解析几何综合运用练习题含答案

合集下载

解析几何综合练习题1及答案

解析几何综合练习题1及答案

解析几何综合练习一、填空题1.在解析几何的学习中,借助于平面直角坐标系,把曲线插上了方程的“翅膀”,用代数的方法研究图形的性质,使“数”与“形”达到完美的结合,这种方法在数学学习中我们常常叫做_____ _____的思想方法。

2.已知集合2{(,)|3}1y A x y x -==-,集合{(,)|1}B x y y ax ==+,若A B φ=,则a =____ ____。

3.直线l 经过点(1,2)A 且与圆心在原点半径为1的圆面积相切,则直线l 的方程是____ ___。

4.已知定点(1,1)M ,动点(,)P x y 满足条件||1MP =,点Q 与点P 关于直线y x =-对称,则点Q 的轨迹是___ ___。

5.斜率为2的直线l 被曲线22:236C x y -=截得的弦长为4,则该弦的中点的坐标是___________________。

6.椭圆22221(0)x y a b a b+=>>的两个焦点为F 1、F 2,过点F 2的直线与椭圆交于A 、B 两点,则△AF 1B 的周长是__________。

7.以椭圆2212516x y +=的焦点为顶点,顶点为焦点的双曲线方程是___ ___。

8.双曲线0122=+-y tx 的一条渐进线与直线012=++y x 垂直,则________t =。

9.双曲线的中心在原点,对称轴是坐标轴,一条渐近线方程为0x -=,且双曲线经过点(2,1),则该双曲线的焦点坐标是____ ____。

10.抛物线24y x =的弦AB 垂直于x 轴,若AB 长为43,则焦点到AB 的距离是________。

11.若点A 的坐标为(3,2),F 为抛物线24y x =的焦点,点P 是抛物线上的一动点,则||||PA PF +取得最小值时点P 的坐标是___ ___。

12.设F 1、F 2是双曲线224x y -=的两个焦点,Q 是双曲线上任意一点,从F 1引∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹方程是___ ____。

高二数学解析几何练习题带答案

高二数学解析几何练习题带答案

高二数学解析几何练习题带答案一、直线与平面的交点1. 已知直线AB的坐标为A(2,3,5)和B(-1,4,2),平面P 的方程为2x-y+z-1=0,求直线AB与平面P的交点。

解:设交点为M(x,y,z),则M同时满足直线AB的参数方程和平面P的方程,即:x = 2 + t(-1-2)y = 3 + t(4-3)z = 5 + t(2-5)代入平面P的方程得:2(2 + t(-1-2)) - (3 + t(4-3)) + (5 + t(2-5)) - 1 = 0化简得:-3t + 7 = 0解得t = 7/3代入直线AB的参数方程得:x = 2 + 7/3(-1-2) = -5/3y = 3 + 7/3(4-3) = 20/3z = 5 + 7/3(2-5) = -6/3所以,直线AB与平面P的交点为M(-5/3, 20/3, -6/3)。

二、直线的位置关系2. 设直线l1:(x-2)/3=y/2=(z-1)/4,直线l2:(x+1)/2=(y-3)/4=(z+2)/6,判断直线l1和直线l2的位置关系。

解:直线l1和l2方向向量分别为v1=(3,2,4)和v2=(2,4,6)。

若两条直线平行,则v1与v2平行或其比例相等。

计算v1与v2的比例:3/2 = 2/4 = 4/6 = 1/2所以,v1与v2的比例相等,即直线l1和l2平行。

若两条直线相交,则设交点为M(x,y,z),满足直线l1和l2的参数方程。

由直线l1的参数方程可得:x = 2 + 3ty = 2tz = 1 + 4t代入直线l2的参数方程得:(2 + 3t + 1)/2 = (2t - 3)/4 = (1 + 4t + 2)/6化简得:3t + 1 = 4t - 6 = 4t + 3解得t = -7/3代入直线l1的参数方程得:x = 2 + 3(-7/3) = -19y = 2(-7/3) = -14/3z = 1 + 4(-7/3) = -19/3所以,直线l1和l2的交点为M(-19, -14/3, -19/3)。

九年级数学解析几何练习题及答案

九年级数学解析几何练习题及答案

九年级数学解析几何练习题及答案解析几何是数学中的一个重要分支,它探讨了几何图形的性质以及其与代数关系的联系。

对于九年级的学生来说,解析几何是一个相对较难的话题。

为了帮助同学们更好地掌握解析几何知识,我整理了一些练习题,并附上了详细的解答。

以下是九年级数学解析几何的练习题及答案:1. 题目:已知直线l过点A(2,3),且与x轴交于点B,与y轴交于点C。

求直线l的斜率k。

答案:点B在x轴上,坐标为(x,0),点C在y轴上,坐标为(0,y)。

根据直线的斜率定义可得:k = (y-3)/(0-2) = (y-3)/(-2)。

又因为点B在x 轴上,所以(x,0)在直线l上,代入直线方程可得:0 = kx + b,即 0 = kx + b = kx + 3。

解得b = 3。

代入点C的坐标可得:0 = b - ky = 3 - ky,整理后可得 y = 3/k。

由此可以得到直线l的斜率k为 k = (y-3)/(-2) = (3/k-3)/(-2) = -3/(2k-2)。

2. 题目:已知直线l的斜率为k,且过点(4,5),求直线l的方程。

答案:点(4,5)在直线l上,代入直线方程可得:5 = 4k + b。

又因为直线l的斜率为k,所以直线l的方程为 y = kx + b,将上式代入可得:y = kx + 4k + b。

整理后可得 y = kx + (4k+b)。

由此可以得到直线l的方程为 y = kx + (4k+b)。

3. 题目:已知直线l的方程为 y = 2x - 1,求直线l与y轴的交点坐标。

答案:直线与y轴的交点坐标为(0,b),代入直线方程可得:b = -1。

所以直线l与y轴的交点坐标为(0,-1)。

4. 题目:已知点A(1,2)和点B(-1,4),求线段AB的中点坐标。

答案:线段AB的中点坐标为((x1+x2)/2, (y1+y2)/2) = ((1+(-1))/2, (2+4)/2) = (0,3)。

高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。

2023高考数学解析几何应用练习题及答案

2023高考数学解析几何应用练习题及答案

2023高考数学解析几何应用练习题及答案解析几何是高中数学中重要的一部分,也是高考数学中难度较大的题型之一。

2023年高考数学中解析几何应用的题目考察内容涵盖了直线、平面、坐标系等知识点。

下面是几道2023高考数学解析几何应用练习题及答案,希望对广大考生的备考有所帮助。

题目一:已知直线AB过点(2,3)和点(5,7),直线CD过点(-1,4)且垂直于直线AB。

求直线CD的方程。

解析:首先,我们计算直线AB的斜率。

根据斜率的定义,斜率k等于两个点的纵坐标之差与横坐标之差的比值:k = (7 - 3) / (5 - 2) = 4/3由于直线CD垂直于直线AB,所以两条直线的斜率乘积为-1。

即:k * k' = -1代入已知的斜率,得到:4/3 * k' = -1解方程可得斜率k' = -3/4。

由点斜式方程的定义可知,y - y1 = k' * ( x - x1 )将已知点(-1,4)代入,得到直线CD的方程为:y - 4 = -3/4 * ( x + 1 )简化方程,得到 CD 的方程为:3x + 4y - 16 = 0所以答案为:3x + 4y - 16 = 0。

题目二:已知平面P1过点A(1,2,3),并且与向量n1(2,1,4)垂直,平面P2过点B(-1,3,2),并且与向量n2(3,1,-1)垂直。

求平面P1和平面P2的交线方程。

解析:由于平面P1过点A且与向量n1垂直,所以平面P1的方程为:n1 · (X - A) = 0其中,·表示点乘运算。

代入已知的点A(1,2,3)和向量n1(2,1,4),得到:2(x - 1) + 1(y - 2) + 4(z - 3) = 0简化方程,得到平面P1的方程:2x + y + 4z - 18 = 0同理,平面P2的方程为:3x + y - z + 2 = 0要求平面P1和平面P2的交线方程,即联立平面P1和平面P2的方程,解得交点即为交线方程:联立方程可得:2x + y + 4z - 18 = 03x + y - z + 2 = 0解这个线性方程组,可得交点为(x, y, z) = (2, 6, 3)。

