实数的有关概念及实数的分类
实数的概念与性质
实数的概念与性质实数是数学中的一个重要概念,它包括整数、有理数和无理数。
实数的性质是指实数所具有的一些特点和规律。
本文将从实数的定义、种类和性质等方面进行论述。
一、实数的定义实数是数学上最基本的数集,包括了所有的有理数和无理数。
有理数是可以表示为两个整数的比值的数,包括整数、分数和纯循环小数等;而无理数则是不能表示为两个整数的比值的数,如π和根号2等。
实数集通常用R表示。
二、实数的种类实数可以分为有序实数和无序实数。
有序实数是可以按大小进行比较的,它们包括正实数、负实数和零;而无序实数则是无法进行大小比较的,例如无理数。
有序实数的性质更具体、更明确,后文将重点论述有序实数的性质。
三、实数的性质1. 实数的闭包性:实数集在四则运算下仍然保持封闭,即实数的加、减、乘、除的结果仍然是实数。
2. 实数的稠密性:有理数和无理数在实数集中是密集排列的,对于任意两个实数a和b(a<b),必然存在一个有理数和一个无理数,它们位于a和b之间。
3. 实数的无限性:实数集是无限的,既没有最大值也没有最小值。
任意正实数都可以找到一个比它更大的实数,任意负实数也都可以找到一个比它更小的实数。
4. 实数的传递性:对于任意三个实数a、b和c,如果a<b,b<c,则必有a<c。
这一性质是实数大小比较的基础。
5. 实数的稳定性:实数在加法和乘法下具有稳定性,即实数的加法和乘法不受运算顺序的影响。
6. 实数的有界性:实数集在区间上具有有界性,即如果一个实数区间存在上界,则必然存在最小上界;如果一个实数区间存在下界,则必然存在最大下界。
7. 实数的分割性:实数集具有分割性,即如果一个实数区间中的两个子集A和B,如果A中的任意数都小于B中的任意数,并且A和B 无交集,则存在一个实数可以将AB分开。
8. 实数的等价性:实数的大小可以用等号或不等号进行表示,不等号的成立性是根据实数的大小关系而决定的。
通过以上的论述,我们可以了解到实数的概念与性质。
实数的有关概念及习题
知识点1 实数的有关概念及习题一、实数定义:有理数和无理数统称为实数二、实数分类:1.按照正负分:正实数、0、负实数2.按照定义分:有理数、无理数3.有理数相关知识(1)有理数定义:整数和份数统称为有理数(2)整数可分为:正整数、0、负整数。
正整数和0成为非负整数;负整数和0成为非正整数(3)分数可分为正分数和负分数。
(4)分数都可化为有限小数或无限循环小数;反之有限小数或无限循环小数都可化为分数4.无理数的相关知识(1)无理数定义:无线不循环小数(2)无理数常见的几种类型a:含π的数,比如3π,π+2等b.开放开不尽的数C.有特殊规律的数,比如0.1001000100001........注意:有理数之间的加减乘除运算的结果一定是有理数。
有理数×无理数的结果既可以是有理数也可以是无理数。
举例____________________________________________________________________ 有理数÷无理数的结果既可以是有理数也可以是无理数。
举例____________________________________________________________________ 无理数÷有理数的结果是无理数。
举例____________________________________________________________________ 无理数+无理数的结果既可以是有理数也可以是无理数。
举例____________________________________________________________________ 无理数-无理数的结果既可以是有理数也可以是无理数。
举例____________________________________________________________________ 以上问题请学生自己举例进行验证。
教你如何判断实数:实数的分类教案
教你如何判断实数:实数的分类教案!一、实数的概念实数是包括所有有限数、无限小数和无理数的数集。
换句话说,实数是包括整数、分数、小数和开方数等所有的数的集合。
实数可以表示为有理数和无理数的和,其中有理数是可以用分数表示的数,而无理数则不能。
常见的无理数有 $\pi$ 和 $e$ 等数学常数。
二、实数的分类实数可以按照它们的性质进行分类。
以下是实数的常见分类:1.整数整数是实数的一种,它包括正整数、负整数和零。
正整数是大于零的整数,负整数是小于零的整数,而零本身既不是正数也不是负数。
2.有理数有理数是可以用分数表示的数,包括正有理数、负有理数和零。
例如,$\dfrac{1}{2}$、$\dfrac{2}{3}$ 和 $\dfrac{3}{4}$ 均为有理数。
3.无理数无理数是不能用分数表示为有限小数和无限小数的数,包括$\pi$ 和 $e$ 等数学常数。
无理数是无限不循环小数的形式,例如$\sqrt{2}$ 和 $\sqrt{3}$ 是无理数。
4.正数正数是大于零的实数,可以是有理数或无理数。
5.负数负数是小于零的实数,可以是有理数或无理数。
6.实数零点实数零点是方程 $f(x) = 0$ 的解,其中 $f(x)$ 为任意实函数。
三、判断实数的方法判断一个数是否为实数,需要根据该数的性质进行分析。
以下是判断实数的方法:1.对于有限小数,需要确定它是有限的,并且它的分母是不为零的整数。
例如,$0.25$ 是有限小数,同时也是有理数。
2.对于无限小数,需要确定它是无限不循环小数,并且它不能表示为 $\dfrac{a}{b}$ 的形式,其中 $a$ 和 $b$ 是整数且$b \neq 0$。
例如,$\sqrt{2}$ 是无限不循环小数,同时也是无理数。
3.对于 $\pi$ 和 $e$ 等数学常数,它们是无限不循环小数而且无法表示为 $\dfrac{a}{b}$ 的形式,因此它们都是无理数。
四、实数的应用实数是数学中非常重要的概念,它在日常生活和科学研究中广泛应用。
中考数学(湘教版全国通用)复习课件:第1课时 实数的有关概念
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
探究四 非负数的性质的运用
命题角度: 根据非负数的性质求值.
