概率论与数理统计基础知识网络结构图

合集下载

概率论与数理统计知识点细分目录(标)

概率论与数理统计知识点细分目录(标)

概率论与数理统计知识点的细分目录引言概率统计漫谈第一章概率论基础0101 随机事件※010101 随机试验,样本空间,事件010102 事件间关系与运算※0102 古典概型与概率010 古典概型,随机抽球问题010202 随机分球问题0103 概率的定义及性质010301 概率的定义(包括频率与概率,概率的公理化定义)010302 概率的性质0104 条件概率010401 条件概率的定义010402 乘法公式※010403 全概率公式※010404 贝叶斯公式0105 事件的独立性※010501 事件的独立性0106 单元小结0107 简单综合题选解0108 综合提高题选解第二章随机变量及其分布0 离散型随机变量※01 随机变量的概念,离散型随机变量※02 几个常用的离散型分布( 两点分布,贝努里试验,二项分布,泊松定理,泊松分布)03 几何分布与超几何分布0202 随机变量的分布函数0203 连续型随机变量※020301 连续型随机变量,概率密度020302 均匀分布与指数分布020303 正态分布0204 随机变量函数的分布020401 离散型随机变量函数的分布律020402 连续型随机变量函数的分布(分布函数法)4020403 连续型随机变量函数的分布(公式法)0205 单元小结0206 简单综合题选解0207 综合提高题选解第三章多维随机变量及其分布0301 二维随机变量030101 二维随机变量的分布函数030102 二维随机变量的分布律030103 二维随机变量的概率密度030104 二维均匀分布,二维正态分布0302 边缘分布030 边缘分布函数,边缘分布律030202 边缘概率密度0303 条件分布030301 离散型随机变量的条件分布律030302 条件分布函数,连续型随机变量的条件概率密度0304 随机变量的独立性030401 两个随机变量的独立性030402 多个随机变量的独立性0305 二维随机变量函数的分布030501 二维离散型随机变量函数的分布030502 和的分布030503 最大与最小值的分布0306 单元小结0307 简单综合题选解0308 综合提高题选解第四章数字特征和极限理论0401 随机变量的数学期望※040101 期望的概念040102 几种常用离散型随机变量期望的计算040103 几种常用连续型随机变量期望的计算040104 随机变量函数的期望040105 数学期望的性质0402 随机变量的方差※040 方差的定义及性质040202 几种常用离散型随机变量期望的计算040203 几种常用连续型随机变量方差的计算040204 切比雪夫不等式0403 随机变量的协方差与相关系数040301 协方差与相关系数的概念040302 相关系数的性质040303 协方差的性质040304 矩、协方差矩阵040305 多维正态分布简介0404 大数定律与中心极限定理※040401 三个大数定律※040402 Levy-Lindeberg中心极限定理040403 De Moivre-Laplace中心极限定理0405 单元小结0406 简单综合题选解※0407 综合提高题选解第五章数理统计初步0501 数理统计的基本概念050101 总体、样本、统计量050102 分布及其性质050103 t分布与F分布050104 单正态总体抽样分布定理050105 双正态总体抽样分布定理0502 点估计050 矩估计法※050202 极大似然估计的概念050203 极大似然估计的计算050204 估计量的相合性与无偏性050205 估计量的有效性0503 区间估计050301 区间估计概念050302 单正态总体均值的区间估计050303 单正态总体方差的区间估计050304 双正态总体均值差的区间估计050305 双正态总体方差比的区间估计0504 假设检验050401 假设检验原理050402 单正态总体参数的双边检验050403 单正态总体参数的单边检验(U检验法)050404 单正态总体参数的单边检验(t检验法)050505 单正态总体参数的单边检验(检验法)050406 双正态总体均值差的检验050407 双正态总体方差比的检验0505 单元小结0506 简单综合题选解0507 综合提高题选解。

概率论与数理统计ppt课件

概率论与数理统计ppt课件

04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

概率论与数理统计图文课件最新版-第2章-随机变量及其分布

概率论与数理统计图文课件最新版-第2章-随机变量及其分布
一. 连续型随机变量的概率密度 1.定义 若对于随机变量 X 的分布函数,存在非负
函数 f ( x),使得对于任意实数 x 有:
x
F ( x) f (t)dt ( P( X x))
则称 X 为连续型变量,f ( x)为 X 的概率密度函数 注 ▲ 连续型随机变量与离散型随机变量的区别
离散型: P( X xk ) 0 连续型:P( X xk ) 0