利用解析几何求解问题的练习题

利用解析几何求解问题的练习题

利用解析几何求解问题的练习题一、平面几何解析在解析几何中,平面几何是其中一项重要内容。

平面上的点可以用坐标表示,通过运用解析几何的知识,可以解决一些与平面相关的问题。

下面将给出一些实践练习题,通过解析几何的方法,来求解这些问题。

1. 在平面上给定三个点,A(1, 2),B(3, -1),C(5, 4),求线段AB和AC的长度。

解析:根据两点间距离公式,线段AB的长度为√[(3-1)²+((-1)-2)²],即√(2²+(-3)²)=√(4+9)=√13。

线段AC的长度为√[(5-1)²+(4-2)²],即√(16+4)=√20=2√5。

2. 在平面上给定三个点,D(1, 1),E(4, 5),F(6, -2),判断三个点是否共线。

解析:根据向量叉积的性质,若向量DE和向量DF的叉积等于0,则说明三个点共线。

计算向量DE的坐标表示为(4-1, 5-1)=(3, 4),向量DF的坐标表示为(6-4, -2-5)=(2, -7)。

计算向量叉积:(3)(-7)-(4)(2)=-21-8=-29,不等于0,因此这三个点不共线。

3. 在平面直角坐标系中,给定圆的圆心坐标为O(2, -1),半径为3,求圆上一点P的坐标,使得向量OP与x轴的夹角为45°。

解析:根据题意,向量OP与x轴的夹角为45°,则向量OP的斜率为tan(45°)=1。

由向量OP的斜率可以得出设定点P的坐标为P(x, y),根据直角三角形的性质得出向量OP的长度为√((x-2)²+(y+1)²)=3。

由此可以构建方程:√((x-2)²+(y+1)²)=3、(y+1)/(x-2)=1。

解方程组可以得出x=2+√2,y=-1+√2。

二、立体几何解析除了平面几何,解析几何也涉及到立体几何的内容。

通过解析几何的方法,可以解决与立体相关的问题。

(完整版)解析几何练习题及答案

(完整版)解析几何练习题及答案

解析几何一、选择题1.已知两点A (-3,),B (,-1),则直线AB 的斜率是( )33A. B .-33C. D .-3333解析:斜率k ==-,故选D.-1-33-(-3)33答案:D 2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =,a +2a 则=a +2,得a =1或a =-2.故选D.a +2a 答案:D 3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( )A .4B .21313C. D .5132671020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d ==.|1-(-6)|62+2271020故选D.答案:D4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0 B .2x +y -1=0C .2x +y -5=0 D .x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角3的取值范围是( )A. B .[π6,π3)(π6,π2)C. D .(π3,π2)[π3,π2]解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-),由题知直线l 与线段AB 相交(交点不含3端点),从图中可以看出,直线l 的倾斜角的取值范围为.故选B.(π6,π2)答案:B 6.(2014泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( )A .x -2y +4=0 B .2x +y -7=0C .x -2y +3=0 D .x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=,12∴方程为y -3=(x -2),即x -2y +4=0.12答案:A二、填空题7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为+=1,x a yb 由Error!解得Error!或Error!.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014湘潭质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB ==-2,解得m =-8.4-mm +2答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即<0,化简得<0,∴-2<a <1.2a -(1+a )3-(1-a )a -1a +2答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.解方程组Error!得Error!所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sinα-1=0和l 2:2x sinα+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一 当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-,k 2=-2sin α.1sin α要使l 1∥l 2,需-=-2sin α,1sin α即sin α=±,∴α=k π±,k ∈Z .22π4故当α=k π±,k ∈Z 时,l 1∥l 2.π4法二 由l 1∥l 2,得Error!∴sin α=±,22∴α=k π±,k ∈Z .π4故当α=k π±,k ∈Z 时,l 1∥l 2.π4(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k +2=0,这与21k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一 由方程组Error!解得交点P 的坐标为,(2k 2-k 1,k 2+k 1k 2-k 1)而2x 2+y 2=22+2(2k 2-k 1)(k 2+k 1k 2-k 1)=8+k 2+k 21+2k 1k 2k 2+k 21-2k 1k 2=k 21+k 2+4k 21+k 2+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二 交点P 的坐标(x ,y )满足Error!故知x ≠0.从而Error!代入k 1k 2+2=0,得·+2=0,y -1x y +1x 整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇 第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x 2+(y -2)2=1 B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则=1,得t =2,12+(t -2)2所以圆的方程为x 2+(y -2)2=1,故选A.答案:A 2.(2014郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2=,(x -2)2+y 2(x -8)2+y 2化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考陕西卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d ==1<2,(3-2)2+(0-0)2点P (3,0)恒在圆内,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考辽宁卷)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0 B .x +y +3=0C .x -y +1=0 D .x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C 5.(2013年高考广东卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -=0B .x +y +1=02C .x +y -1=0D .x +y +=02解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得=1,故b =±.因为直线与圆相切于第一象限,故结合图形|b |12+122分析知b =-,则直线方程为x +y -=0.故选A.22答案:A 6.(2012年高考福建卷)直线x +y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦3AB 的长度等于( )A .2B .253C. D .13解析:因为圆心到直线x +y -2=0的距离d ==1,半径r =2,3|0+3×0-2|12+(3)2所以弦长|AB |=2=2.22-123故选B.答案:B二、填空题7.(2013年高考浙江卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d ==,|2×3-4+3|4+15∴弦长为2×=2=4.25-5205答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d ==2,|1-1+4|12+(-1)22又圆半径r =.2所以圆C 上各点到直线l 的距离的最小值为d -r =.2答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴=1,|4m -9m |5∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一 直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二 直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5内部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=,2mm 2+1∴x =.mm 2+1当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =,y -1x 代入x =,得x=,mm 2+1[(y -1x )2+1]y -1x 化简得x 2+2=.(y -32)14经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2+2=.(y -32)1412.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=2时,求直线l 的方程.2解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有=2.解得a =-.|4+2a |a 2+134(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得Error!解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇 第3节一、选择题1.设P 是椭圆+=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )x 225y 216A .4 B .5C .8D .10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D 2.(2014唐山二模)P 为椭圆+=1上一点,F 1,F 2为该椭圆的两个焦点,若x 24y 23∠F 1PF 2=60°,则·等于( )PF1→ PF 2→ A .3 B .3C .2 D .23解析:由椭圆方程知a =2,b =,c =1,3∴Error!∴|PF 1||PF 2|=4.∴·=||||cos 60°=4×=2.PF 1→ PF 2→ PF 1→ PF 2→ 12答案:D3.(2012年高考江西卷)椭圆+=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦x 2a 2y 2b 2点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A. B .1455C. D .-2125解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e ==.故应选B.ca 55答案:B4.(2013年高考辽宁卷)已知椭圆C :+=1(a >b >0)的左焦点为F ,C 与过原点的x 2a 2y 2b 2直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =,则C 的离心率45为( )A. B .3557C. D .4567解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos ∠ABF =100+64-2×10×8×=36,45则|AF |=6,∠AFB =90°,半焦距c =|FO |=|AB |12=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e ==.c a 57故选B.答案:B5.已知椭圆E :+=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与x 2m y 24l :y =kx +1被椭圆E 截得的弦长不可能相等的是( )A .kx +y +k =0B .kx -y -1=0C .kx +y -k =0D .kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A 、B 、C ,故选D.答案:D6.(2014山东省实验中学第二次诊断)已知椭圆+=1(a >b >0)的左、右焦点分别为x 2a 2y 2b 2F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使=,则该椭圆的离心率的asin ∠PF 1F 2csin ∠PF 2F 1取值范围为( )A .(0,-1) B .2(22,1)C.D .(-1,1)(0,22)2解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得=,|PF 2|sin ∠PF 1F 2|PF 1|sin ∠PF 2F 1所以由=a sin ∠PF 1F 2c sin ∠PF 2F 1可得=,a|PF 2|c|PF 1|即==e ,|PF 1||PF 2|ca 所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=.2ae +1由于a -c <|PF 2|<a +c ,所以有a -c <<a +c ,2ae +1即1-e <<1+e ,2e +1也就是Error!解得-1<e .2又0<e <1,∴-1<e <1.故选D.2答案:D 二、填空题7.设F 1、F 2分别是椭圆+=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中x 225y 216点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆+=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线x 2a 2y 2b 2与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=,2a =|MF 1|+|MF 2|=2+,332c =|F 1F 2|=1.∴e ==2-.ca 3答案:2-39.(2014西安模拟)过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方35y 225x 29程为________________.解析:由题意可设椭圆方程为+=1(m <9),y 225-m x 29-m 代入点(,-),35得+=1,525-m 39-m 解得m =5或m =21(舍去),∴椭圆的标准方程为+=1.y 220x 24答案:+=1y 220x 2410.已知F 1,F 2是椭圆C :+=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且x 2a 2y 2b 2⊥.若△PF 1F 2的面积为9,则b =________.PF1→ PF 2→ 解析:由题意得Error!∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=|PF 1||PF 2|=b 2=9,12∴b =3.答案:3三、解答题11.(2012年高考广东卷)在平面直角坐标系xOy 中,已知椭圆C 1:+=1(a >b >0)x 2a 2y 2b 2的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 1上,可得Error!∴Error!故椭圆C 1的方程为+y 2=1.x 22(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2相切得Error!消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1相切得Error!消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②①②联立得Error!解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =时,k =,b =-时,k =-.222222即直线l 的方程为y =x +或y =-x -.22222212.(2014海淀三模)已知椭圆C :+=1(a >b >0)的四个顶点恰好是一边长为2,一x 2a 2y 2b 2内角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :+=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60°的x 2a 2y 2b 2菱形的四个顶点.所以a =,b =1,3椭圆C 的方程为+y 2=1.x 23(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=2,|PO |=3,3所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,所以Error!化简得(3k 2+1)x 2=3,所以|x 1|=,33k 2+1则|AO |==.1+k 233k 2+13k 2+33k 2+1设AB 的垂直平分线为y =-x ,1k 它与直线l :x +y -3=0的交点记为P (x 0,y 0),所以Error!解得Error!则|PO |=,9k 2+9(k -1)2因为△PAB 为等边三角形,所以应有|PO |=|AO |,3代入得=,9k 2+9(k -1)233k 2+33k 2+1解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇 第4节一、选择题1.设P 是双曲线-=1上一点,F 1,F 2分别是双曲线左右两个焦点,若x 216y 220|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17 D .以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考湖北卷)已知0<θ<,则双曲线C 1:-=1与C 2:-π4x 2sin2θy 2cos2θy 2cos2θ=1的( )x 2sin2θA .实轴长相等 B .虚轴长相等C .离心率相等 D .焦距相等解析:双曲线C 1的半焦距c 1==1,双曲线C 2的半焦距c 2=sin2θ+cos2θ=1,故选D.cos2θ+sin2θ答案:D3.(2012年高考湖南卷)已知双曲线C :-=1的焦距为10,点P (2,1)在C 的渐近x 2a 2y 2b 2线上,则C 的方程为( )A.-=1 B .-=1x 220y 25x 25y 220C.-=1 D .-=1x 280y 220x 220y 280解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =x 得a =2b .ba a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为-=1.故选A.x 220y 25答案:A 4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A. B .1435C. D .3445解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =2,2|PF 1|=2|PF 2|,∴|PF 2|=2,|PF 1|=4,22由余弦定理可知cos ∠F 1PF 2==.故选C.(42)2+(22)2-422×42×2234答案:C5.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆513C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.-=1 B .-=1x 242y 232x 2132y 252C.-=1 D .-=1x 232y 242x 2132y 2122解析:在椭圆C 1中,因为e =,2a =26,513即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为-=1.故选A.x 242y 232答案:A6.(2014福州八中模拟)若双曲线-=1渐近线上的一个动点P 总在平面区域x 29y 216(x -m )2+y 2≥16内,则实数m 的取值范围是( )A .[-3,3]B .(-∞,-3]∪[3,+∞)C .[-5,5] D .(-∞,-5]∪[5,+∞)解析:因为双曲线-=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )x 29y 2162+y 2≥16内,即直线与圆相离或相切,所以d =≥4,解得m ≥5或m ≤-5,故实数|4m |5m 的取值范围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考辽宁卷)已知F 为双曲线C :-=1的左焦点,P ,Q 为C 上的x 29y 216点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :-=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点x 2a 2y 2b 2的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e ==2,两式联立得a =1,c =2,ca ∴b 2=c 2-a 2=4-1=3,∴方程为x 2-=1.y 23答案:x 2-=1y 239.(2014合肥市第三次质检)已知点P 是双曲线-=1(a >0,b >0)和圆x 2a 2y 2b 2x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=m ,3该双曲线的离心率等于==+1.|F 1F 2|||PF 1|-|PF 2||2m3m -m 3答案:+1310.(2013年高考湖南卷)设F 1,F 2是双曲线C :-=1(a >0,b >0)的两个焦点.若x 2a 2y 2b 2在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt △F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=c ,3根据双曲线的定义:|PF 1|-|PF 2|=2a ,(-1)c =2a ,3e ===+1.c a 23-13答案:+13三、解答题11.已知双曲线x 2-=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,y 22且点P 是线段AB 的中点?解:法一 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .由Error!得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0==.x 1+x 22k (1-k )2-k 2由题意,得=1,k (1-k )2-k 2解得k =2.当k =2时,方程①成为2x 2-4x +3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.法二 设A (x 1,y 1),B (x 2,y 2),若直线l 的斜率不存在,即x 1=x 2不符合题意,所以由题得x -=1,x -=1,21y 2122y 22两式相减得(x 1+x 2)(x 1-x 2)-=0,(y 1+y 2)(y 1-y 2)2即2-=0,y 1-y 2x 1-x 2即直线l 斜率k =2,得直线l 方程y -1=2(x -1),即y =2x -1,联立Error!得2x 2-4x +3=0,Δ=16-24=-8<0,即直线y =2x -1与双曲线无交点,即所求直线不合题意,所以过点P (1,1)的直线l 不存在.12.(2014南京质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=2,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.13(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解:(1)由已知c =,13设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,则Error!解得a =7,m =3.∴b =6,n =2.∴椭圆方程为+=1,x 249y 236双曲线方程为-=1.x 29y 24(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=2,13∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|==.102+42-(213)22×10×445第八篇 第5节一、选择题1.(2014银川模拟)抛物线y =2x 2的焦点坐标为( )A. B .(1,0)(12,0)C. D .(0,18)(0,14)解析:抛物线y =2x 2,即其标准方程为x 2=y ,它的焦点坐标是.故选C.12(0,18)答案:C2.抛物线的焦点为椭圆+=1的下焦点,顶点在椭圆中心,则抛物线方程为( )x 24y 29A .x 2=-4y B .y 2=-4x55C .x 2=-4yD .y 2=-4x1313解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c ==,a 2-b 25∴抛物线焦点坐标为(0,-),5∴抛物线方程为x 2=-4y .故选A.5答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )A .相离 B .相交C .相切 D .不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =(|AA 1|+|BB 1|)12=(|AF |+|BF |)=|AB |,故圆与抛物线准线相切.故选C.1212答案:C4.(2014洛阳高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为( )A. B .5383C. D .10103解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,则由Error!解得x 1=3,x 2=,13故线段AB 的中点到该抛物线的准线x =-1的距离等于+1=.故选B.x 1+x 2283答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A. B .134C. D .5474解析:∵|AF |+|BF |=x A +x B +=3,12∴x A +x B =.52∴线段AB 的中点到y 轴的距离为=.xA +xB 254故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞) D .[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =x +b ,3联立Error!消去y ,得x 2=2p (x +b ),3即x 2-2px -2pb =0,3∴x 1+x 2=2p =3,3∴p =,则抛物线的方程为x 2=y .323答案:x 2=y38.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考北京卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为,3∴直线方程为y =(x -1).3联立方程Error!解得Error!或Error!由已知得A 的坐标为(3,2),3∴S △OAF =|OF |·|y A |=×1×2=.121233答案:310.已知点P 是抛物线y 2=2x上的动点,点P 在y 轴上的射影是M ,点A ,则(72,4)|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-,焦点F 坐标为.12(12,0)求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+,12所以|PA |+|PM |≥5-=.1292答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-,求实数m 的值.12解:法一 如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,由Error!得2x 2+x -n =0,∴x 1+x 2=-,x 1x 2=-.12n2由x 1x 2=-,得n =1.12又x 0==-,x 1+x 2214y 0=-x 0+n =+1=,1454即点M 为,(-14,54)由点M 在直线l 上,得=-+m ,5414∴m =.32法二 ∵A 、B 两点在抛物线y =2x 2上.∴Error!∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB ==4x 0.y 1-y 2x 1-x 2又AB ⊥l ,∴k AB =-1,从而x 0=-.14又点M 在l 上,∴y 0=x 0+m =m -,14即M ,(-14,m -14)∴AB 的方程是y -=-,(m -14)(x +14)即y =-x +m -,代入y =2x 2,12得2x 2+x -=0,∴x 1x 2=-=-,∴m =.(m -12)m -122123212.已知过抛物线y 2=2px (p >0)的焦点,斜率为2的直线交抛物线于A (x 1,y 1),2B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若=+λ,求λ的值.OC → OA → OB→ 解:(1)直线AB 的方程是y =2,与y 2=2px 联立,2(x -p2)从而有4x 2-5px +p 2=0,所以x 1+x 2=.由抛物线定义得|AB |=x 1+x 2+p =9,5p4所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-2,y 2=4,22从而A (1,-2),B (4,4).22设=(x 3,y 3)=(1,-2)+λ(4,4)OC→ 22=(4λ+1,4λ-2),22即C (4λ+1,4λ-2),22所以[2(2λ-1)]2=8(4λ+1),2即(2λ-1)2=4λ+1,解得λ=0或λ=2.。