例4 (1)[2012·长沙] 若实数a,b满足|3a-1|+b2=0, 则ab的值为_____1___.
解析
依题意a=13,b=0,∴ab=130=1.
依题意a=13,b=0,∴ab=130=1.
第1课时 实数的有关概念
第1课时┃ 实数的有关概念
考点聚焦
考点1 实数的概念及分类
1. 按定义分类:
实数
有理数
整数
分数
正整数 零
负整数
正分数 有限小数或 负分数 无限循环小数
无理数
正 负无 无理 理数 数无限不循环小数
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
2. 按正负分类:
正有理数
正实数
正整数 正分数
实数
正无理数 零
负有理数
负实数
负整数 负分数
负无理数
[注意] 0既不是正数,也不是负数,但0是自然数.
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
考点2 实数的有关概念 1. 数轴的三个要素是__原__点____、_正__方__向___、_单___位__长__度___.
归类探究
回归教材
第1课时┃ 实数的有关概念
(2)[2014·岳阳] 实数2的倒数是( D )
A. -12
B. ±12
C. 2
1 D.2
解析
∵2×12=1,∴实数2的倒数是12.故选D.
(3)[2014·株洲] 下列各数中,绝对值最大的数是( A )
1.1. 实数的有关概念
第一单元
数与式
考点2 实数及其分类
1.实数:有理数和无理数统称为实数.
2.实数的分类 (1)按定义分类
正整数 整数 零 负整数 有限小数或 有理数 无限循环小数 实数 正分数 分数 负分数 正无理数 无理数 无限不循环小数 负无理数
第一单元
数与式
类型三
例3
A.2
无理数、负数的识别
1 C. 2
(‘13常州)在下列实数中,无理数是( D )
B. 3.14 D.
3
第一单元
数与式
变式题4
(’13桂林)下面各数是负数的是( B )
A.0
B.-2013
C. 2013
1 D. 2013
今天你学会了什么? 有什么值得与大家共享?
有什么要注意的?
“后退” , “海平面以上”
第一单元
数与式
2.数轴 规定了 原点、 正方向 和单位长度的直线叫做 数轴.任何实数都可以用数轴上唯一的一个点来表 示,即实数与数轴上的点是一一对应的. 3.相反数 (1)如果两个数只有 符号 不同,那么其中一个 数叫做另一个数的相反数.如2与-2互为相反数,-3 的相反数是3. (2)一般地,a的相反数是 -a,特别地,0的相反 数是0;如-2014的相反数是2014;
第一单元
数与式
(2)正负数的意义: 正负数可用于表示具有相反意义的量.例如:若把 向东走3 km,记作“+3 km”,那么向西走2 km可记 作“-2km”. 一般地 , 常用来表示具有相反意义的量有 : “收 入”与“支出” , “升高”与“降低” , “零上”与
“零下” , “前进”与
实数的有关概念
【例7】数轴上的点与( D )一一对应. A.整数 B.有理数 C.无理数
D.实数
【例8】相反数是本身的数是 0 ;绝对值是本身的数 是 非负数 ;倒数是本身的数是 ±1 .
【例9】a、b互为相反数,c与d互为倒数, 则a+1+b+cd= 2 . 【例10】
2 3 3 2 的绝对值为__________.
【例2】卫星绕地球运行的速度(即第一宇宙速度)
是 7.9 10 3 米 秒 ,则卫星绕地球运行 2 10 2 秒走 过的路程≈ 1.6 10 6 米(结果保留两个有效数字)。
10、比较大小 数轴上的右边点表示的数总是大于左边点表示 的数,正数大于一切负数和零,零大于一切负数, 两个负数比较绝对值大的反而小。
整数集合 { ,0 tan45° …} , , 分数集合{ …} , cos60°, 无理数集合 { 0.353353335… ,π, 负实数集合{ …}
…}
0 【例2】最小的正整数与最大的负整数之和是_____.