多,而且还不能一 一列
变 连续型随机变量 量
举,而是充满一个区间
例如,“电视机的寿命”,实际中
常 遇到的“测量误差”等等.
概率统计
第二章知识结构图
随机变量
离散型随 机变量
连续型随 机变量
分布律
分布 函数
函数的 分布
概率 密度
分布 函数
函数的 分布
定义 常用分布
概率统计
定义 常用分布
第四节 连续型随机变量及其概率密度
0 x 0
则称 X 为服从参数 的指数分布.
概率统计
二 . 连续型随机变量的分布函数
定义: 若定义在 (, )上的可积函数 f ( x)
满足: (1). f ( x) 0
(2). f ( x)dx 1
f (x)确定了 分布函数F(x),
则称 F ( x)
x
f ( x)dx
f (x)是F(x)的 导函数, F(x)是f (x)的一
(2) 某段时间内候车室的旅客数目为 X , 则它也是一个随机变量,它可以取 0 及一切 自然数。X 是定义在样本空间,则:
S e {人数 人数 0}
X X (e)的值域RX [0, )
概率统计
二. 随机变量的分类 离散型随机变量

概率论与数理统计基础知识

概率论与数理统计基础知识

从集合的角度看

B
A

事件是由某些样本点所构成的一个集合.一个事件发 生,当且仅当属于该事件的样本点之一出现.由此可 见,样本空间Ω作为一个事件是必然事件,空集Ø作 为一个事件是不可能事件,仅含一个样本点的事件称 为基本事件.
2. 几点说明
⑴ 随机事件可简称为事件, 并以大写英文字母
A, B, C,
基本事件 实例
由一个样本点组成的单点集.
“出现1点”, “出现2点”, … , “出现6点”.
必然事件 随机试验中必然会出现的结果. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能出现的结果. 实例 上述试验中 “点数大于6” 就是不可能事件. 必然事件的对立面是不可能事件,不可能事 件的对立面是必然事件,它们互称为对立事件.
说明 1. 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行的 “调查”、“观察”或 “测量” 等. 2. 随机试验通常用 E 来表示. 实例 “抛掷一枚硬币,观 察正面,反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行; (2) 试验的所有可能结果: 字面、花面; (3) 进行一次试验之前不能 确定哪一个结果会出现. 故为随机试验.
将下列事件均表示为样本空间的子集. (1) 试验 E2 中(将一枚硬币连抛三次,考虑正反 面出现的情况),随机事件: A=“至少出现一个正面” B=“三 次出现同一面” C=“恰好出现一次正面” (2) 试验 E6 中(在一批灯泡中任取一只,测试其 寿命),D=“灯泡寿命不超过1000小时”
(1)由S2= {HHH, HHT, HTH, THH,HTT,THT, TTH,TTT}; 故: A={HHH, HHT, HTH, THH,HTT,THT, TTH}; B={HHH,TTT} C={HTT,THT,TTH} (2) D={x: x<1000(小时)}。

概率论与数理统计知识回顾

概率论与数理统计知识回顾

若 E( X Y ) 存在,则称它为 X 与 Y 的 k + l 阶混合原点矩。 若 E{[ X E( X )] [Y E(Y )] } 存在,则称它为 X 与 YБайду номын сангаас的 k + l 阶混合中心矩。
k l
k
l
结论: 显然数学期望 E ( X ) 是 X 的一阶原点矩,方差 D( X ) 是 X 的二阶中心矩,协方差 Cov( X , Y )是
常用分布的数字特征(2)
2 N ( , ) 时, X (5) 当 服从正态分布
E( X ) , D( X ) 2 .
2 2 N ( , , , ( X , Y ) 1 2 1 2 , ) 时, (6) 当 服从二维正态分布 E( X ) 1, D( X ) 12 ;
E(Y ) 2 , D(Y ) 22 ;
cov( X , Y ) 1 2 , XY
Thank you!
显然,协方差矩阵是对称阵。
高校大学生情况
x1 X x2 x 3
协方差矩阵为:
其中 x1 表征年龄,x2 表征身高,x3 表征月生活支出。
C11 C12 C13 C C C C 21 22 23 C31 C32 C33
常用分布的数字特征(1)
若 多 维 随 机 变 量 ( X1 , X 2 , X n ) 的 分 布 用 联 合 分 布 列
P( X1 x1i , X 2 x2i ,, X n xni ) 或 用 联 合 密度 概 率 p( x1, x2 ,, xn ) 表 示 , 则 Y g ( X1, X 2 ,, X n ) 的数学期望为