解析几何综合运用练习题-含答案

解析几何综合运用练习题-含答案
(2) 存在点P或,使得△FPM为等腰三角形
【解析】解:(1)由题意,设椭圆的标准方程为 + =1,由已知可得2a=4,a=2c,解得a=2,c=1,b2=a2-c2=3.
∴椭圆的标准方程为 + =1,圆的标准方程为(x-1)2+y2=1.
(2)设P(x,y),则M(4,y),F(1,0),-2≤x≤2,
【解析】解:解方程组得交点P(1,2).
(1)若点A,B在直线l的同侧,则l∥AB.
而kAB= =- ,
由点斜式得直线l的方程为
y-2=- (x-1),
即x+2y-5=0;
(2)若点A,B分别在直线l的异侧,则直线l经过线段AB的中点,
由两点式得直线l的方程为=,
即x-6y+11=0.
综上所述,直线l的方程为x+2y-5=0或x-6y+11=0.
三、解答题(题型注释)
7.已知点A(3,3),B(5,2)到直线l的距离相等,且直线l经过两直线l1:3x-y-1=0和l2:x+y-3=0的交点,求直线l的方程.
8.如图,在直角坐标系中,已知△PAB的周长为8,且点A,B的坐标分别为(-1,0),(1,0).
(1)试求顶点P的轨迹C1的方程;
(2)若动点C(x1,y1)在轨迹C1上,试求动点Q的轨迹C2的方程.
9.设椭圆C: + =1(a>b>0)过点(0,4),离心率为 .
(1)求C的方程;
(2)求过点(3,0)且斜率为 的直线被C所截线段的中点坐标.
10.如图,F是椭圆的右焦点,以点F为圆心的圆过原点O和椭圆的右顶点,设P是椭圆上的动点,P到椭圆两焦点的距离之和等于4.
(1)求椭圆和圆的标准方程;
(2)设直线l的方程为x=4,PM⊥l,垂足为M,是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐令 =x, =y,得x1=3x,y1=2 y.

高三数学解析几何习题及答案

高三数学解析几何习题及答案

数学试卷〔解析几何综合卷〕时间:90分钟,满分:120分一、选择题〔共60分,每小题5分,说明:选做题3选2〕1. 从集合{1,2,3…,11}中任选两个元素作为椭圆方程22221x y m n +=中的m 和n,则能组成落在矩形区域{(,)|||11,||9}B x y x y =<<且内的椭圆个数为A.43B. 72C. 86D. 902. 若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 A .2- B .2 C .4- D .43. 短轴长为5,离心率32=e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为〕A .3B .6C .12D .244. 以双曲线1322=-x y 的一个焦点为圆心,离心率为半径的圆的方程是A .4)2(22=+-y xB .2)2(22=-+y xC .2)2(22=+-y xD .4)2(22=-+y x5. 抛物线241x y =的焦点坐标是 A .〔161,0〕B .〔0,161〕C .〔0,1〕D .〔1,0〕6. 已知双曲线的中心在原点,焦点在x 轴上,它的一条渐近线与x 轴的夹角为α,且34παπ<<,则双曲线的离心率的取值X 围是A .)2,1(B .)2,2(C .〔1,2〕D .)2,1(7.〔选作〕设21,F F 分别是双曲线1922=-y x 的左右焦点.若点P 在双曲线上,且021=•PF PF =+A .10B .102C .5D .528. 已知直线422=+=+y x a y x 与圆交于A 、B 两点,O 是坐标原点,向量OA 、OB 满足||||OB OA OB OA -=+,则实数a 的值是A .2B .-2C .6或-6D .2或-29. 直角坐标平面内,过点P 〔2,1〕且与圆 224x y +=相切的直线 A .有两条 B .有且仅有一条 C .不存在 D .不能确定10. 双曲线24x -212y =1的焦点到渐近线的距离为A .23B .2C .3D .111. 〔选作〕点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点〞,那么下列结论中正确的是 A .直线l 上的所有点都是“点〞 B .直线l 上仅有有限个点是“点〞 C .直线l 上的所有点都不是“点〞D .直线l 上有无穷多个点〔点不是所有的点〕是“点〞12. 6A .22124x y -=B .22142x y -=C .22146x y -=D .221410x y -= 13. 经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为 A .30x y -+=B .30x y --= C .10x y +-=D .30x y ++=二、填空题〔共30分,每小题5分,说明:选作题4选2,注明所选题号。

上海 解析几何综合测试题附答案

上海 解析几何综合测试题附答案

1.12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是.2.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为____________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆72x +32y =1的公共点有_______个.3.P 是抛物线y 2=x 上的动点,Q 是圆(x-3)2+y 2=1的动点,则|PQ |的最小值为.4.若圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点。

则实数a 的范围为.5.若曲线y =与直线(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是.6.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4)、B (0,-2),则圆C 的方程为____________.7.经过两圆(x+3)2+y 2=13和x+2(y+3)2=37的交点,且圆心在直线x -y -4=0上的圆的方程为____________8.双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是___________.9.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是___________.10.设P 1(2,2)、P 2(-2,-2),M 是双曲线y =x1上位于第一象限的点,对于命题①|MP 2|-|MP 1|=22;②以线段MP 1为直径的圆与圆x 2+y 2=2相切;③存在常数b ,使得M 到直线y =-x +b 的距离等于22|MP 1|.其中所有正确命题的序号是____________. 11.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( ) A.椭圆 B.AB 所在直线 C.线段AB D.无轨迹12.若点(x ,y )在椭圆4x 2+y 2=4上,则2-x y的最小值为( ) A.1B.-1 C.-323D.以上都不对13已知F 1(-3,0)、F 2(3,0)是椭圆m x 2+ny 2=1的两个焦点,P 是椭圆上的点,当∠F 1PF 2=3π2时,△F 1PF 2的面积最大,则有( ) A.m =12,n =3B.m =24,n =6C.m =6,n =23D.m =12,n =6 14.P 为双曲线C 上一点,F 1、F 2是双曲线C 的两个焦点,过双曲线C 的一个焦点F 1作∠F 1PF 2的平分线的垂线,设垂足为Q ,则Q 点的轨迹是( ) 12.A.直线B.圆C.椭圆D.双曲线 三、解答题 15.(满分10分)如下图,过抛物线y 2=2px (p >0)上一定点P (x 0,y 0)(y 0>0),作两条直线分别交抛物线于A (x 1,y 1)、B (x 2,y 2).(1)求该抛物线上纵坐标为2p的点到其焦点F 的距离; (2)当PA 与PB 的斜率存在且倾斜角互补时,求021y y y 的值,并证明直线AB 的斜率是非零常数.16.(满分10分)如下图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b (a >0,b ≠0),且交抛物线y 2=2px (p >0)于M (x 1,y 1),N (x 2,y 2)两点.(1)证明:11y +21y =b1;(2)当a =2p 时,求∠MON 的大小.(15题图) (16题图)17.(满分10分) 已知椭圆C 的方程为22a x +22b y =1(a >b >0),双曲线22a x -22by =1的两条渐近线为l 1、l 2,过椭圆C 的右焦点F 作直线l ,使l ⊥l 1,又l 与l 2交于P 点,设l 与椭圆C 的两个交点由上至下依次为A 、B .(如下图)(1)当l 1与l 2夹角为60°,双曲线的焦距为4时,求椭圆C 的方程;(2)当FA =λAP 时,求λ的最大值.(17题图) (18题图)18.(满分10分)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O的两不同动点A、B满足AO BO ⊥(如上图).(Ⅰ)求AOB ∆得重心G(即三角形三条中线的交点)的轨迹方程;(Ⅱ)AOB ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.19.(满分12分)抛物线y 2=4px (p >0)的准线与x 轴交于M 点,过点M 作直线l 交抛物线于A 、B 两点.(1)若线段AB 的垂直平分线交x 轴于N (x 0,0),求证:x 0>3p ;(2)若直线l 的斜率依次为p ,p 2,p 3,…,线段AB 的垂直平分线与x 轴的交点依次为N 1,N 2,N 3,…,当0<p <1时,求||121N N +||132N N +…+||11110N N 的值.20.(满分12分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点. (Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.解析几何综合题1.12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是.1答案:4简解:12||||PF PF ⋅≤2212||||()42PF PF a +== 2.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为____________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆72x +32y =1的公共点有____________个.2答案:0<m 2+n 2<3 ; 2简解:将直线mx +ny -3=0变形代入圆方程x 2+y 2=3,消去x ,得 (m 2+n 2)y 2-6ny +9-3m 2=0. 令Δ<0得m 2+n 2<3. 又m 、n 不同时为零, ∴0<m 2+n 2<3.由0<m 2+n 2<3,可知|n |<3,|m |<3, 再由椭圆方程a =7,b =3可知公共点有2个.3.P 是抛物线y 2=x 上的动点,Q 是圆(x-3)2+y 2=1的动点,则|PQ |的最小值为. 3.答案:211-1 简解:将问题转化为圆心到抛物线一上的动点的最小值4.若圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点。

高三数学综合题-解析几何 含参考答案

高三数学综合题-解析几何 含参考答案

1.(本小题满分14分)如图4,弧AEC是半径为a的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD 的三等分点,平面AEC外一点F满足FC⊥平面BED,FB=a5(1)证明:EB⊥FD(2)求点B到平面FED的距离.(1)证明: 点E为弧AC的中点2(本小题满分12分) 如图3所示,在长方体ABC D-1A 1B 1C 1D 中,AB=AD =1, AA 1=2, M 是棱C 1C 的中点.(Ⅰ)求异面直线1A M和1C 1D 所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M.解 Ⅰ)如图,因为1111A B D C //,所以11B MA ∠异面 直线1A M和1C 1D 所成的角,因为1A 1B ⊥平面11B BCC ,所以01190=∠M B A ,而1A 1B =1,2212111=+=MC C B M B ,故211111==∠B A MB B MA tan . 即异面直线1A M和1C 1D 所成的角的正切值为2(Ⅱ)由1A 1B ⊥平面11B BCC ,BM ⊂⊥平面11B BCC ,得1A 1B ⊥ BM ①由(Ⅰ)知,21=M B , 222=+=CM BC BM ,21=B B ,所以21221B B BM M B =+,从而BM ⊥B 1M ② 又1111B M B B A = , 再由① ②得BM ⊥平面A 1B 1M ,而BM ⊂平面ABM ,因此平面ABM ⊥平面A 1B 1M. 3.(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,BCD A MA 平面⊥,PD ∥MA ,E G F 、、分别为MB 、PC PB 、的中点,且2MA PD AD ==.(Ⅰ)求证:平面PDC EFG 平面⊥;(Ⅱ)求三棱锥的体积之比与四棱锥ABCD P MAB P --.(I )证明:由已知ABCD,PD MA,MA ⊥平面∥ 所以 P D A B C D∈平面 又 B C A B C D ⊂平面,所以 PD DC ⊥因为 四边形ABCD 为正方形, 所以 BC DC ⊥, 又 P D D C =D ⋂, 因此 B C P D C ⊥平面在PBC 中,因为G F 、分别为PB PC 、的中点, 所以 GF PC ∥ 因此 GF PDC ⊥平面 又 GF EFG ⊂平面,所以 EFG PDC ⊥平面平面.(Ⅱ)解:因为PD ABCD ⊥平面,四边形ABCD 为正方形,不妨设MA=1,则 P D =A D =2,所以P-ABCD ABCD 1V =S 3正方形·8PD=3由于DA MAB ⊥面的距离,且PD MA ∥所以DA 即为点P 到平面MAB 的距离,三棱锥322212131V MAB -P =⨯⨯⨯⨯=所以4:1V V ABCD -P MAB -P =:4.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分. )如题(20)图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,2PA AB ==,点E 是棱PB 的中点.(Ⅰ)证明:AE ⊥平面PBC ;(Ⅱ)若1AD =,求二面角B EC D --的平面角的余弦值.(I )证明:如答(20)图1,由PA ⊥底面ABCD ,得PA ⊥AB ,由PA=AB 知PAB ∆为等腰直角三角形,又点E 是棱PB 的中点,故AE ⊥PB 由题意知BC ⊥AB ,又AB 是PB 在面ABCD 内的射影, 由垂线定理得BC ⊥PB ,从而PC ⊥平面PAB , 因AE ⊥BP ,AE ⊥BC ,所以AE ⊥平面PBC 。