2、数轴 ◎ 三要素:原点、正方向和单位长度; ◎ 数轴上的点与实数一一对应。 3、相反数 ⑴相反数:只有符号不同的两个数叫做互为相反数, 0的相反数是零。 ⑵实数 a 的相反数是- a ;在数轴上表示相反数 的两点以原点对称。 ⑶ a 、b 互为相反数 <==> a + b = 0 4、倒数 ⑴ a、b互为倒数 <==> ab = 1 a、b互为负倒数 <==> ab =-1 ⑵ 0没有倒数.
【例2】写出两个大于1小于4的无理数____、____. 2
【例3】 10的整数部分为____. 3 【例4】找规律填表.
9 7 2
1 1 8
实数的有关概念ppt完美版
考点聚焦
归类探究
回归教材
中考预测
第1讲┃实数的有关概念
4.绝对值:数轴上表示数 a 的点与原点的__距__离____,记作|a|,
第6行 16 23 …
第第11讲 讲┃┃实实数数的的有有间关关概概依念念 次多一个0),共有2个。
理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数都是有理数,而无限不
循环小数是无理数.无理数有:-π,0.
解 析 第1行的第1列与第2列差个2,第2列与第3列差个3,第3列与第4列差个4,…,第6列与第7列差个7;
解 析 1亿=108,11.2亿=1.12×109。
考点聚焦
归类探究
回归教材
中考预测
第1讲┃实数的有关概念
带有计数单位的数,一般要把计数单位化去,再 用科学记数法表示。
考点聚焦
归类探究
回归教材
中考预测
第1讲┃实数的有关概念
探究四 创新应用题
命题角度:
1.探究数字规律;
2.探究图形与数字的变化关系.
考点聚焦
第1讲┃实数的有关概念
探究三 科学记数法
命题角度: 用科学记数法表示数.
例3 [2013·邵阳] 据邵阳市住房公积金管理会 议透露,今年我市新增住房公积金11.2亿元,其中 11.2亿元可用科学记数法表示为( B )
A.11.2×108元 B.1.12×109元 C.0.112×1010元 D.112×107元
1.实数的有关概念
(1)算术平方根:一般地 x 可简记为 (2)平方根:若
a( x 0)(a 0)
则x叫a的算术平方根
a
=a(a≥0)则x叫做a的平方根(或二次方根)
x
2
可记为: x=±
。
a
(3)立方根:若
x =a,则x叫做a的立方根(或三次方根),
a
3
记为 3 a ,即x= 3
【注意】
(1)算术平方根的性质:
汉、简阳等地,总投资达到290亿元,用科学记 数法表示290亿元应为( A. 290×108元 C. 2.90×1010元 ) C B. 290×109元 D. 2.90×1011元
【思路点拨】先将290亿写成不带“亿”的数,再 用科学记数法的表示方法确定出a的值和n的值.也
可以根据科学记数法中a的取值范围进行排除.
x
1 2 B. <x <x
x
1 C.x <x<
2
x
1 D.x<x <
2
x
ab
的值。
解:根据题意得: 3a 4 4b 32 0 ∵|3a+4|≥0且(4b-3)2≥0 而|3a+4|+(4b-3)2=0 ∴|3a+4|=0且(4b-3)2=0 ∴a=-4/3,b=3/4 ∴ab=-1
类型之六
命题角度: 1.探究数字规律
创新应用题
2.探究图形与数字的变化关系 [2011·嘉兴 ] 一个纸环链,纸环按红黄绿蓝紫的顺序重复排 列,截去其中的一部分,剩下部分如图 1-1 所示,则被截去部分纸环的 个数可能是( )
·北师大版
定义:有理数和无理数统称为实数
一、按定义分类 整数 有理数 分数 实数 无理数 正整数 零 负整数 正分数 负分数
第1课时实数的有关概念
第1课时实数的有关概念【知识梳理】1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6.叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】例1.下列运算正确的是()A.33--=B.3)31(1-=-C3=±D3=-例)A.B C.2-D.2例3.2的平方根是()A.4 B C.D.例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()A.107.2610⨯元B.972.610⨯元C .110.72610⨯ 元D .117.2610⨯元例5.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b< 例6.(改编题)有一个运算程序,可以使: a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3现在已知1⊕1 = 4,那么2009⊕2009 = .【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( ) A .16 B .16- C .18 D .18- 2.2-的倒数是( ) A .12- B .12 C .2 D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<<4.已知实数a 在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a -5.2-的相反数是( )A .2B .2-C .12D .12- 6.-5的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 .8.如果2()13⨯-=,则“”内应填的实数是( ) A .32 B . 23 C .23- D .32-第2课时 实数的运算第4题图0 例5图【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.6.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数)加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】 例1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________例4.下列运算正确的是() 9 0 -4 国际标准时间(时)-5 例2图 ……例3图A .523=+B .623=⨯C .13)13(2-=-D .353522-=-例5.