概率论与数理统计习题

概率论与数理统计习题
因此A, B独立
此题是2002年数学三考研试题。 年数学三考研试题。 此题是 年数学三考研试题
例9: 用一种检验法检测产品中是否含有某种杂质 的效果如下: 的效果如下:若真含有杂质检验结果为含有的概率为 0.8,若真不含有杂质检验结果为不含有杂质的概率为 0.8,若真不含有杂质检验结果为不含有杂质的概率为 0.9.据以往的资料知一产品真含有杂质和真不含有杂 0.9.据以往的资料知一产品真含有杂质和真不含有杂 质的概率分别为0.4,0.6.今独立地对一产品进行了3 0.4,0.6.今独立地对一产品进行了 质的概率分别为0.4,0.6.今独立地对一产品进行了3 次检验,结果是2次检验认为含有杂质, 次检验,结果是2次检验认为含有杂质,而有一次检验 认为不含有杂质,求此产品真含有杂质的概率. 认为不含有杂质,求此产品真含有杂质的概率.
i =1
n
易知有:
n 1 P ( Ai ) = , ∑ P ( Ai ) = 1 n i =1 1 1 2 1 P ( Ai A j ) = ( i ≠ j ), 1 ∑ P ( Ai A j ) = C n n( n − 1) = 2! , ≤i< j≤n n( n − 1) 1 1 3 ∑kPn( Ai A j Ak ) = C n n( n − 1)(n − 2) = 3! , 1≤ i < j < ≤ 1 P ( A1 A2 ⋯ An ) = , ⋯⋯⋯⋯ n! n 1 1 n −1 1 P ( ∑ Ai ) = 1 − + − ⋯ + ( −1) n→ ∞→ 1 − e −1 2! 3! n! i =1
= P ( A1 ) + P ( A1 ) P ( B1 A1 ) P ( A2 A1 B1 ) + ⋯

概率论与数理统计课件最新完整版

概率论与数理统计课件最新完整版

时间序列分析是一种统计学方法,用于分析和预测时间序列数据。随机过程在时间序列分析中用于描述数据随时间变化的随机性质。
随机过程在时间序列分析中用于建模和预测时间序列数据。通过使用随机过程,可以描述数据在不同时间点的变化和相关性,并基于历史数据预测未来的发展趋势。
THANK YOU
概率论与数理统计课件最新完整版
概率论基础数理统计初步概率论的应用数理统计的应用概率论与数理统计的交叉应用
01
概率论基础
概率是描述随机事件发生可能性大小的数值,通常用P表示。概率的取值范围在0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
概率的定义
概率具有可加性、可减性和有限可加性。可加性是指互斥事件的概率之和等于该事件的总概率;可减性是指对立事件的概率之和等于1;有限可加性是指任意有限个两两互斥事件的概率之和等于这些事件的总概率。
02
统计决策理论的基本思想是通过建立概率模型来描述不确定性,然后利用这些模型进行决策分析。
03
在统计决策理论中,常用的方法包括贝叶斯分析、假设检验和置信区间估计等。
04
统计决策理论在经济学、金融学、管理学等领域有广泛的应用,例如风险评估、投资组合优化和市场营销策略等。
01
试验设计涉及到如何选择合适的实验方法、如何分配实验对象、如何控制实验条件等问题。
03
概率论的应用
贝叶斯推断是一种基于概率的推理方法,它通过将先验知识与新获取的数据相结合,对未知参数进行估计和预测。
通过将先验概率分布和似然函数结合,可以得到后验概率分布,从而对未知参数进行推断。
在贝叶斯推断中,先验概率分布反映了在获取新数据之前对未知参数的认知,而似然函数则描述了数据与未知参数之间的关系。