解析几何综合运用练习题-含答案

解析几何综合运用练习题-含答案

解析几何综合运用练习题-含答案___________ 号:______________一、选择题(题型注释)1.已知直线h :ax 2y 1 = 0 ^与直^线l2 :(3 - a)x _ y a 二0,若h〃l2,则a的值为( )A. 1B. 2C. 6 D . 1 或 22 .已知圆C的圆心是直线x — y + 1 = 0与x 轴的交点,且圆C与直线x + y + 3= 0相切,则圆C的方程为( )A. (x + 1)2 + y2 = 2 B . (x — 1)2 + y2= 12 2 2 2C. (x + 1) + y = 4 D . (x — 2) + y = 43.设抛物线C: y2= 2px(p>0)的焦点为F,点 M在C上, |MF| = 5.若以MF为直径的圆过点 (0,2),则C的方程为( ) A. y2= 4x 或 y2 = 8x B. y2= 2x 或 y2 =8xC . y2= 4x 或 y2= 16xD . y2 = 2x 或y2 = 16x24.双曲线x - y= 1的离心率大于2的充分必m要条件是()A. m>1B. m >12C. m>1D. m>2二、填空题(题型注释)5.经过圆x2 + 2x + y2= 0的圆心C,且与直线x + y = 0垂直的直线方程是_______ .6•已知抛物线y2 = 4x的焦点F恰好是双曲线2 2詁一寺=1(a>0 , b>0)的右顶点,且双曲线的渐近线方程为 y = ± 3x,则双曲线方程为三、解答题(题型注释)7.已知点A(3,3) , B(5,2)到直线I的距离相等,且直线I经过两直线l 1: 3x— y — 1 = 0和8•如图,在直角坐标系中,已知△长为8,且点A, B的坐标分别为(1,0)・⑴ 试求顶点P的轨迹C的方程;(2)若动点C(x i, y i)在轨迹C上, Q伶命〕的轨迹G的方程•2 29 •设椭圆C:笃+缶=1(a>b>0)过点(0,4),a b离心率为5.5(1)求C的方程;(2)求过点(3,0)且斜率为4的直线被C所截线5段的中点坐标.12: x + y — 3= 0的交点,求直线I 的方程.PAB的周(—1,0),试求动点10 •如图,F是椭圆的右焦点,以点F为圆心的圆过原点O和椭圆的右顶点,设P是椭圆上的动点,P到椭圆两焦点的距离之和等于 4.(1)求椭圆和圆的标准方程;⑵ 设直线I的方程为x = 4,PM L l,垂足为M 是否存在点P,使得△ FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.答案1. C【解析】试题分析:h的斜率为时=一;,l2的斜率为k2=3-a , 由| i //|2,有-;=3-a,所以 a = 6.考点:直线的斜率•2. A【解析】令y = 0得x =— 1,所以直线x — y + 1 =0与x轴的交点为(一1,0).因为直线x + y + 3 =0与圆C相切,所以圆心到直线 x + y + 3= 0 的距离等于半径,即r= 3= 2,所以圆C 的方程为(x + 1)2+ y2 = 2.3. C【解析】由已知得抛物线的焦点 F P,0,设点12厂A(0,2),抛物线上点M(x°, y°),则A F =書,_2), 7M=严,y2 -2 I.由已知得,AF • AM = 0,2P即 y ° — 8y °+ 16 = 0,因而 y ° = 4,又p>0,解得p= 2或p= 8. 4. C【解析】依题意,e= c, e = C2>2,得1 + m>2 a a 所以m>1.5. x — y + 1 = 0【解析】所求直线过圆:x 2 + 2x + y 2= 0的圆心 C( — 1,0),斜率为1,故方程为x — y + 1 = 0. 6. x 2—工=13【解析】抛物线的焦点坐标为(1,0),故在双曲 线中a= 1,由双曲线的渐近线方程为 y =± bx a=± 3x ,可得b= .3,故所求的双曲线方程为 x 2—丄=1.37. x + 2y — 5= 0 或 x — 6y+ 11 = 0 【解析】解:解方程组3x -y-1=00得交点P(1,2). x+y_3=0(1) 若点A, B 在直线I 的同侧,贝V I // AB.由 |MF| = 55,而 k AB=上2=— -,3-5 2 '由点斜式得直线I的方程为y — 2=—;(x — 1),即 x + 2y ——5= 0;(2)若点A, B分别在直线I的异侧,则直线I经过线段AB的中点卜|],5—2由两点式得直线I的方程为止1=缶,x—1 4-1即 x — 6y + 11 = 0.综上所述,直线I的方程为x + 2y 一 5= 0或x —6y + 11 = 0.8 (1)号 + 号=1 (2) x 2 + y2= 1【解析】解:(1)由题意,可得顶点P满足|PA|+ |PB| = 6,结合椭圆的定义,可知顶点 P 的轨迹C 是以A, B 为焦点的椭圆,且椭圆的半焦距长c = 1,长半 轴长 a= 3,贝V b 2= a 2 — c 2= 8.22故轨迹C 的方程为乞+工=1.98(2)已知点C(x i , y i )在曲线C 上, 故 x 92+代入名+右=i,得x 2+ y 2= i,所以动点Q 再楊]的轨迹C 2的方程为x 2 + y 2= i.【解析】解:⑴将(0,4)代入C 的方程得i6= i,b解得b = 4.又e= 二 C — 3,得「b 2— 9,a 5 a 25即1 —16 _ 9 a 225,2 2y i 2 2=y ,得 x i = 3x, y i = 2 2y.9・(i) 2 2乞+乙=i25 i63-6则a= 5.所以C的方程为25+ y6= 1.25 16⑵ 过点(3,0)且斜率为4的直线方程为y = 4(X5 5 —3)-设直线与C的交点为A(X i, y i), B(X2, y2),将直线方程y = 4(x — 3)代入C的方程,5—2 2得乞+ = 1,即卩 X2— 3x— 8= 0,所以 X i + X225 25=3.设AB的中点坐标为(X , y),则X = x i = 3,2 2y = y i y2 = 2(X i + X2 — 6) = —6,2 5 5即中点坐标为3,,.12 5丿io. (i)手 + 百=i (x — i)2 + y2 = i⑵ 存在点P》号或7,-节,使得△ FPM为等腰三角形【解析】解:(1)由题意,设椭圆的标准方程为笃a +豊=1,由已知可得2a= 4, a= 2c,解得a = 2, b2 2 2c = 1, b = a — c = 3.2 2・•・椭圆的标准方程为:+ ; = 1,圆的标准方程4 3为(x — 1)2 + y2= 1.(2)设 P(x ,y),则 M(4 , y) , F(1,0) ,—2< x <2 ,2 2•・• P(x, y)在椭圆上,二宁+号=1 ,4 3•••|PF|2= (x — 1)2 + y2 = (x — 1)2+ 3 —4x2= : (x —4)2 ,|PM|2= |x — 4|2 , |FM|2 = 32 + y2= 12—氷.①若 |PF| = |FM| ,则 4 (x — 4)2 = 12—狀,解得x = — 2 或 x = 4(舍去),x = — 2 时,P( —2,0), 此时P, F , M三点共线,不合题意.• |PF|工|FM| ;②若 |PM| = |PF| ,则(x — 4)2= 4 (x — 4)2 ,解得x = 4不合题意;③若 |PM| = |FM|,则(x — 4)2= 12 —:x2,解得 x=4(舍去)或 x = 4, x = 4时 y =± 3715,・•・P 4,_315.7 7综上可得,存在点P4,3不或4,-3,使得△ FPMu 7丿I? 7丿,为等腰三角形.。

50道解析几何综合题解答

50道解析几何综合题解答

解析几何综合测试一.选择题:(51050⨯=分)1.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为 ( C )(A)4±(B)± (C)2±(D)2.双曲线22149x y -=的渐近线方程是 ( C ) (A )23y x =±(B )49y x =±(C )32y x =±(D )94y x =± 3.若两直线20x my ++=和2310x y ++=互相垂直,则m 的值为 ( A ) (A )23-(B )32- (C )23 (D )324.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( D )(A )2 (B )3 (C )4 (D )55.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1, 则该椭圆的离心率为 ( B )(A)2 (B)22 (C) 21 (D)426.如果双曲线的两个焦点分别为)0,3(1-F 、)0,3(2F ,一条渐近线方程为x y 2=,那么它的两条准线间的距离是 ( C )(A )36 (B )4 (C )2 (D )17.若ABC ∆底边的两个端点分别是(6,0)B -,(6,0)C ,周长为32,则顶点A 的轨迹方程是 ( C )(A)221(0)3616x y y +=≠ (B)221(0)64100x y y +=≠ (C)221(0)10064x y y +=≠ (D)221(0)14436x y y +=≠ 8.某动圆与y 轴相切,且x 轴上截得的弦长为2,则动圆的圆心的轨迹为 ( B ) (A )221x y += (B )221x y -= (C )221y x -= (D )以上皆非9.点)3,5(M 到抛物线2y ax =的准线的距离为6,那么抛物线的方程是 ( D ) (A) 212y x = (B) 236y x =- (C) 221236y x y x ==-或 (D) 22111236y x y x ==-或10.直线y x b =+与曲线x =b 的取值范围为( B )(A)b = (B)11b b -<≤=或(C )11b -≤≤ (D )都不对 二.填空题:(5630⨯=分)11.若直线1y kx =-与双曲线92x -42y =1仅有一个交点,则k=2,3k k =±=12.设椭圆12222=+by a x (a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是12. 13.定长为6的线段,其端点分别在x 轴、y 轴上移动,则AB 中点的轨迹方程为229x y +=14.从圆()()22111x y -+-=外一点()2,3P 向这个圆引切线,则切线方程为3460x y -+=或2x =15.椭圆2244y x +=长轴上一个顶点为A,以A 为直角顶点作一个內接于椭圆的等腰直角三角型,该三角形的面积是1625.16.已知圆锥曲线221x ky +=的准线平行于y 轴,则实数k 的取值范围是 1k > . 三.解答题:17.已知ABC ∆的三个顶点(3,0),(2,1),(2,3),A B C --求: (12分) (1)BC 所在直线的方程;(2)BC 边的中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程。

高中数学解析几何应用复习 题集附答案

高中数学解析几何应用复习 题集附答案

高中数学解析几何应用复习题集附答案高中数学解析几何应用复习题集附答案解析几何是高中数学中的一门重要学科,它将代数与几何相结合,通过分析几何中的图形性质和特点,运用代数方法来解决几何问题。

在高中数学的学习过程中,解析几何是一个相对难度较大的部分,需要学生进行大量的练习和复习。

为了帮助同学们更好地巩固解析几何的知识,下面将为大家提供一套高中数学解析几何应用的复习题目,并附上相应的答案。

题目一:已知点A(1,2)、B(4,5)、C(6,1),求△ABC的周长和面积。

解法:首先,我们计算△ABC的边长AB、BC和AC的长度:AB = √((x2 - x1)² + (y2 - y1)²)= √((4 - 1)² + (5 - 2)²)= √(3² + 3²)= √(18)= 3√2BC = √((x2 - x1)² + (y2 - y1)²)= √((6 - 4)² + (1 - 5)²)= √(2² + (-4)²)= √(20)= 2√5AC = √((x2 - x1)² + (y2 - y1)²)= √((6 - 1)² + (1 - 2)²)= √(5² + (-1)²)= √(26)因此,△ABC的周长为AB + BC + AC = 3√2 + 2√5 + √26。

接下来,我们计算△ABC的面积,可以利用向量AB和向量AC的叉乘得到:S △ABC = 1/2 * |(x1 * y2 + x2 * y3 + x3 * y1) - (y1 * x2 + y2 * x3 +y3 * x1)|= 1/2 * |(1 * 5 + 4 * 1 + 6 * 2) - (2 * 4 + 5 * 6 + 1 * 1)|= 1/2 * |(5 + 4 + 12) - (8 + 30 + 1)|= 1/2 * |-6|= 3所以,△ABC的面积为3。