计算: (1) 911)1(8302+-+--+-π(2)0(tan 45π--+º(3)102)21()13(2-+--;(4)2008011(1)()3π--+-.【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -=D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元B .9101.4⨯元C .9102.4⨯元D .8107.41⨯元3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间4.如图,数轴上点P 表示的数可能是( )AB. C . 3.2- D.5.计算: (1)02200960cos 16)21()1(-+--- (2))10112-⎛⎫--+ ⎪⎝⎭第3课时 整式与分解因式第4题图【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:n n a a 1=-(a≠0,n 为正整数);2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.(2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.(4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉.(3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2•a 3=a 6D.6a 2÷2a 2=3a 2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )A .mB .mC .m +1D .m -1【例3】若2320a a --=,则2526a a +-= .【例4】下列因式分解错误的是( )A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = .3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 .4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中2332a b =-=,.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.。
第1课时 实数的有关概念(含答案)
c a 第1课时《 实数的有关概念》◆知识讲解 1.实数的分类实数⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎨⎬⎪⎪⎩⎭⎩⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数整数零负整数有理数正分数分数有限小数或无限循环小数负分数正无理数无理数无限不循环小数负无理数 实数还可分为⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数零负整数负有理数负实数负分数负无理数 2.数轴(1)数轴的三要素:原点、正方向和单位长度. (2)数轴上的点与实数一一对应.3.相反数 实数a 的相反数是-a ,零的相反数是零. (1)a 、b 互为相反数⇔a+b=0.(2)在数轴上表示相交数的两点关于原点对称.4.倒数 乘积是1的两个数互为倒数,零没有倒数. a 、b 互为倒数⇔ab=1.5.绝对值 │a│=(1)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩6.非负数像│a│、a 2a≥0)形式的数都表示非负数.7.科学记数法 把一个数写成a×10n的形式(其中1≤│a│<10,n 为整数),•这种记数法叫做科学记数法.(1)当原数大于或等于1时,n 等于原数的整数位数减1.(2)当原数小于1时,n 是负整数,•它的绝对值等于原数中左起第一个非零数字前零的个数(含小数点前的零). 8.近似数与有效数字一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字. ◆经典例题 例1在实数-23,03.14,2π0.1010010001…(每两个1之间依次多1个0),sin30°这8个实数中,无理数有( ) A .1个 B .2个 C .3个 D .4个 例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e a+b )+12cd -2e 0的值; (2)实数a,b ,c 在数轴上的对应点如图所示,化简a+│a+b││b -c│.例3 (2007,枣庄)2007年4月,全国铁路进行了第六次大提速,•提速后的线路速度达200km/h ,共改造约6000km 的提速线路,总投资约296亿元人民币.那么,平均每千米提速线路的投资约为________亿元人民币(用科学记数法表示,保留两个有效数字).例4 已知x 、y (y 2-6y+9)=0,若axy -3x=y ,则实数a 的值是( ) A .14 B .-14 C .74 D .-74◆强化训练一、选择题 1..0.31,3π,17,0.80108中,无理数的个数为( ) A .1个 B .2个 D .3个 D .4个2.据2005年6月9日中央电视台东方时空栏目报道:•由于人类对自然资源的不合理开发与利用,严重破坏了大自然的生态平衡,目前地球上大约每45min •就有一个物种灭绝.照此 速度,请你预测,再过10年(每年以365天计算)将有大约多少个物种灭绝( ) A .5.256×106 B .1.168×105 C .5.256×105 D .1.168×1043.近似数0.03020的有效数字的个数和精确度分别是( )A .四个,精确到万分位 B .三个,精确到十万分位 C .四个,精确到十万分位 D .三个,精确到万分位4.(2006,哈尔滨)下列命题正确的是( )A .4的平方根是2B .a 的相反数是-aC .任何数都有倒数D .若│x│=2,则x=2 5.若│a│=-a ,则a 的取值范围是( )A .a>0 B .a<0 C .a≥0 D .a ≤06.(2007,乐山)如下左图所示,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若C 表示的数为1,则点A 表示的数为( ) A .7 B .3 C .