概率论与数理统计课件:数理统计基础知识

概率论与数理统计课件:数理统计基础知识

数理统计基础知识
首页 返回 退出
6.1.1 总体
§6.1 总体和随机样本
总体:研究对象的全部可能观察值叫做总体. 个体:组成全体的每个观察值叫做个体.
如:考察某校学生的身高
总体:该校的所有学生的身高 个体:每个学生的身高
数理统计基础知识
首页 返回 退出
实际问题中,要研究的是有关对象的各种数量指标. 总体可以用一个随机变量及其分布来描述.
首页 返回 退出
由于抽样的目的是为了对总体进行统计推断, 为了使抽取的样本能很好地反映总体的信息,必 须考虑抽样方法.
最常用的一种抽样方法叫作“简单随机抽样” 它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察 的总体有相同的分布.
2. 独立性: X1,X2,…,Xn是相互独立的随机变量.
从一批产品中抽5件,检验产品是否合格.
数理统计基础知识
样本容量为5
首页 返回 退出
样本是随机变量.
抽到哪5辆是随机的
容量为n的样本可以看作n维随机变量(X1,X2,…,Xn).
但是,一旦取定一组样本,得到的是n个具体的数 (x1,x2,…,xn),称为样本的一次观察值,简称样本值 .
数理统计基础知识
总体的指标 如体重、身高、寿命等 是随机变量X 个体的指标 如体重、身高、寿命等 是随机变量X 的一个取值
常用随机变量的记号或用其分布函数表示总体.
如:总体X或总体F X
数理统计基础知识
首页 返回 退出
有限总体 总体
无限总体
1.考察某校大一新生(共2000人)的身高. 有限总体
2.观测某地每天最高气温. 无限总体 3.某厂生产的所有电视显像管的寿命. 无限总体

概率论与数理统计ppt课件

概率论与数理统计ppt课件

称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}



1 2 N


1 2 N
……

最新概率论与数理统计基础知识网络结构图

最新概率论与数理统计基础知识网络结构图
精明的商家不失时机地打出“自己的饰品自己做”、“DIY(Do It Yourself)饰品、真我个性”的广告,推出“自制饰品”服务,吸引了不少喜欢标新立异、走在潮流前端的年轻女孩,成为上海的时尚消费市场。其市场现状特点具体表现为:
(1)政策优势
年轻有活力是我们最大的本钱。我们这个自己动手做的小店,就应该与时尚打力是我们最大的本钱。我们这个自己动手做的小店,就应该与时尚打交道,要有独特的新颖性,这正是我们年轻女孩的优势。
附件(二):
9、如果你亲戚朋友送你一件DIY手工艺制品你是否会喜欢?
标题:上海发出通知为大学生就业—鼓励自主创业,灵活就业2004年3月17日
(4)牌子响
合计50100%
1、你一个月的零用钱大约是多少?

《概率论与数理统计》第一章知识小结

《概率论与数理统计》第一章知识小结

附加知识:排列组合知识小结:一、计数原理1•加法原理:分类计数。

2•乘法原理:分步计数。

二、排列组合1 •排列数(与顺序有关):A"' = n(ti—1)(/1 —2)…(“—m + l),(/n M ii)A:二〃!,=女口:4^ = 7x6x5x4x3=2520, 5!= 5x 4x 3x2x 1= 1202•组合数(与顺序无关):如:C4=< = 7x6x5x4 = 3 C S=C;.5= C;=Z X6=214! 4x3x2xl 2x13•例题:(1)从1, 2, 3, 4, 5这五个数字中,任取3个数字,组成一个没有重复的3位数,共有_^ = 5x4x3 = 60_种取法。

(2)从0, 1, 2, 3, 4这五个数字中,任取3个数字,组成一个没有重复的3位数,共有_AX = 4x4x3 = 48_种取法。

(3)有5名同学照毕业照,共有_^ = 5x4x3x2xl=120—种排法。

(4)有5名同学照毕业照,其中有两人要排在一起,那么共有—A2^ = (2xl)x(4x 3x2x1)= 48 种排法。

(5)袋子里有8个球,从中任意取出3个,共有_C;—种取法。

(6)袋子里有8个球,5个白球,3个红球。

从中任意取岀3个,取到2个白球1个红球的方法有_ __________ 种。

8x7x63x2x1第一章、基础知识小结一、随机事件的关系与运算1•事件的包含设A, B为两个事件,若A发生必然导致B发生,则称事件B 包含于A,记作Bu4。

2.和事件事件=A,B中至少有一个发生“为事件A与B的和事件,记作AUB 或A+B。

性质:(1) AuAUBEuAUE;(2)若Ac B,则AUB = B3•积事件:事件A,B同时发生,为事件A与事件B的积事件,记作AQB 或AB。

性质:(1)AB CZ A9AB CZ B;(2)若AuB,则AB= A4•差事件:書件A发生而B不发生为事件A与B事件的差事件,记作A-B(AB)O性质:(1) A—BuA;(2)若AuB,则A—B = 05•互不相容事件:若事件A与事件B不能同时发生,即AB = <P,则称事件A与事件B是互不相容的两个事件,简称A与B互不相容(或互斥)。