解析几何综合训练(含解析)整理

解析几何综合训练(含解析)整理

解析几何综合训练第一节 直线的倾斜角与斜率、直线的方程基 础 必 做一、选择题1.直线l :x sin30°+y cos150°+1=0的斜率是( ) A.33 B.3 C .-3 D .-33解析 设直线l 的斜率为k ,则k =-sin30°cos150°=33.答案 A2.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13 C .-32 D.23解析 设P (x P ,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13.答案 B3.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0 D .ab <0,bc <0解析 由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -cb .易知-a b <0且-cb>0,故ab >0,bc <0.答案 A4.(2014·浙江台州第三次统练)直线(a -1)x +y -a -3=0(a >1),当此直线在x ,y 轴的截距和最小时,实数a 的值是( )A .1 B. 2 C .2 D .3解析 当x =0时,y =a +3,当y =0时,x =a +3a -1,令t =a +3+a +3a -1=5+(a -1)+4a -1.∵a >1,∴a -1>0.∴t ≥5+2(a -1)·4a -1=9.当且仅当a -1=4a -1,即a =3时,等号成立.答案 D5.平行四边形ABCD 的一条对角线固定在A (3,-1),C (2,-3)两点,D 点在直线3x -y +1=0上移动,则B 点的轨迹方程为( )A .3x -y -20=0B .3x -y -10=0C .3x -y -9=0D .3x -y -12=0 解析 设AC 的中点为O ,则⎝⎛⎭⎫52,-2. 设B (x ,y )关于点O 的对称点为(x 0,y 0),即D (x 0,y 0),则⎩⎪⎨⎪⎧x 0=5-x ,y 0=-4-y ,由3x 0-y 0+1=0得3x -y -20=0. 答案 A6.(2015·浙江质检)已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( )A .k ≥34或k ≤-4B .-4≤k ≤34 C.34≤k ≤4 D .-34≤k ≤4解析 如图所示,∵k PN =1-(-2)1-(-3)=34,k PM =1-(-3)1-2=-4,∴要使直线l 与线段MN 相交,当l 的倾斜角小于90°时,k ≥k PN ;当l 的倾斜角大于90°时,k ≤k PM ,由已知得k ≥34或k ≤-4,故选A.答案 A 二、填空题7.过点P (-1,2),且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是________.解析 当直线过原点时,方程为y =-2x ;当直线不经过原点时,设方程为x 2a +ya =1,把P (-1,2)代入上式,得a =32,所以方程为x +2y -3=0.答案 y =-2x 或x +2y -3=08.直线2x +my =1的倾斜角为α,若m ∈(-∞,-23)∪[2,+∞),则α的取值范围是________. 解析 依题意tan α=-2m ,因为m ∈(-∞,-23)∪[2,+∞),所以0<tan α<33或-1≤tan α<0,所以α∈⎝⎛⎭⎫0,π6∪⎣⎡⎭⎫3π4,π. 答案 ⎝⎛⎭⎫0,π6∪⎣⎡⎭⎫3π4,π 9.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =________. 解析 因为k AB =7-54-3=2,k AC =x -5-1-3=-x -54.A ,B ,C 三点共线,所以k AB =k AC ,即-x -54=2,解得x =-3. 答案 -3 三、解答题10.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4); (2)斜率为16.解 (1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.11.已知△ABC 中,A (1,-4),B (6,6),C (-2,0).求: (1)△ABC 的平行于BC 边的中位线的一般式方程和截距式方程; (2)BC 边的中线的一般式方程,并化为截距式方程. 解 (1)平行于BC 边的中位线就是AB 、AC 中点的连线. 因为线段AB 、AC 中点坐标为⎝⎛⎭⎫72,1,⎝⎛⎭⎫-12,-2, 所以这条直线的方程为y +21+2=x +1272+12,整理得6x -8y -13=0, 化为截距式方程为x 136+y-138=1.(2)因为BC 边上的中点为(2,3), 所以BC 边上的中线方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117+y-11=1.培 优 演 练1.已知点A (-1,0),B (cos α,sin α),且|AB |=3,则直线AB 的方程为( ) A .y =3x +3或y =-3x -3 B .y =33x +33或y =-33x -33C .y =x +1或y =-x -1D .y =2x +2或y =-2x - 2 解析 |AB |=(cos α+1)2+sin 2α=2+2cos α=3,所以cos α=12,sin α=±32,所以k AB =±33,即直线AB 的方程为y =±33(x +1),所以直线AB 的方程为y =33x +33或y =-33x -33.答案 B2.(2015·北京模拟)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且坐标原点O 到直线l 的距离为3,则△AOB 的面积S 的最小值为( )A.12B .2C .3D .4 解析 原点O 到直线l 的距离d =|m ×0+n ×0-1|m 2+n2=1m 2+n2=3,∴m 2+n 2=13,在直线l 的方程中,令y =0可得x =1m ,即直线l 与x 轴交于点A ⎝⎛⎭⎫1m ,0,令x =0可得y =1n ,即直线l 与y 轴交于点B ⎝⎛⎭⎫0,1n ,∴S △AOB =12|OA |·|OB |=12·1|m |·1|n |=12|m |·|n |≥1m 2+n 2=3,当且仅当|m |=|n |时上式取等号,由于m 2+n 2=13,故当m 2=n 2=16时,△AOB 的面积取最小值3.答案 C3.将直线l 1:x +y -3=0绕着点P (1,2)按逆时针方向旋转45°后得到直线l 2,则l 2的方程为________. 解析 直线l 1的倾斜角为135°,点P 正好在直线l 1上,因此旋转后得直线l 2的倾斜角为0°,方程为y =2.答案 y =24.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解 (1)证明:方法一:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).方法二:设直线l 过定点(x 0,y 0),则kx 0-y 0+1+2k =0对任意k ∈R 恒成立,即(x 0+2)k -y 0+1=0恒成立,∴x 0+2=0,-y 0+1=0,解得x 0=-2,y 0=1,故直线l 总过定点(-2,1). (2)直线l 的方程为y =kx +2k +1, 则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是[0,+∞).(3)依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k (1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.第二节 直线的交点与距离公式基 础 必 做一、选择题1.若l 1:x +(1+m )y +(m -2)=0,l 2:mx +2y +6=0的图象是两条平行直线,则m 的值是( ) A .m =1或m =-2 B .m =1 C .m =-2D .m 的值不存在解析 方法一:据已知若m =0,易知两直线不平行,若m ≠0,则有1m =1+m 2≠m -26⇒m =1或m =-2.方法二:由1×2=(1+m )m ,得m =-2或m =1.当m =-2时,l 1:x -y -4=0,l 2:-2x +2y +6=0,平行. 当m =1时,l 1:x +2y -1=0,l 2:x +2y +6=0,平行. 答案 A2.已知直线ax +y +5=0与x -2y +7=0垂直,则a 为( ) A .2 B.12 C .-2 D .-12解析 由a ×1+1×(-2)=0,得a =2. 答案 A3.平面直角坐标系中直线y =2x +1关于点(1,1)对称的直线方程是( ) A .y =2x -1 B .y =-2x +1 C .y =-2x +3 D .y =2x -3解析 在直线y =2x +1上任取两个点A (0,1),B (1,3),则点A 关于点(1,1)对称的点为M (2,1),B 关于点(1,1)对称的点为N (1,-1).由两点式求出对称直线MN 的方程y +11+1=x -12-1,即y =2x -3,故选D.答案 D4.已知点A (1,-2),B (m,2),且线段AB 垂直平分线的方程是x +2y -2=0,则实数m 的值是( ) A .-2 B .-7 C .3 D .1 解析 由已知k AB =2,即4m -1=2,解得m =3.答案 C5.已知平面内两点A (1,2),B (3,1)到直线l 的距离分别是2,5-2,则满足条件的直线l 的条数为( ) A .1 B .2 C .3 D .4解析 由题知满足题意的直线l 在线段AB 两侧各有1条,又因为|AB |=5,所以还有1条为过线段AB 上的一点且与AB 垂直的直线,故共3条.答案 C6.已知点A (0,2),B (2,0).若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( ) A .4 B .3 C .2 D .1解析 设点C (t ,t 2),直线AB 的方程是x +y -2=0,|AB |=2 2.由于△ABC 的面积为2,则这个三角形中AB 边上的高h 满足方程12×22h =2,即h = 2.由点到直线的距离公式得2=|t +t 2-2|2,即|t 2+t -2|=2,即t 2+t -2=2或者t 2+t -2=-2.因为这两个方程各有两个不相等的实数根,故这样的点C 有4个.答案 A 二、填空题7.直线(2λ+1)x +(λ-1)y +1=0(λ∈R ),恒过定点________. 解析 整理为x -y +1+λ(2x +y )=0,令⎩⎪⎨⎪⎧x -y +1=0,2x +y =0,得⎩⎨⎧x =-13,y =23,∴恒过定点⎝⎛⎭⎫-13,23. 答案 ⎝⎛⎭⎫-13,23 8.若函数y =ax +8与y =-12x +b 的图象关于直线y =x 对称,则a +b =________.解析 直线y =ax +8关于y =x 对称的直线方程为x =ay +8,所以x =ay +8与y =-12x +b 为同一直线,故得⎩⎪⎨⎪⎧a =-2,b =4.所以a +b =2.答案 29.在平面直角坐标系中,动点P 到两条直线3x -y =0与x +3y =0的距离之和等于4,则P 到原点距离的最小值为________.解析 本题考虑到两直线3x -y =0与x +3y =0相互垂直,且交点就是坐标原点,因此我们把这两条直线同时绕原点旋转到与坐标轴重合,在旋转过程中,动点P 到原点距离的最小值不变,由于动点P 到两坐标轴的距离之和为4,故点P 的轨迹在第一象限内为线段x +y =4(x ≥0,y ≥0),P 到原点距离最小值为22,在其他三个象限也一样取最小值2 2.这就是所求的最小值.(也可直接考虑,P 点的轨迹是一个边长为42的正方形,原点是正方形的中心)答案 2 2 三、解答题10.已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程. (1)l ′与l 平行且过点(-1,3);(2)l ′与l 垂直且l ′与两坐标轴围成的三角形面积为4. 解 (1)直线l :3x +4y -12=0,k l =-34,又∵l ′∥l ,∴k l ′=k l =-34.∴直线l ′:y =-34(x +1)+3,即3x +4y -9=0.(2)∵l ′⊥l ,∴k l ′=43.设l ′在x 轴上的截距为b ,则l ′在y 轴上的截距为-43b ,由题意可知,S =12|b |·⎪⎪⎪⎪-43b =4,∴b =±6. ∴直线l ′:y =43(x +6)或y =43(x -6).即所求直线l ′的方程为:4x -3y +46=0或4x -3y -46=0.11.若自点P (-3,3)发出的光线l 经x 轴反射,其反射光线所在的直线与圆C :x 2+y 2-4x -4y +7=0相切,求直线l 的方程.解 如图所示,设圆C 关于x 轴对称的圆为圆C ′,则圆C ′的圆心坐标为(2,-2),半径为1.设入射光线所在的直线方程为y -3=k (x +3),则该直线与圆C ′相切,则|5k +5|k 2+1=1,解得k =-34,或k =-43,可得直线l 的方程为3x +4y -3=0或4x +3y +3=0.培 优 演 练1.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4) D .(4,-2) 解析 由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2), 又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,∴直线l 2恒过定点(0,2). 答案 B2.在平面直角坐标系中,定义d (A ,B )=|x 1-x 2|+|y 1-y 2|为两点A (x 1,y 1),B (x 2,y 2)间的“折线距离”,在此定义下,给出下列命题:①到原点的“折线距离”为1的点的集合是一个正方形; ②到原点的“折线距离”为1的点的集合是一个圆;③到M (-1,0),N (1,0)两点的“折线距离”相等的点的轨迹方程是x =0. 其中,正确的命题有( )A .3个B .2个C .1个D .0个解析 设到原点的“折线距离”为1的点为(x ,y ),则|x |+|y |=1,其轨迹为正方形,∴①正确,②错误; 设到M (-1,0),N (1,0)两点的“折线距离”相等的点为(x ,y ),则|x +1|+|y |=|x -1|+|y |,|x +1|=|x -1|,从而x =0,∴③正确.故选B.答案 B3.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________. 解析 k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1), 即2x -y =0.①又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1), 即x +y -6=0.②由①②得⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4. 答案 (2,4)4.已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程;(2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由. 解 (1)过P 点的直线l 与原点距离为2,且P 点坐标为(2,-1),可见,过P (2,-1)且垂直于x 轴的直线满足条件.此时l 的斜率不存在,其方程为x =2; 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过P 点与原点O 距离最大的直线是过P 点且与PO 垂直的直线,由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过P 点不存在到原点距离超过5的直线,因此不存在过P 点且到原点距离为6的直线.第三节圆的方程基础必做一、选择题1.若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为() A.-1 B.1 C.3 D.-3解析 因为圆x 2+y 2+2x -4y =0的圆心为(-1,2),所以3×(-1)+2+a =0,解得a =1. 答案 B2.方程|x |-1=1-(y -1)2所表示的曲线是( )A .一个圆B .两个圆C .半个圆D .两个半圆解析 由题意得⎩⎪⎨⎪⎧(|x |-1)2+(y -1)2=1,|x |-1≥0.即⎩⎨⎧(x -1)2+(y -1)2=1,x ≥1或⎩⎪⎨⎪⎧(x +1)2+(y -1)2=1,x ≤-1.故原方程表示两个半圆. 答案 D3.(2015·青岛模拟)若过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围是( )A .(-∞,-3)B.⎝⎛⎭⎫1,32 C .(-∞,-3)∪⎝⎛⎭⎫1,32 D .(-3,+∞)解析 圆的方程可化为(x -a )2+y 2=3-2a .过点A (a ,a )可作圆的两条切线,所以⎩⎪⎨⎪⎧a 2+a 2-2a 2+a 2+2a -3>0,3-2a >0,解之得a <-3或1<a <32,故a 的取值范围为(-∞,-3)∪⎝⎛⎭⎫1,32. 答案 C4.