-3 D .-27.已知实数a ,b 在数轴上的对应点的位置如上右图所示,且│a│>│b│,则│a│-│a+b│-│b -a│化简后得( ) A .2b+a B .2b -a C .a D .b8.如图所示,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )A .112B .1.4 CD二、填空题9.已知实数a ,b 在数轴上对应的点在原点两旁,且│a│=│b│,那么a a+b =_____. 10.已知│x│=3,│y│=2,且xy<0,则x+y 的值等于______.11.(2008,山东)在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿Pa 的钢材.4.581亿Pa 用科学记数法表示为______Pa (保留两位有效数字)12.(2007,烟台)如图所示,在数轴上点A 和点B 之间表示整数的点有_____个. 13.若│a -b+1│a -b )2008=_______. 14.(2006,四川乐山)若2x -3与-13互为倒数,则x=______. 15.(2007,陕西)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数按从小到大的顺序排列为:1,1,2,3,5,8,…,•则这列数的第8个数是_______.16.如图是一个正方体纸盒的展开图,在其中的四个正方形内标有数字1,2,3和-3,要在其余正方形内分别填上-1,-2,按虚线折成正方形,相对而上的两数互为相反数,则A 处应填_________. 17.有若干个数,第一个数记为a 1,第2个数记为a 2,第3个数记为a 3,…,第n 个数记为a n ,若a 1=-12,从第2个数起,每个数都等于“1与前面的那个数的差的倒数”. (1)试计算:a 2=_______,a 3=________,a 4=______.(2)根据以上计算结果,请你写出:a 2008=_______,a 2010=________. 三、解答题18.已知a ,b 互为相反数,c ,d互为倒数,求2222a b a b-+19和│8b -3│互为相反数,求(ab )-2-27的值.20.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2.试求:x 2-(a+b+cd )x+(a+b )2003+(-cd )2003的值.c a第1课时《 实数的有关概念》(答案)◆例题解析 例1在实数-23,03.14,2π0.1010010001…(每两个1之间依次多1个0),sin30°这8个实数中,无理数有( ) A .1个 B .2个 C .3个 D.4个【分析】 2π,-0.1010010001…这三个数是无理数,其他五个数都是有理数.【解答】C【点拨】 对实数分类,不能只为表面形式迷惑,而应从最后结果去判断.一般来说,用根号表示的是有理数,关键在于这个形式上带根号的数的最终结果是不是无限不循环小数.同样,用三角符号表示的数也不一定就是无理数,如sin30°、tan45°等.而-0.1010010001…尽管有规律,•但它是无限不循环小数,是无理数.2π是无理数,而不是分数. 例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e a+b )+12cd -2e 0的值; (2)实数a,b ,c 在数轴上的对应点如图所示,化简a+│a+b││b -c│. 【解答】(1)依题意,有a+b=0,cd=1,e≠0a+b )+12cd -2e 0=0+12-2=-32.(2)由图知a>0,b<c<0,且│b│>│a│,∴a+b<0,b -c<0,∴a+│a+b││b -c│=a -a -b -│c│-(c -b )=a -a -b+c -c+b=0.【点评】 相反数、倒数、绝对值都是主要的概念,解答时应从概念蕴含着的数学关系式入手.含有绝对值的代数式的化简,首先要确定绝对值符号内的数或式的值是正、负还是零,然后再根据绝对值的意义把绝对值的符号去掉,第(2)•题是数形结合的题目,解题的关键在于通过观察数轴,弄清数轴上各点所表示的正负性及各实数之间的大小关系,从而才能正确地去掉绝对值符号,达到化简的目的.例3 (2007,枣庄)2007年4月,全国铁路进行了第六次大提速,•提速后的线路速度达200km/h ,共改造约6000km 的提速线路,总投资约296亿元人民币.那么,平均每千米提速线路的投资约为________亿元人民币(用科学记数法表示,保留两个有效数字).【分析】 本题既考查有理数的除法运算,又考查近似数和科学记数法以及分析问题的能力. 【解答】 296÷6000≈4.9×10-2例4 已知x 、y (y 2-6y+9)=0,若axy -3x=y ,则实数a 的值是( ) A .14 B .-14 C .74 D .-74【分析】 y -3)2均为非负数,它们的和为零,只有3x+4=0,且y -3=0,由此可求得x ,y 的值,将其代入axy -3x=y 中,即求得a 的值.【解答】(y -3)2=0∴3x+4=0,y -3=0 ∴x=-43,y=3. ∵axy -3x=y , ∴-43×3a -3×(-43)=3 ∴a=14∴选A 【点拨】 若几个非负数之和等于零,则每个非负数均等于零.这是非负数具有的一个重要性质. ◆◆强化训练答案:1.B 2.B 3.C 4.B 5.D 6.D 7.C 8.C 9.1 10.1或-1 11.4.6•×108 •12.4 13.1 14.0 15.21 16.-2 17.(1)23 3 -12 (2)-123 18.-1 19.•由已知得a=13,b=38,原式的值为37 20.1或5。
1、实数的概念
A.-4 C.0
图1-1
B.-2
D.4
探究二 实数的有关概念 命题角度: 1.数轴、相反数、倒数等概念; 2.绝对值的概念及计算.
例2 填空题: (1)相反数等于它本身的数是____0____. (2)倒数等于它本身的数是___±__1___. (3)平方等于它本身的数是___0_或__1__. (4)平方根等于它本身的数是____0____. (5)绝对值等于它本身的数是__非__负__数__.
A.+2
B.-3
C.+3
D.+4
[解析] 根据题意,最接近标准的数就是绝对值最小的那个 数,选A.
