阀、液压缸、液压缸伺服阀、液压缸行程位置检测装置等设备组成。
其系统构成如图1所示:图1:结晶器振动装置油路和液压控制设备构成简图二、结晶器振动装置机械设备首钢三炼钢厂2号连铸机结晶器振动装置机械设备由结晶器振动托架、杠杆与杠杆连接机构等组成。
杠杆与杠杆连接机构组成联杆机构,将由计算机(PLC)控制的液压缸所产生的位移量传递给结晶器振动托架,结晶器振动托架带动结晶器做上、下往复运动。
结晶器振动托架上、下往复运动的位移量与液压缸所产生的位移量不是1比1的关系。
它们之间的位移量有一个比例系数K。
其比例关系的公式为:K=液压缸所产生的位移量/结晶器振动托架上下往复运动的位移量=1.2。
结晶器振动装置机械设备如图2。
液压图2:结晶器振动装置机械设备简图三、结晶器振动装置的维护和故障排除结晶器振动装置的维护和故障的排除主要有以下几点。
1、主控室试验时结晶器振动装置不动应检查的条件和应检查的关键点及部位有:(1)液压站液压油泵是否启动?油压是否大于等于1MPa?(2)P、T阀是否得电(24VDC)?PLC:Q8.0\Q8.2\Q8.4是否同时有输出?应检查左、右油压PIW528、PIW530是否正常?如果不正常,应检查相应的点的PLC模件、接线线路和现场油压情况。
确认相应情况后,做相应处理。