已知方程x 2+y 2+kx +2y +k 2=0所表示的圆有最大的面积,则取最大面积时,该圆的圆心的坐标为( )A .(-1,1)B .(-1,0)C .(1,-1)D .(0,-1) 解析 由x 2+y 2+kx +2y +k 2=0知所表示圆的半径r =12k 2+4-4k 2=12-3k 2+4,当k =0时,r max =124=1, 此时圆的方程为x 2+y 2+2y =0,即x 2+(y +1)2=1,所以圆心为(0,-1). 答案 D5.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0解析 由(a -1)x -y +a +1=0得a (x +1)-(x +y -1)=0,∴直线恒过定点(-1,2). ∴圆的方程为(x +1)2+(y -2)2=5, 即x 2+y 2+2x -4y =0. 答案 C6.若圆x 2+y 2-2x +6y +5a =0关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( ) A .(-∞,4) B .(-∞,0) C .(-4,+∞)D .(4,+∞)解析 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.答案 A 二、填空题7.经过三点A (1,-1)、B (1,4)、C (4,-2)的圆的方程为______________. 解析 根据题意,设所求圆的方程为 x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 由于圆过A 、B 、C 三点, 所以有⎩⎪⎨⎪⎧2+D -E +F =0,17+D +4E +F =0,20+4D -2E +F =0,解得⎩⎪⎨⎪⎧D =-7,E =-3,F =2.故所求圆的方程为x 2+y 2-7x -3y +2=0. 答案 x 2+y 2-7x -3y +2=08.已知A 、B 是圆O :x 2+y 2=16上的两点,且|AB |=6,若以AB 的长为直径的圆M 恰好经过点C (1,-1),则圆心M 的轨迹方程是______________.解析 设圆心坐标为M (x ,y ), 则(x -1)2+(y +1)2=⎝⎛⎭⎫|AB |22, 即(x -1)2+(y +1)2=9.答案 (x -1)2+(y +1)2=99.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________. 解析 l AB :x -y +2=0,圆心(1,0)到l 的距离d =32,则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1 =3- 2. 答案 3- 2 三、解答题10.根据下列条件求圆的方程.(1)经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上; (2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2). 解 (1)设圆的标准方程为(x -a )2+(y -b )2=r 2,由题意列出方程组⎩⎪⎨⎪⎧a 2+b 2=r 2,(a -1)2+(b -1)2=r 2,2a +3b +1=0,解之得⎩⎪⎨⎪⎧a =4,b =-3,r 2=25.∴圆的标准方程是(x -4)2+(y +3)2=25.(2)方法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎨⎧ b =-4a ,(3-a )2+(-2-b )2=r 2,|a +b -1|2=r ,解得⎩⎪⎨⎪⎧a =1,b =-4,r =2 2.∴圆的方程为(x -1)2+(y +4)2=8.方法二:过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4). ∴半径r =(1-3)2+(-4+2)2=2 2.∴所求圆的方程为(x -1)2+(y +4)2=8.11.如图,在平面直角坐标系xOy 中,已知曲线C 由圆弧C 1和圆弧C 2相接而成,两相接点M ,N 均在直线x =5上.圆弧C 1的圆心是坐标原点O ,半径为13;圆弧C 2过点A (29,0).(1)求圆弧C 2的方程;(2)曲线C 上是否存在点P ,满足P A =30PO ?若存在,指出有几个这样的点;若不存在,请说明理由. 解 (1)圆弧C 1所在圆的方程为x 2+y 2=169,令x =5,解得M (5,12),N (5,-12). 则线段AM 中垂线的方程为y -6=2(x -17),令y =0,得圆弧C 2所在圆的圆心为(14,0), 又圆弧C 2所在圆的半径r 2=29-14=15, ∴圆弧C 2的方程为(x -14)2+y 2=225(5≤x ≤29).(2)不存在.理由:假设存在这样的点P (x ,y ),则由P A =30PO ,得x 2+y 2+2x -29=0,由⎩⎪⎨⎪⎧x 2+y 2+2x -29=0,x 2+y 2=169(-13≤x ≤5),解得x =-70(舍去).由⎩⎪⎨⎪⎧x 2+y 2+2x -29=0,(x -14)2+y 2=225(5≤x ≤29), 解得x =0(舍去),综上,这样的点P 不存在.培 优 演 练1.设P 为直线3x +4y +3=0上的动点,过点P 作圆C :x 2+y 2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形P ACB 的面积的最小值为( )A .1B .2 C. 3 D .3解析 依题意,圆C :(x -1)2+(y -1)2=1的圆心是点C (1,1),半径是1,易知|PC |的最小值等于圆心C (1,1)到直线3x +4y +3=0的距离,即105=2,而四边形P ACB 的面积等于2S △P AC =2×(12|P A |·|AC |)=|P A |·|AC |=|P A |=|PC |2-1,因此四边形P ACB 的面积的最小值是22-1= 3.答案 C2.(2014·江西卷)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A.45πB.34π C .(6-25)π D.54π解析 由题意得以AB 为直径的圆C 过原点O ,圆心C 为AB 的中点,设D 为切点,要使圆C 的面积最小,只需圆的半径最短,也只需OC +CD 最小,其最小值为OE (过原点O 作直线2x +y -4=0的垂线,垂足为E )的长度.由点到直线的距离公式得OE =45.∴圆C 面积的最小值为π⎝⎛⎭⎫252=45π.故选A.答案 A3.(2015·江苏扬州中学月考)已知方程x 2+x tan θ-1sin θ=0有两个不等实根a 和b ,那么过点A (a ,a 2),B (b ,b 2)的直线与圆x 2+y 2=1的位置关系是________.解析 由题意可知过A ,B 两点的直线方程为(a +b )x -y -ab =0,圆心到直线AB 的距离为d =|ab |(a +b )2+1,而a +b =-1tan θ,ab =-1sin θ,因此d =⎪⎪⎪⎪1sin θ1tan 2θ+1,化简后得d =1,故直线与圆相切.答案 相切4.已知曲线C 的方程为:ax 2+ay 2-2a 2x -4y =0(a ≠0,a 为常数). (1)判断曲线C 的形状;(2)设曲线C 分别与x 轴,y 轴交于点A ,B (A ,B 不同于原点O ),试判断△AOB 的面积S 是否为定值?并证明你的判断;(3)设直线l :y =-2x +4与曲线C 交于不同的两点M ,N ,且|OM |=|ON |,求曲线C 的方程. 解 (1)将曲线C 的方程化为x 2+y 2-2ax -4a y =0⇒(x -a )2+⎝⎛⎭⎫y -2a 2=a 2+4a 2,可知曲线C 是以点⎝⎛⎭⎫a ,2a 为圆心,以a 2+4a2为半径的圆.(2)△AOB 的面积S 为定值. 证明如下:在曲线C 的方程中令y =0,得ax (x -2a )=0,得点A (2a,0), 在曲线C 方程中令x =0,得y (ay -4)=0,得点B ⎝⎛⎭⎫0,4a , ∴S =12|OA |·|OB |=12·|2a |·⎪⎪⎪⎪4a =4(定值).(3)∵圆C 过坐标原点,且|OM |=|ON |, ∴OC ⊥MN ,∴2a 2=12,∴a =±2.当a =-2时,圆心坐标为(-2,-1),圆的半径为5, 圆心到直线l :y =-2x +4的距离 d =|-4-1-4|5=95>5,直线l 与圆C 相离,不合题意舍去, ∴a =2时符合题意.这时曲线C 的方程为x 2+y 2-4x -2y =0.第四节 直线与圆、圆与圆的位置关系基 础 必 做一、选择题1.圆x 2+y 2-2x +4y -4=0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( ) A .相离 B .相切 C .相交 D .以上都有可能 解析 ∵圆的方程可化为(x -1)2+(y +2)2=9, ∴圆心为(1,-2),半径r =3. 又圆心在直线2tx -y -2-2t =0上, ∴圆与直线相交. 答案 C2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切 D .内切解析 圆O 1的圆心坐标为(1,0),半径为r 1=1,圆O 2的圆心坐标为(0,2),半径r 2=2,故两圆的圆心距|O 1O 2|=5,而r 2-r 1=1,r 1+r 2=3,则有r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.答案 B3.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( ) A .-2 B .-4 C .-6 D .-8解析 圆的方程可化为(x +1)2+(y -1)2=2-a ,因此圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,又弦长为4,因此由勾股定理可得(2)2+⎝⎛⎭⎫422=(2-a )2,解得a =-4.故选B. 答案 B4.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( ) A .(x +2)2+(y -2)2=1 B .(x -2)2+(y +2)2=1 C .(x +2)2+(y +2)2=1 D .(x -2)2+(y -2)2=1解析 C 1:(x +1)2+(y -1)2=1的圆心为(-1,1),它关于直线x -y -1=0对称的点为(2,-2),对称后半径不变,所以圆C 2的方程为(x -2)2+(y +2)2=1.答案 B5.若直线x -y +2=0与圆C :(x -3)2+(y -3)2=4相交于A ,B 两点,则CA →·CB →的值为( ) A .-1 B .0 C .1 D .6解析 由题意可知,圆心C (3,3)到直线AB :x -y +2=0的距离为d =|3-3+2|12+12= 2.又sin ∠BAC =d r =22,所以∠BAC =45°,又因为CA =CB ,所以∠BCA =90°.故CA →·CB →=0.答案 B6.(2014·河南南阳三联)动圆C 经过点F (1,0),并且与直线x =-1相切,若动圆C 与直线y =x +22+1总有公共点,则圆C 的面积( )A .有最大值8πB .有最小值2πC .有最小值3πD .有最小值4π解析 设圆心为C (a ,b ),半径为r ,r =|CF |=|a +1|,即(a -1)2+b 2=(a +1)2,即a =14b 2,∴圆心为⎝⎛⎭⎫14b 2,b ,r =14b 2+1,圆心到直线y =x +22+1的距离为d =⎪⎪⎪⎪b 24-b +22+12≤b24+1,∴b ≤-2(22+3)或b ≥2,当b =2时,r min =14×4+1=2,∴S min =πr 2=4π.答案 D 二、填空题7.以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0公共弦为直径的圆的方程为______________.解析 将两圆方程相减得公共弦所在直线方程为4x +3y -2=0.由⎩⎪⎨⎪⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0.解得两交点坐标A (-1,2),B (5,-6).∵所求圆以AB 为直径,∴所求圆的圆心是AB 的中点M (2,-2),圆的半径为r =12|AB |=5,∴圆的方程为(x -2)2+(y +2)2=25. 答案 (x -2)2+(y +2)2=258.直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________. 解析 由题意,得圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的14,即|a |2=|b |2,|a |2=cos45°=22,所以a 2=b 2=1,故a 2+b 2=2. 答案 29.设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析 ∵l 与圆相交所得弦的长为2, ∴1m 2+n2=4-1.∴m 2+n 2=13≥2|mn |,∴|mn |≤16.l 与x 轴交点A ⎝⎛⎭⎫1m ,0,与y 轴交点B ⎝⎛⎭⎫0,1n , ∴S △AOB =12·⎪⎪⎪⎪1m ⎪⎪⎪⎪1n =12·1|mn |≥12×6=3.答案 3 三、解答题10.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解 将圆C 的方程x 2+y 2-8y +12=0配方,得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质, 得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0. 11.已知点A (-3,0),B (3,0),动点P 满足|P A |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.解 (1)设点P 的坐标为(x ,y ), 则(x +3)2+y 2=2(x -3)2+y 2,化简可得(x -5)2+y 2=16即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图. 则直线l 2是此圆的切线,连接CQ , 则|QM |=|CQ |2-|CM |2=|CQ |2-16,当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42,此时|QM |的最小值为32-16=4.培 优 演 练1.直线y =x +m 与圆x 2+y 2=16交于不同的两点M ,N ,且|MN →|≥3|OM →+ON →|,其中O 是坐标原点,则实数m 的取值范围是( )A .(-22,-2]∪[2,22)B .(-42,-22]∪[22,42)C .[-2,2]D .[-22,22] 解析 设MN 的中点为D ,则OM →+ON →=2OD →,|MN →|≥23|OD →|,由|OD →|2+14|MN →|2=16,得16=|OD →|2+14|MN →|2≥|OD →|2+14(23|OD →|)2,从而得|OD →|≤2,由点到直线的距离公式可得|OD →|=|m |2≤2,解得-22≤m ≤2 2.答案 D2.过点P (1,3)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长|AB |=( ) A.3 B .2 C .2 D .4解析 如图所示,∵P A ,PB 分别为圆O :x 2+y 2=1的切线, ∴OA ⊥AP .∵P (1,3),O (0,0), ∴|OP |=1+3=2.又∵|OA |=1,在Rt △APO 中,cos ∠AOP =12,∴∠AOP =60°,∴|AB |=2|AO |sin ∠AOP = 3.故选A. 答案 A3.设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},则M ∩N ≠∅时,a 的最大值与最小值分别为________、________.解析 因为集合M ={(x ,y )|y =2a 2-x 2,a >0},所以集合M 表示以O (0,0)为圆心,半径为r 1=2a 的上半圆. 同理,集合N 表示以O ′(1,3)为圆心,半径为r 2=a 的圆上的点. 这两个圆的半径随着a 的变化而变化,但|OO ′|=2.如图所示, 当两圆外切时,由2a +a =2,得a =22-2; 当两圆内切时,由2a -a =2,得a =22+2. 所以a 的最大值为22+2,最小值为22-2. 答案 22+2 22-24.过点Q (-2,21)作圆O :x 2+y 2=r 2(r >0)的切线,切点为D ,且|QD |=4. (1)求r 的值;(2)设P 是圆O 上位于第一象限内的任意一点,过点P 作圆O 的切线l ,且l 交x 轴于点A ,交y 轴于点B ,设OM →=OA →+OB →,求|OM →|的最小值(O 为坐标原点).解 (1)圆O :x 2+y 2=r 2(r >0)的圆心为O (0,0), 于是|QO |2=(-2)2+(21)2=25.由题设知,△QDO 是以D 为直角顶点的直角三角形,故有r =|OD |=|QO |2-|QD |2=25-42=3.(2)设直线l 的方程为x a +yb=1(a >0,b >0),即bx +ay -ab =0,则A (a,0),B (0,b ),∴OM →=(a ,b ), ∴|OM →|=a 2+b 2.