9.[2011·遵义]某种生物细胞的直径约为 0.00056m,将 0.00056
用科学记数法表示为( B ) A.0.56×10-3
B. 5.6×10-4
C. 5.6×10-5
D. 56×10-5
[解析]将一个比较小的数表示成a×10p的形式,其中1≤|a|<10, p为整数,确定p的方法是第一个有效数字前有多个零,p就等于 多少.
[注意]
(1)任何分数都是有理数,如272,-131等. (2)0 既不是正数,也不是负数,但 0 是自然数. (3)常见的几种无理数:
①根号型: 2,3 4等开方开不尽的; ②三角函数型:sin60°,tan30°等;
π ③与π有关的: 3 ,π-1 等; ④构造型:1.323223222…(每两个 3 之间依次多一个 2)等.
若a、b互为相反数,则有a +b=0,
|a|=|b|.0的相反数是0
__乘__积____为1的两个数互为 0没有倒数,倒数等于本身
倒数
实数的有关概念
解:-3.
四.典型例题 例3 (2006年· 哈尔滨)若x的相反数是3,y 5
则 x y 的值为(
A. - 8 B. 2 ,
).
C. 8或-2 D. -8或2
思路分析:由相反数、绝对值的意义可知: 3 的相反 数是-3,由 得 ,分类计算出结果. y 5 y 5 知识考查:相反数、绝对值的意义及其性质和数学分 类思想. 解:D.
2、若|a-3|-3+a=0,则a的取值范围是( A.a≥3 B.a<3 C.a≤3 D.a>3 )
c
)
D.2与 2
c
3、 3 的相反数是 A.-3 B. -1/3
( C. 3 D.
A)
( 3 2004广东)
的两 原点
4、两个相反数在数轴上的对应点在 左右两侧且与 的距离相等。 原点 5、-(-4)的相反数是 , -4 ︱- 8︳是 的相反数 -8
五.能力训练
(一)选择题 1. (2003· 重庆)下列各数中,互为相反数的是( ) 1 2 2 2 A.2与 2 B. 1 与1 C. - 1与 1 D. 2与 2.(2002· 呼和浩特) m是实数,则 m m ( ) A.可以是负数 B.不可能是负数 C.必是正数 D.可以是正数也可以是负数 3. 如果a是实数,下列四种说法:(1)a2和|a|都是正数; (2)|a|=-a,那么a一定是负数;(3) a和-a在数轴上 1 的位置分别在原点的两侧;(4)实数a的倒数是 , a 其中正确的个数是( ) A. 0 B. 1 C.2 D.3 2 , 0 ,3 , 3.14, 4 4. 在实数中 , ,无理数有( ) 5 A.1 个 B.2个 C.3个 D.4个
1、(2006.乐山) 若2x-3与-1/3互为倒数, 则x=___ 0
实数的有关概念课件
VS
详细描述
实数的乘法运算具有结合律和分配律,即 (ab)c=a(bc),a(b+c)=ab+ac。乘法运 算在实数轴上表示为标量积,即结果向量 的长度为两个向量长度乘积的绝对值。
除法运算
总结词
实数的除法运算是将一个实数除以另一个非 零实数,得到商的操作。
详细描述
除法运算可以理解为乘上倒数,即 a/b=a*1/b。除法运算在实数轴上表示为向 量缩放,即结果向量的长度为被除数向量长 度除以除数向量的长度。
03
实数的运算
加法运算
要点一
总结词
实数的加法运算是指将两个实数相加,得到另一个实数的 操作。
要点二
详细描述
实数的加法运算具有交换律和结合律,即a+b=b+a, (a+b)+c=a+(b+c)。加法运算在实数轴上表示为向量相加 ,即求得两个向量终点坐标的和作为结果向量的终点坐标 。
减法运算
总结词
整数与小数
整数
整数包括正整数、零和负整数,如1、0、-1、200等。整数是数学中基本的计数 系统,具有封闭性,即任意两个整数的四则运算结果仍为整数。
小数
小数是一种特殊的实数,可以表示为有限小数或无限循环小数,如0.5、0.333... 等。小数可以用来表示精确度或比例,如测量时的精确数值或价格的比例关系。
02
数轴上的点与实数一一对应,可以用实数表示点的 位置,也可以用点表示实数的值。
03
数轴上的点可以按照大小关系进行排列,从而将实 数也按照大小关系进行排列。
02
实数的分类
有理数与无理数
有理数
有理数是可以表示为两个整数之比的数,包括整数、有限小数和无限循环小数。有理数在数轴上表示为两点之间 的线段。
实数的分类及相关概念
<m></m> <m></m> , <m></m> 具有非负性, 即 <m></m> ____ <m></m>
(2)离原点越远的数,其绝对值越____;
大
(3)绝对值相等的两个数相等或____________,即 <m></m> 或________.
互为相反数
6. 倒数:乘积是1的两个数互为倒数.