概率论与数理统计图文课件最新版-第1章-第3-5节

概率论与数理统计图文课件最新版-第1章-第3-5节
(1). 有放回地抽取 设A:取到的两张都是中奖券
n : 第一次从盒中取,不论是否是中奖券,总是
从 6 张中取一张,第二次再从盒中取,仍是 有 6 张券可供抽取,故有:
P61 P61 36 (种)
k : 中奖券有 2 张,第一次取有 2 张可供抽取,
第二次取仍有 2 张可供抽取,故有:
P21 P21 4 (种)
即, 10个球中的任一个被 取出的机会是相等的,
均为1/10.
10个球中的任一个被取 出的机会都是1/10
所以称这类概率模型为古典概型.
概率统计
在此示例中, 若记 A={ 摸到2号球 } 2
则 P(A)=?
显然: P(A)= 1/10
若记 B={ 摸到红球 } 1 2 3 4 5 6
则 P(B)=?
从而: P( A) k 4 1 0.111 n 36 9
概率统计
nn:
(2). 不放回地抽取
n : P61 P51 30
k : P21 P11 2
从而: P( A) k 2 1 0.067 n 30 15
注 ▲ 若在此例中若将取法改为 “一次抽取两张” ,
其它条件不变则有:
概率统计
P(e1) P(e2) L L P(en)
又由于基本事件是两两互不相容的,于是:
P(S) P(e1Ue1UL L en)
P(e1) P(e2) L L P(en)
nP(ei)
而 P(S) 1
又由已知,
P(ei )
1 n
,
i 1, 2,L n
A ei1 U ei2 UL U eik , (1 i1 i2 L ik n)
(2).若首位数 2, 4, 6, 8 则有: P41 P41 P84

概率论和数理统计数理统计的基本知识

概率论和数理统计数理统计的基本知识

3/11/2021
〖定义〗 设总体X的 n个独立观测值为x1,x2,…,xn, 将它们从小到大
排序后为x1*,x2 *,…,xn *, 令
0,
Fn
(
x)
k n
,
1,
x x1*
x
* k
x
x* k 1
xn* x
称Fn(x)为总体X 的经验分布函数. (也称为样本分布函数)
① 0 Fn( x) 1 ② 单调不减; ③ 处处右连续.
n
P( X xi )
i 1
8
3/11/2021
例1 已知总体X ~()分布,写出样本 (X1, X2,…, Xn)的分布律。
析:
X的分布律 P{ X k} k e ,
k!
可以写成 P{ X x} x e ,
x!
k 0,1,2, x 0,1,2,
样本 (X1, X2,…, Xn)的分布律
5
3/11/2021
❖3、样本
➢从总体X中随机抽取n个个体X1,X2,Xn所组成的一个个体 组(X1,X2,,Xn),称为总体X的一个样本,个体的数目n
称为样本容量。
➢ 通过试验对样本(X1,X2,,Xn)进行观测,得到的n个确定的 实验数据(x1,x2,,xn),称为样本(X1,X2,,Xn)的一个观察值,
(X1 ,X2,…Xn1), (Y1 ,Y2,…Yn2)分别为取自总体X,Y的样本,则
3/11/2021
1> 当12= 22时
(X Y ) ( 1 2)
S
11 n1 n2
~
t(n1 n2 2)
其中S 2
(n1
1)S12 (n2 1)S22 n1 n2 2

概率论与数理统计ppt课件

概率论与数理统计ppt课件
P( A) m( A)
m( )
(其中m( ) 是样本空间的度量, m( A) 是构成事件A 的子区域的度量) 这样借助于几何上的度量来合理 规定的概率称为几何概率. 说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概率.
20
会面问题
例1 甲、乙两人相约在 0 到 T 这段时间内, 在预 定地点会面. 先到的人等候另一个人, 经过时间 t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻 到达该地是等可能的 , 且两人到达的时刻互不相 关. 求甲、乙两人能会面的概率.
(2) 计算样本点总数n及事件A包含的样本点数k.
(3) 用下列公式计算:
P( A)
SA中中的的基基本本事事件件总数数
k n
16
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB). 一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式: P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
28
§5. 条件概率
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑
在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
例1.老王的妻子一胎生了3个孩子,已知老大是女孩,求另 两个也都是女孩的概率(假设男孩、女孩出生率相同).
1. 定义: 设A, B是两个事件, 且P(A)>0, 称