∵直线l 与圆O 相切,∴|-ab |a 2+b2=3⇒a 2b 2=9(a 2+b 2)≤⎝ ⎛⎭⎪⎫a 2+b 222.∴a 2+b 2≥36,∴|OM →|≥6.当且仅当a =b =32时取到“=”.∴|OM →|取得最小值为6.第五节 椭圆基 础 必 做一、选择题1.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析 由椭圆的定义知:|BA |+|BF |=|CA |+|CF |=2a (F 是椭圆的另外一个焦点),∴周长为4a =4 3. 答案 C2.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或21解析 若a 2=9,b 2=4+k ,则c =5-k ,由c a =45,即5-k 3=45,解得k =-1925; 若a 2=4+k ,b 2=9,则c =k -5,由c a =45,即k -54+k=45,解得k =21. 答案 C3.已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上.若焦距为4,则m 等于( )A .4B .5C .7D .8 解析 将椭圆的方程转化为标准形式为y 2(m -2)2+x 2(10-m )2=1,显然m -2>10-m ,即m >6,且(m -2)2-(10-m )2=22,解得m =8.答案 D4.(2015·烟台质检)一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆方程为( )A.x 28+y 26=1B.x 216+y 26=1C.x 28+y 24=1D.x 216+y 24=1 解析 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点(2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|, 即2a =2·2c ,c a =12.又c 2=a 2-b 2,联立解得a 2=8,b 2=6.答案 A5.(2015·北京海淀期末)已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2.若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为( )A.32 B.332 C.94 D.154解析 由椭圆方程知c =4-3=1,所以F 1(-1,0),F 2(1,0),因为椭圆C 上点A 满足AF 2⊥F 1F 2,则可设A (1,y 0),代入椭圆方程可得y 20=94,所以y 0=±32. 设P (x 1,y 1),则F 1P →=(x 1+1,y 1),F 2A →=(0,y 0), 所以F 1P →·F 2A →=y 1y 0.因为点P 是椭圆C 上的动点,所以-3≤y 1≤3, F 1P →·F 2A →的最大值为332.故B 正确.答案 B6.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与圆C 2:x 2+y 2=b 2,若在椭圆C 1上存在点P ,使得由点P 所作的圆C 2的两条切线互相垂直,则椭圆C 1的离心率的取值范围是( )A.⎣⎡⎭⎫12,1B.⎣⎡⎦⎤22,32C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫32,1 解析 椭圆上长轴端点向圆外引两条切线P ′A ,P ′B ,则两切线形成的角∠AP ′B 最小,若椭圆C 1上存在点P 令切线互相垂直,则只需∠AP ′B ≤90°,即α=∠AP ′O ≤45°.∴sin α=b a ≤sin45°=22,解得a 2≤2c 2,∴e 2≥12,即e ≥22,而0<e <1,∴22≤e <1,即e ∈⎣⎡⎭⎫22,1. 答案 C 二、填空题7.若方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.解析 因为方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,所以|a |-1>a +3>0,解得-3<a <-2.答案 (-3,-2)8.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =________.解析 设椭圆的右焦点为F 1,在△ABF 中,由余弦定理可解得|BF |=8,所以△ABF 为直角三角形,又因为斜边AB 的中点为O ,所以|OF |=c =5,连接AF 1,因为A ,B 关于原点对称,所以|BF |=|AF 1|=8,所以2a =14,a =7,所以离心率e =57.答案 579.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率为________.解析 依题意设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=2,x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1,∴x 21-x 22a 2+y 21-y 22b2=0,b 2a 2=-y 21-y 22x 21-x 22=-(y 1+y 2)(y 1-y 2)(x 1+x 2)(x 1-x 2)=12. ∴e = 1-b 2a 2=22. 答案22三、解答题10.已知椭圆的两焦点为F 1(-1,0)、F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|. (1)求此椭圆的方程;(2)若点P 在第二象限,∠F 2F 1P =120°,求△PF 1F 2的面积. 解 (1)依题意得|F 1F 2|=2,又2|F 1F 2|=|PF 1|+|PF 2|, ∴|PF 1|+|PF 2|=4=2a .∴a =2,c =1,b 2=3. ∴所求椭圆的方程为x 24+y 23=1.(2)设P 点坐标为(x ,y ),∵∠F 2F 1P =120°, ∴PF 1所在直线的方程为y =(x +1)·tan120°, 即y =-3(x +1).解方程组⎩⎪⎨⎪⎧y =-3(x +1),x 24+y 23=1,并注意到x <0,y >0,可得⎩⎨⎧x =-85,y =335.∴S △PF 1F 2=12|F 1F 2|·335=335.11.如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值. 解 设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0). (1)因为B (0,b ),所以BF 2=b 2+c 2=a .又BF 2=2,故a = 2.因为点C ⎝⎛⎭⎫43,13在椭圆上,所以169a 2+19b 2=1.解得b 2=1. 故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +yb=1.解方程组⎩⎨⎧x c +yb =1,x 2a 2+y2b2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b .所以点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c2,b (c 2-a 2)a 2+c 2.又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c2,b (a 2-c 2)a 2+c 2.因为直线F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c3,直线AB 的斜率为-bc ,且F 1C ⊥AB , 所以b (a 2-c 2)3a 2c +c 3·⎝⎛⎭⎫-b c =-1. 又b 2=a 2-c 2,整理得a 2=5c 2.故e 2=15.因此e =55. 培 优 演 练1.已知椭圆:x 24+y 2b 2=1(0<b <2),左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32D. 3解析 由题意知a =2,所以|BF 2|+|AF 2|+|AB |=4a =8,因为|BF 2|+|AF 2|的最大值为5,所以|AB |的最小值为3,当且仅当AB ⊥x 轴时,取得最小值,此时A ⎝⎛⎭⎫-c ,32,B ⎝⎛⎭⎫-c ,-32,代入椭圆方程得c 24+94b2=1,又c 2=a 2-b 2=4-b 2,所以4-b 24+94b 2=1,即1-b 24+94b 2=1,所以b 24=94b2,解得b 2=3,所以b = 3.答案 D2.以F 1(-1,0),F 2(1,0)为焦点且与直线x -y +3=0有公共点的椭圆中,离心率最大的椭圆方程是( ) A.x 220+y 219=1 B.x 29+y 28=1 C.x 25+y 24=1 D.y 29+x 28=1 解析 由于c =1,所以离心率最大即为长轴最小.点F 1(-1,0)关于直线x -y +3=0的对称点为F ′(-3,2),设点P 为直线与椭圆的公共点,则2a =|PF 1|+|PF 2|=|PF ′|+|PF 2|≥|F ′F 2|=2 5.取等号时离心率取最大值,此时椭圆方程为x 25+y 24=1.答案 C3.(2014·安徽卷)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.解析 设点B 的坐标为(x 0,y 0).∵x 2+y 2b2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →. ∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-531-b 2,y 0=-b 23.∴点B 的坐标为⎝⎛⎭⎫-531-b 2,-b 23.将B ⎝⎛⎭⎫-531-b 2,-b 23代入x 2+y 2b 2=1,得b 2=23. ∴椭圆E 的方程为x 2+32y 2=1.答案 x 2+32y 2=14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左右焦点分别为F 1(-c,0),F 2(c,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1.∴椭圆的方程为x 24+y 23=1.(2)由题设知,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5.由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2.设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =-12x +m ,x 24+y23=1,得x 2-mx +m 2-3=0.由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎡⎦⎤1+⎝⎛⎭⎫-122[m 2-4(m 2-3)]=1524-m 2.由|AB ||CD |=534得 4-m 25-4m 2=1,解得m =±33,满足(*).∴直线l 的方程为y =-12x +33或y =-12x -33.第六节 双曲线 基 础 必 做一、选择题1.已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2 B.62 C.52 D .1 解析 由已知得a 2+3a=2,且a >0,解得a =1,故选D. 答案 D2.(2014·广东卷)若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等解析 因为0<k <9,所以方程x 225-y 29-k =1与x 225-k -y 29=1均表示焦点在x 轴上的双曲线.双曲线x 225-y 29-k =1中,其实轴长为10,虚轴长为29-k ,焦距为225+9-k =234-k ;双曲线x 225-k -y 29=1中,其实轴长为225-k ,虚轴长为6,焦距为225-k +9=234-k .因此两曲线的焦距相等,故选A.答案 A3.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( )A.x 24-y 25=1B.x 24-y 25=1C.x 22-y 25=1D.x 22-y 25=1解析 由双曲线C 的右焦点为F (3,0),知c =3. 由e =c a =32,则a =2,故b 2=c 2-a 2=9-4=5,所以双曲线C 的方程为x 24-y 25=1.答案 B4.(2014·新课标全国卷Ⅰ)已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A. 3 B .3 C.3m D .3m解析 由题意,可得双曲线C 为x 23m -y 23=1,则双曲线的半焦距c =3m +3.不妨取右焦点(3m +3,0),其渐近线方程为y =±1mx ,即x ±my =0.所以由点到直线的距离公式得d =3m +31+m= 3.故选A. 答案 A5.(2014·江西卷)过双曲线C :x 2a 2-y 2b 2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A ,若以C 的右焦点为圆心,半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1B.x 27-y 29=1C.x 28-y 28=1D.x 212-y 24=1解析 设双曲线的右顶点为B ,则B (a,0). 不妨取渐近线y =ba x ,则A 点的坐标为(a ,b ),从而可知|OA |=c .∵由已知可得|OF |=|AF |=c =4, ∴△OAF 为边长是c 的等边三角形. 又AB ⊥OF ,∴|OB |=a =2,|AB |=b =2 3. 故所求的双曲线方程为x 24-y 212=1.答案 A6.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,渐近线分别为l 1,l 2,点P 在第一象限内且在l 1上,若l 2⊥PF 1,l 2∥PF 2,则该双曲线的离心率为( )A. 5 B .2 C. 2 D. 3解析 由题意可知F 1(-c,0),F 2(c,0),P (x 0,y 0),渐近线l 1的直线方程为y =ba x ,渐近线l 2的直线方程为y =-bax .∵l 2∥PF 2,∴y 0x 0-c =-ba ,即ay 0=bc -bx 0.∵点P 在l 1上,即ay 0=bx 0,∴bx 0=bc -bx 0,解得x 0=c2.∴P ⎝⎛⎭⎫c 2,bc 2a . ∵l 2⊥PF 1,∴bc2a 3c 2·⎝⎛⎭⎫-b a =-1,即3a 2=b 2. ∵a 2+b 2=c 2,∴4a 2=c 2,即c =2a . 答案 B 二、填空题7.双曲线x 216-y 29=1的两条渐近线的方程为________.解析 本题考查双曲线的渐近线方程.由a 2=16,b 2=9,得渐近线方程为y =±b a x =±34x .答案 y =±34x8.双曲线x 216-y 2m =1的离心率为54,则m 等于________.解析 a 2=16,b 2=m ,得c 2=16+m ,则e =ca =16+m 4=54,∴m =9. 答案 99.设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,O 为坐标原点.若以F 为圆心,FO 为半径的圆与双曲线C 的渐近线y =bax 交于点A (不同于O 点),则△OAF 的面积为________.解析 因为右焦点F (c,0)到渐近线y =ba x ,即bx -ay =0的距离为|bc |a 2+b2=b ,所以|OA |=2a ,故△OAF的面积为12×2a ×b =ab .答案 ab 三、解答题10.直线l :y =3(x -2)和双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)交于A ,B 两点,且|AB |=3,又l 关于直线l 1:y =bax 对称的直线l 2与x 轴平行.(1)求双曲线C 的离心率; (2)求双曲线C 的方程.解(1)设双曲线C :x 2a 2-y 2b 2=1过一、三象限的渐近线l 1:x a -yb =0的倾斜角为α.因为l 和l 2关于l 1对称,记它们的交点为P . 而l 2与x 轴平行,记l 2与y 轴的交点为Q . 依题意有∠QPO =∠POM =∠OPM =α.又l :y =3(x -2)的倾斜角为60°,则2α=60°,α=30°. 所以tan30°=b a =33.于是e 2=c 2a 2=1+b 2a 2=1+13=43.所以e =233.(2)由b a =33,可设双曲线方程为x 23k 2-y 2k 2=1,即x 2-3y 2=3k 2.将y =3(x -2)代入x 2-3y 2=3k 2, 得x 2-3·3(x -2)2=3k 2.化简得8x 2-36x +36+3k 2=0,则x 1+x 2=92,x 1x 2=36+3k 28.设A (x 1,y 1),B (x 2,y 2), 则|AB |= 1+3|x 1-x 2|=2(x 1+x 2)2-4x 1x 2=2⎝⎛⎭⎫922-4·36+3k 28=9-6k 2=3,解得k 2=1.故所求双曲线C 的方程为x 23-y 2=1.11.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为。