2. 正负数的意义:正负数可以用于表示具有相反意义的量.【2022版课标新增理解负数的意义】关键词:上下、左右、前后、南北、东西、升降、增减、收支、盈亏、高低、大小、出入、顺逆等.
(1)若规定盈利记为“+”,亏损记为“-”,则+50元表示__________,-80元表示__________;
(2)若规定温度上升记为“+”,温度下降记为“-”,则温度上升 <m></m> 的意义为_____________;
(6)若点 <m></m> 为数轴上的一点,且线段 <m></m> ,则点 <m></m> 表示的数为________.
或
①⑤⑧
④⑥
②③⑤⑦⑨⑩
①④⑥
⑧
①④⑤⑥⑧
②③⑦⑨⑩
2.(人教七上第9页练习1改编)如图,按要求填空.
第2题图
(1)写出数轴上 <m></m> , <m></m> , <m></m> , <m></m> , <m></m> 表示的实数分别为___________________;
《实数的有关概念》课件
除法
总结词
实数除法的定义与性质
详细描述
实数除法是通过乘法和减法来实现的,即a/b=a*(1/b)或a/b=a+(-b)。实数除法同样遵循结合律、交 换律和分配律。在几何上,实数除法可以理解为面积的变换。
乘方与开方
总结词
实数乘方与开方的定义与性质
详细描述
实数乘方是指数的连乘,记作a^n(n为正整数),其性质包括乘方的交换律、结合律和 指数法则。开方则是乘方的逆运算,表示求一个数的平方根。实数的开方具有非负性,
实数与数轴上的点
实数是数轴上点的集合,数轴是实数的几何表示。
实数的有序性表现在数轴上就是点的有序性,即任意两个不同的实数在数轴上都有 明确的左右关系。
实数的连续性表现在数轴上就是点的连续性,即任意两个不同的实数在数轴上都只 被一个点所分隔。
实数的大小比较
在数轴上,右边的点表示的实数比左 边的点表示的实数大。
即对于任意实数a,有√a^2=a。
03
实数与数轴
数轴的表示
实数在数轴上表示为一个个的点 ,每个实数对应数轴上的一个点 ,数轴上的每个点也对应一个实
数。
正数、负数和零在数轴上都有各 自的位置,正数在零的右边,负 数在零的左边,零既不是正数也
不是负数。
数轴上还包括无穷大和无穷小的 概念,表示实数的极限情况。
物理定律的数学表达
许多物理定律可以用实数表示,如牛顿第二定律 F=ma,爱因斯坦 的相对论等。
数据分析和预测
通过测量和实验得到的物理数据通常为实数,对这些数据进行统计 分析可以帮助我们预测和解释物理现象。
在日常生活中的应用
金融和经济学
01
在金融和经济学中,实数被用来表示货币、资产价值、成本等
初中实数概念及分类
初中实数概念及分类
实数是数学中的一个基本概念,其包括有理数和无理数两种类型。
简单来说,实数是可以用来表示现实生活中各种量的数,例如长度、重量、面积、时间等等。
在数学上,实数还具有良好的性质和运算法则。
有理数是能用两个整数的比表示成分数的数,包括正整数、负整数、0和分数。
有理数中的分数可以化为最简分数形式,也可以转换成小数形式,但小数形式可能是有限的,也可能是无限循环的。
无理数是不能表示成分数的数,包括无限不循环小数和无限循环小数。
无理数是一种“不可逼近”数,即没有任何有理数能够精确地表示出它。
常见的无理数有圆周率π、自然对数的底数e以及黄金分割比例φ等。
实数可以用数轴来表示。
数轴是一条符合数学规则的直线,它可以把实数有序地排列在上面。
数轴有两个端点,左端点为负无穷,右端点为正无穷,0则位于数轴的中心。
数轴的左边表示负数,右边表示正数。
在数轴上,实数的距离即为它们的差值,而两个实数之间的大小则用它们在数轴上的位置来判断。
实数的运算法则包括加、减、乘和除。
两个实数相加、减的结果仍是实数,两个实数相乘、除的结果也仍是实数。
对于分数,加减需要将它们通分,而乘除则可直接操作分子和分母。
在实数的运算中,需要注意保持精度,防止出现误差。
总之,实数是数学中一个不可或缺的概念。
通过深入理解和熟练掌握实数的分类、表示和运算法则,不仅可以在日常计量中得到更准确的结果,还能更好地应对数学学习中的挑战。
实数概念及习题
专题一 实数(一) 实数的有关概念1. 概念:(1)有理数: 和 统称为有理数。
(2)相反数:只有 不同的两个数互为相反数。
若a 、b 互为相反数,则 。
(3)数轴:规定了 、 和 的直线叫做数轴。
(4)倒数:乘积 的两个数互为倒数。
若a (a≠0)的倒数为1a.则 。
(5)绝对值:代数定义:a (a >0 )∣a ∣= 0 (a =0 )-a (a <0)几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
(6)无理数: 小数叫做无理数。
(7)实数: 和 统称为实数。