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:

《概率论与数理统计》课件

《概率论与数理统计》课件

条件概率与独立性
条件概率
在某个事件B已经发生的条件下,另 一事件A发生的概率,记为P(A|B)。
独立性
两个事件A和B如果满足 P(A∩B)=P(A)P(B),则称事件A和B是 独立的。
随机变量及其分布
01
随机变量
随机变量是定义在样本空间上的 一个实值函数,表示随机试验的 结果。
02
离散型随机变量
03
连续型随机变量
离散型随机变量的取值可以一一 列举出来,其概率分布可以用概 率质量函数或概率函数表示。
连续型随机变量的取值范围是一 个区间或半开区间,其概率分布 可以用概率密度函数表示。
数理统计初步
02
统计数据的描述
01
统计数据的收集
描述如何通过调查、试验或观测 等方法,获取用于统计分析的数
据。
03
夫链
随机过程的基本概念
随机过程
随机过程是一组随机变量,每个随机 变量对应于时间或空间的一个点。
有限维分布
描述随机过程在有限个时间点上的联 合分布。
独立性
如果随机过程在不相交的时间区间上 的随机变量是独立的,则该随机过程
是独立的。
马尔科夫链及其性质
马尔科夫性
在已知现在状态下,未来与过去独立,即“未来 只取决于现在”。
03
数据的可视化
介绍如何使用图表(如直方图、 散点图等)将数据可视化,以便 更直观地理解数据分布和关系。
02
数据的整理
介绍如何对数据进行分类、排序 和分组,以便更好地理解和分析

04
数据的数字特征
介绍如何使用均值、中位数、众 数、方差等统计量来描述数据的
中心趋势和离散程度。
参数估计与置信区间

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版) 题目:概率论与数理统计知识点总结摘要本文总结了概率论和数理统计方面的基础知识,涉及概率分布、参数估计、假设检验、卡方检验、多元分析等。

对这些知识点的理解和了解可以帮助人们更好地分析和利用数据,促进数据分析的发展。

关键词:概率论,数理统计,概率分布,参数估计,假设检验,卡方检验,多元分析正文1.概率论概率论是数理统计中一门重要科学,它是一门数学研究现实世界事件发生的规律性、可预测性及不确定性的学科。

在概率论中,我们引入了诸如概率、期望和方差等概念,用来描述和推断某种随机现象的发生。

2.概率分布概率分布是在给定的实际情况下随机变量取值的概率分布。

典型的概率分布包括正态分布、泊松分布和二项分布。

此外,也有一些联合分布,例如协方差、共轭先验、贝叶斯估计等。

3.参数估计参数估计是根据样本数据估计总体参数的统计方法。

它涉及到将总体参数估计为样本参数的过程,通常使用最大似然估计、贝叶斯估计和假定测试等方法。

4.假设检验假设检验是基于统计学原理,用来评估某一假设是否真实存在的方法。

其中包括t检验、F检验、Z检验等,它们之间的区别在于所使用的抽样分布不同。

5.卡方检验卡方检验是一种统计检验,用于直接检验某个抽样值是否遵循某种理论分布。

卡方检验可以根据观察到的抽样数据和理论分布之间的差异来衡量分布概率值的有效性。

6.多元分析多元分析是一种分析不同变量之间交互影响的统计方法。

它包括多元回归分析、多元判别分析、因子分析等,能够帮助我们了解多个变量之间的关系。

结论本文总结了概率论和数理统计方面的基础知识,包括概率分布、参数估计、假设检验、卡方检验和多元分析等。

了解这些知识点可以帮助人们更好地分析和利用数据,促进数据分析的发展。

概率论和数理统计方面的知识点在实际应用中有着重要作用。

概率论可以帮助研究人员对随机现象进行建模、分析和推断,其中包括使用概率分布建立统计模型和估计参数,并使用假设检验和卡方检验来检验假设,以及用多元分析来推断不同变量之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档