解 析 几 何 综 合 练 习 题(含解答)

解 析 几 何 综 合 练 习 题(含解答)

解 析 几 何 综 合 练 习 题(含解答)整理人:钦州市大寺中学 李川华1.已知椭圆C :)0(12222>>=+b a by ax ,经过点)59,4(M ,过点M 向x 轴作垂线恰经过椭圆C 的焦点, (1)求椭圆方程;(2)设直线l 与椭圆C 相交于A ,B 两点,且满足|AF |,|MF |,|BF |成等差数列.若AB 的垂直平分线2.已知双曲线22221xy ab-=的右焦点是F ,右顶点是A ,虚轴的上端点是B ,6AB AF⋅=-150BAF ∠=︒.(1)求双曲线的方程;(2)设Q 是双曲线上的一点,且过点F 、Q 的直线l 与y 轴交于点M ,若2M Q QF +=0,求直线l 的斜率.解:(1)由条件知(,0),(0,),(,0)A a B b F c ,(,)(,0)()AB AF a b c a a a c ⋅=-⋅-=-6=-,()cos cos150()2||||AB AF a a c a BAF c c a c AB AF ⋅-∠===-=︒=--⋅2a=,代入()6a a c -=-中得c =,∴a =2222bc a =-=.故双曲线的方程为22162xy-=.(6分)(2)∵点F的坐标为0),∴可设直线l的方程为(y k x =-,令0x=,得y =-,即(0,)M -.设(,)Q m n ,则由2M Q QF +=0得(m3∴过A 点的切线方程为)(21121x x x x y -=-,即,2211x x x y -=① 同理过B 点的切线方程为.2222x x x y -=②设),,(y x M 则02,221=+-y xt t x x 为方程的两根,由韦达定理知,21y x x =⋅又由(Ⅰ),121-=x x .1,1--=∴的纵坐标为定值即M y4.椭圆C 的中心为坐标原点,焦点在y 轴上,焦点到相应的准线的距离以及离心率均为2,直线l 与y 轴交知2210214)22(32222=+-++-∴km kkm 整理得 02242222=--+k m m k412=m时,上式成立; 412≠m时,1422222--=m mk 因03≠∴=k λ0142222>--∴m m1412<<∴m ,即211-<<-m 或121<<m即所求m 的取值范围为)1,21()21,1( --5.如图,DE ⊥x 轴,垂足为D ,点M 满足,2DE DM =当点E 在圆122=+y x 上运动时, (1)求点M 的轨迹方程;(2)过点F )3,0(-引(与两坐标轴都不平行的)直线l 与点M 的轨迹交于A 、B 两点,试在y轴上求点P ,使得PF 是∠APB 的角平分线.DE DM 2=,36.如图,已知三角形PAQ 顶点P (-3,0),点A 在y 轴上,点Q 在x 轴正半轴上,PA ·AQ =0, OM =2AQ .(1)当点A 在y 轴上移动时,求动点M 的轨迹E 的方程;(2)设直线l :y =k (x +1)与轨迹E 交于B 、C 两点,点D (1,0),若∠BDC 为钝角,求k 的取值范围.解:(1)设OM =(x ,y ),OA =(0,a ),OQ =(b ,0)(b >0)则PA =(3,a ),AQ =(b ,-a ),又PA ·AQ =0, ∴a 2=3b ①又∵QM =(x-b ,y ),AQ =(b ,-a ),QM =2AQ , ∴⎩⎨⎧-==ay b x 23 ②由①②得y 2=4x (x ≠0)7在NP GQ ⎪⎭⎪⎩=⋅0 GQ ⇒为PN 的中垂线||||GN PG =⇒∴|GN | +|GM | = |MP | = 6,故G 点的轨迹是以M 、N 为焦点的椭圆,其长半轴长a = 3,半焦距5=c ,∴短半轴长b = 2,∴点G 的轨迹是方程:.14922=+yx(2)因为OB OA OS +=,所以四边形OASB 为平行四边形,若存在l 使得||||AB OS =,则四边形OASB 为矩形 ∴0=⋅OB OA⎧=⎧=22x x8O (I)(Ⅱ由()21212122,222,x x pk y y k x x pk +=-+=+-=--因为()()21212,2,22OA OB x x y y pk pk +=++=--- =317,,24⎛⎫--⎪⎝⎭所以232,21722.4pk pk ⎧-=-⎪⎪⎨⎪--=-⎪⎩解得 21,3.2p k =⎧⎪⎨=⎪⎩所以直线l 的方程为31,2y x =-抛物线C 的方程为2.x y =-(2)方法一:由31,2y x ⎧=-⎪⎨得,11(2,4),(,),A B ---设21(,),2,P t t t --<< d 'y 9a 943(2)设存在点P )(,x y 满足题设条件,∴2AP =()22x a y -+ 又22194xy+= ∴2y =24(1)9x-,∴2AP =()2x a -+24(1)9x-=22594()4(3)955x a a x -+-≤,当935a ≤即503a <≤时,2AP 的最小值为 2445a -依题意,24410,52a a ⎛5⎤-=⇒=±∉ ⎥3⎦⎝, ∴935a >即533a <<,此时3x =,2AP 的最小值为2(3)a -.依题意2(3)1a -=,∴2a =,此时点P 的坐标是)(3,010 11()()()()()030,0,,,,A 33342,0322212211222222=->>=+∴=---=∆≠-xy y y y x B y x bk b kkb k双曲线的渐近线方程为则 设()()()330,03,3,1312344,030230321212122222121222122222222222=⋅=⋅∴>>==-=-=⋅>=--=∆≠-*=++-⎩⎨⎧=-+=x x y y y y x y x y kh x x bkbb k kb kbx x k x y b kx y 且 得由124一点M 解:(Ⅰ)依题意得 a =2c ,ca2=4,解得a =2,c =1,从而b故椭圆的方程为13422=+yx(Ⅱ)解法1:由(Ⅰ)得A (-2,0),B (2,0) 设M (x 0,y 0)∵M 点在椭圆上,∴y 0=43(4-x 02) ○1又点M 异于顶点A 、B ,∴-2<x 0<2,由P 、A 、M 三点共线可以得 P (4,2600+x y ) 从而BM =(x 0-2,y 0),BP=(2,2600+x y )21314.16,53tan 11cos ,34|4122|tan 2=+==-+=ααα则54sin =∴α,1,32,2.5||||)(,5||,5||),2,(),2,(,2221021212211=-⎪⎪⎨⎧+=∴==⋅∴==∴--=∠∴y x x x x PB AP x x OB OA AB P x OB x OA x x B x x A AOB 代入又的内分点是设 απ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释)
1.已知直线
1:210
l ax y
++=与直线2:(3)0
l a x y a
--+=,若12//l l,则a
的值为()
A.1 B.2 C.6 D.1或2
2.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与
直线x+y+3=0相切,则圆C的方程为( )
A.(x+1)2+y2=2 B.(x-1)2+y2=1
C.(x+1)2+y2=4 D.(x-2)2+y2=4
3.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆
过点(0,2),则C的方程为( )
A.y2=4x或y2=8x B.y2=2x或y2=8x
C.y2=4x或y2=16x D.y2=2x或y2=16x
4.双曲线x21( )
A. B. m≥1
C.m>1 D. m>2
二、填空题(题型注释)
5.经过圆x 2+2x +y 2
=0的圆心C ,且与直线x +y =0垂直的直线方程是________. 6.已知抛物线y 2
=4x 的焦点F 恰好是双曲线22x a -2
2y b =1(a>0,b>0)的右顶点,且双曲线的渐近线方程为y =±3x ,则双曲线方程为________.
三、解答题(题型注释)
7.已知点A(3,3),B(5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.
8.如图,在直角坐标系中,已知△PAB 的周长为8,且点A ,B 的坐标分别为(-1,0),(1,0).
(1)试求顶点P 的轨迹C 1的方程;
(2)若动点C(x 1,y 1)在轨迹C 1上,试求动点Q 11,322x y ⎛⎫ ⎪⎝⎭
的轨迹C 2的方程.
9.设椭圆C:
2
2
x
a

2
2
y
b
=1(a>b>0)过点(0,4),离心率为
3
5
.
(1)求C的方程;
(2)求过点(3,0)且斜率为4
5
的直线被C所截线段的中点坐标.
10.如图,F是椭圆的右焦点,以点F为圆心的圆过原点O和椭圆的右顶点,设P是椭圆上的动点,P到椭圆两焦点的距离之和等于4.
(1)求椭圆和圆的标准方程;
(2)设直线l的方程为x=4,PM⊥l,垂足为M,是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
答案
1.C
【解析】 试题分析:1l 的斜率为,2l 的斜率为23k a =-,由12//l l ,有6a =.
考点:直线的斜率.
2.A
【解析】令y =0得x =-1,所以直线x -y +1=0与x 轴的交点为(-1,0).因为直线x +
y +3=0与圆C 相切,所以圆心到直线x +y +3=0的距离等于半径,即r 所以圆C 的方程为(x +1)2+y 2=2.
3.C
【解析】由已知得抛物线的焦点A(0,2),抛物线上点M(x 0,y 0),则AF =,AM =由已知得,AF ·AM =0,
即y 02-8y 0+16=0,因而y 0=4,
由|MF|=55, 又p >0,解得p =2或p =8.
4.C
【解析】依题意,e e 2,得1+m>2,所以m>1. 5.x -y +1=0
【解析】所求直线过圆:x 2+2x +y 2
=0的圆心C(-1,0),斜率为1,故方程为x -y +1=
0.
6.x2
1
【解析】抛物线的焦点坐标为(1,0),故在双曲线中a=1,由双曲线的渐近线方程为y
,可得b
x2
1.
7.x+2y-5=0或x-6y+11=0
【解析】解:解方程组
310
30
x y
x y
--=


+-=

得交点P(1,2).
(1)若点A,B在直线l的同侧,则l∥AB.
而k AB
由点斜式得直线l的方程为
y-2
-1),
即x+2y-5=0;
(2)若点A,B分别在直线l的异侧,则直线l经过线段AB
由两点式得直线l
即x-6y+11=0.
综上所述,直线l的方程为x+2y-5=0或x-6y+11=0.
8.
1 (2) x2+y2=1
【解析】解:(1)由题意,可得顶点P满足|PA|+|PB|=6,
结合椭圆的定义,可知顶点P的轨迹C1是以A,B为焦点的椭圆,且椭圆的半焦距长c=1,
长半轴长a=3,则b2=a2-c2=8.
故轨迹C1 1.
(2)已知点C(x1,y1)在曲线C1上,
1.
x y,得x1=3x,y1=
1,得x2+y2=1,
所以动点C2的方程为x2+y2=1.
9.
【解析】解:(1)将(0,4)代入C1,解得b=4.
又e
即1
则a=5.所以C 1.
(2)过点(3,0)y-3).
设直线与C的交点为A(x1,y1),B(x2,y2),
将直线方程y-3)代入C的方程,
1,即x2-3x-8=0,所以x1+x2=3.
设AB的中点坐标为,
1+x2-6)
10. 1 (x-1)2+y2=1
(2) 存在点FPM为等腰三角形
【解析】解:(1)1,由已知可得2a=4,a=2c,解得a=2,c=1,b2=a2-c2=3.
1,圆的标准方程为(x-1)2+y2=1.
(2)设P(x,y),则M(4,y),F(1,0),-2≤x≤2,
∵P(x,y)1,
∴y2=32.
∴|PF|2=(x-1)2+y2=(x-1)2+32-4)2,
|PM|2=|x-4|2,|FM|2=32+y2=122.
①若|PF|=|FM|-4)2=122,解得x=-2或x=4(舍去),x=-2时,P(-2,0),此时P,F,M三点共线,不合题意.∴|PF|≠|FM|;
②若|PM|=|PF|,则(x-4)2-4)2,解得x=4,不合题意;
③若|PM|=|FM|,则(x-4)2=122,解得x=4(舍去)或x x y

综上可得,存在点FPM为等腰三角形.。

相关文档
最新文档