(8)实数和 的点一一对应。
2.实数的分类:说明:“分类”的原则:1)相称(不重、不漏)2)有标准实数无理数(无限不循环小数)正分数 负分数 正整数 0 负整数 (有限或无限循环性整数分数 正无理数 负无理数实数负数整数 分数 无理数有理数 正数整数分数无理数有理数3.科学记数法、近似数和有效数字(1)科学记数法:把一个数记成±a×10n的形式(其中1≤a<10,n 是整数)(2)近似数是指根据精确度取其接近准确数的值。
取近似数的原则是“四舍五入”。
(3)有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。
(二) 实数的运算:1. 有理数加、减、乘、除、幂及其混合运算的运算法则 (1)有理数加法法则:①同号两数相加,取__ __的符号,并把__ __②绝对值不相等的异号两数相加,取___ __的符号,并用 ___ ___。
互为相反数的两个数相加得_ _。
③一个数同0相加,__ __。
(2)有理数减法法则:减去一个数,等于加上__ _。
(3)有理数乘法法则:①两数相乘,同号_ _,异号__ __,并把__ 。
任何数同0相乘,都得__ __。
②几个不等于0的数相乘,积的符号由__ __决定。
当__ ___,积为负,当___ __,积为正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师姓名学生姓名填写时间
学科数学年级七年级教材版本沪科版第_____章(单元)第_____节
阶段□观察期第()周□维护期教师课时统计第()课时共()课时
课程名称实数的有关概念及实数的分类课时计划第()课时
共()课时上课时间
教学目标同步教学知识内容:了解数系从整数到有理数、再到实数的扩展过程,理解实数系统的结构;体会分类思想。
个性化学习问题解决:通过本节教学让该生学好,学会本节的内容和知识。
教学重点理解无理数是无限不循环小数。
会辨别一个数是否是无理数。
教学难点掌握实数的不同分类;理解无理数是客观存在的数。
教学过程
教师活动设计意图
一、知识点精讲:
1、实数的分类:
实数
有理数
整数
正整数自然数
零
负整数
分数
正分数
负分数
无理数
正无理数
负无理数
()
⎧
⎨
⎪
⎩
⎪
⎧
⎨
⎩
⎧
⎨
⎪
⎪⎪
⎩
⎪
⎪
⎪
⎧
⎨
⎩
⎧
⎨
⎪
⎪
⎪
⎪
⎩
⎪
⎪
⎪
⎪
有限小数和无限循环小数
无理数是无限不循环小数。
⎪
⎪
⎪
⎪
⎩
⎪
⎪
⎪
⎪
⎨
⎧
⎪
⎩
⎪
⎨
⎧
⎩
⎨
⎧
⎪
⎩
⎪
⎨
⎧
⎩
⎨
⎧
负无理数
负分数
负整数
负有理数
负实数
零
正无理数
正分数
正整数
正有理数
正实数
实数
二、典型例题评析:
例1 在实数π,1
2-,38,
7
3
,
2121121112
.0,︒
⋅︒46
44ctg
ctg,︒
45
cos中,无理数共有( )
A、2个
B、3个
C、4个
D、5个
让学生掌握有
关实数的不同
分类标准,从
而更清晰的掌
握实数的概
念。
介绍无理数的
几种不同形式
个性化教学设计方案
第 1 页共2页
教学过程
教师活动设计意图例2判断下列说法是否正确,并说明理由:(错的举反例
1)无限小数都是无理数;
2)无理数都是无限小数;
3)正实数包括正有理数和正无理数;
4)实数可以分为正实数和负实数两类;
5)无理数包括正无理数、零、负无理数.
6)有理数都是有限小数。
三、无理数的探究
1、探究生活中是否存在无理数。
2、2、探究2是什么样的数。
通过探究让学
生更好地掌握
无理数的概
念。
课堂练习《实数的有关概念及实数的分类》随堂强化训练题课后作业
《实数的有关概念及实数的分类》课后巩固练习卷
课后记本节教学计划完成情况:□照常完成□提前完成□延后完成,原因__________________
学生的接受程度:□完全能接受□部分能接受□不能接受,原因____________________ 学生的课堂表现:□很积极□比较积极□一般□不积极,原因___________________
学生上次作业完成情况:完成数量_98_____℅已完成部分的质量_4.7__分(5分制)
存在问题_________________________________________
配合需求:家长_________________________________________________
学管师_______________________________________
备
注
本节课主要讲解实数的相关分类和无理数的概念,从课堂上学生学习情况来讲,学生对本节课的知识点能够很好的掌握,但课下时间任然需要加强训练。
提交时间教研组长审批教研主任审批
个性化教学设计方案
注:此表用作每次课的教学设计方案
第 2 页共2页。