生物化学 第五章

合集下载

生物化学教学课件-第五章 生物氧化、

生物化学教学课件-第五章  生物氧化、

真核细胞中,生物氧化主要在线粒体内 进行,而在不含线粒体的原核生物细胞中, 生物氧化则在细胞膜上进行。
第二节 生物氧化中CO2的生成
生物氧化过程中产生的CO2并非由代谢 物质中的碳原子直接与氧结合而成的。
它来源于由糖、脂和蛋白质等有机物转 变生成的含羧基化合物——有机酸,这些 有机酸在酶的作用下脱羧基即可生成CO2。
它实质上也是由一系列载体组成的电子 传递系统,也叫电子传递链。
氢载体和电子载体也统称为传递体。
ቤተ መጻሕፍቲ ባይዱ
(二) 呼吸链的种类
根据代谢物上脱下的氢的初始受体而分类。
若代谢物上脱下的氢直接由NAD+接受而生成 NADH + H+,从而将质子、电子传入呼吸链,则 此呼吸链为NADH 呼吸链。
同样道理,便会有FADH2 呼吸链。
FADH2—>FeS—>CoQ—>Cytb
—>Cytc1—>Cytc—>Cytaa3—>O2
琥珀酸-Q还原酶
琥珀酸是生物代谢过程(三羧酸循环)中产生 的中间产物,它在琥珀酸-Q还原酶(复合物II) 催化下,将两个高能电子传递给Q,再通过QH2Cyt . c还原酶、Cyt. c和Cyt. c氧化酶将电子传递 到O2。
还需要经Cu+ = Cu2+ + e 的化合价 变化来传递电子。
电子最终经Cyta3传给氧使氧变为活化氧 O2-而与2H+结合形成水。
Cytaa3的作用机制目前尚未彻底弄清
其可能的机制:
Cyta的血红素从Cytc处获得电子,再 将由电子传给Cyta3的血红素,再由该血红 素经Cu+ = Cu2+ + e的价态变化而将 电子传给氧。
NADHQ还原酶 NADH + Q + H+ ========= NAD+ + QH2

生物化学第5章 蛋白质的三维结构

生物化学第5章 蛋白质的三维结构
α-螺旋(α-helix) β-折叠(β-pleated sheet) β-转角(β-turn) 无规则卷曲(non-regular coil)
9
α-螺旋
特征: 每隔3.6个AA残基螺旋上升 一 圈,螺距0.54nm; 螺旋体中所有氨基酸残基R 侧链都伸向外侧; 每个氨基酸残基的>N-H与 前 面第三个氨基酸残基的 >C=0形成氢键,肽链上所有 的肽键都参与氢键的形成, 取向几乎都平行于螺旋轴。
原胶原纤维中原胶 分子的排列
一股原胶 原 蛋白 分子
原胶原蛋白分子中的 单链 (左手螺旋)
胶原纤维(collagen fibril)中原胶原蛋白分子的排列19
胶原纤维通过Lys-Lys的交联得到进一步稳定和增强
20
六、 超二级结构和结构域
1.超二级结构(super-secondary structure):
在蛋白质分子中,特别是球状蛋白质中,由若干 相 邻的二级结构单元(即α-螺旋、β-折叠片和β-转 角等 )彼此相互作用组合在一起,形成有规则、在空 间上能 辨认的二级结构组合体,充当三级结构的构件 单元,称 超二级结构或模体(motif)或折叠花样 (folding motif)。
类型:αα; β α β ; β β
∆G = ∆H –T ∆S ∆G is change in Gibbs Free Energy. If the ending state
is lower in free energy than the starting state, reaction will proceed spontaneously. ∆H is change in Enthalpy. Enthalpy is the energy from bonds and attractive interactions. Negative ∆H is favorable. (e.g. forming more bonds.) ∆S is change in Entropy. Entropy is disorder. Positive ∆S is favorable. (e.g. increasing the amount of disorder.)

生物化学:第五章 当的分解与合成代谢

生物化学:第五章 当的分解与合成代谢

第五章糖类的分解与合成代谢(一)双糖和多糖的降解1.淀粉和纤维素分解有两条途径:水解→产生葡萄糖;磷酸解→产生磷酸葡萄糖2.参与淀粉水解的酶主要有三种:淀粉酶、脱支酶、麦芽糖酶,淀粉酶是指参与淀粉a-1,4-糖苷键水解的酶,有a-淀粉酶和b-淀粉酶两种。

3.a-淀粉酶:(a-1,4-葡聚糖水解酶)可水解任何部位的a-1,4-糖苷键,所以又称为内切淀粉酶。

只有酶蛋白与Ca2+结合才表现出活性。

4.脱支酶:水解a-1,6-糖苷键,只能水解支链。

5.淀粉的磷酸解,其中,淀粉磷酸化酶又叫P-酶。

淀粉的磷酸解与水解相比,其优越性有:耗能少;产物不易扩散到胞外,而水解产物葡萄糖会因扩散而流失6.由蔗糖合酶催化:蔗糖+NDP→NDPG +果糖UDPG和ADPG是葡萄糖的活化形式,在合成寡糖和多糖时作为葡萄糖基的供体。

这比将蔗糖水解要经济,因为从水解产物葡萄糖合成NDPG需要消耗能量。

(二)糖酵解(EMP)1.糖酵解途径又称 EMP途径:指葡萄糖通过一系列步骤降解成三碳化合物(丙酮酸)并伴随着ATP生成的过程。

2.EMP的两个阶段第一阶段——五步反应——磷酸丙糖生成阶段——耗能阶段;第二阶段——五步反应——丙酮酸生成阶段——产能阶段。

第一步:葡萄糖——己糖激酶,镁离子——6-磷酸葡萄糖,己糖激酶是关键酶,磷酸化第二步:6-磷酸葡萄糖——磷酸葡萄糖异构酶—6-磷酸果糖第三步:6-磷酸果糖——磷酸果糖激酶——1,6-二磷酸果糖,磷酸化,关键酶(变构酶)第四步:1,6-二磷酸果糖—醛缩酶—磷酸二羟丙酮,3-磷酸甘油醛第五步:磷酸二羟丙酮——磷酸丙糖异构酶—3-磷酸甘油醛第六步:3-磷酸甘油醛—3-磷酸甘油醛脱氢酶—1,3-二磷酸甘油酸第七步:1,3-二磷酸甘油酸—磷酸甘油酸激酶—3-磷酸甘油酸,底物磷酸化第八步:3-磷酸甘油酸—磷酸甘油酸变位酶—2-磷酸甘油酸第九步:2-磷酸甘油酸—烯醇化酶—磷酸烯醇式丙酮酸第十步:磷酸烯醇式丙酮酸—丙酮酸激酶—丙酮酸,底物磷酸化两次磷酸化,-2ATP;两次水平底物磷酸化:+4ATP;总计:+2ATP(三)丙酮酸去路1.丙酮酸的去路:在无氧或相对缺氧时——发酵,有两种发酵:酒精发酵、乳酸发酵;酒精发酵:由葡萄糖→乙醇的过程。

生物化学 第五章 生物膜

生物化学 第五章 生物膜

(2) 嵌 入 蛋 白
这类蛋白被紧密连 在膜上,并且不易溶 于水。主要靠疏水作 用通过某些非极性氨 基酸残基与膜脂疏水 部分相结合。 只有用破坏膜结构 的试剂,如有机溶剂 (氯仿)、超声波、 或去污剂(TritonX100)、SDS才能把它 们从膜中提取出来。

1998,美国MacKinnan 实验室获得链霉菌 倒锥形跨膜K+通道的 晶体。
4个亚单位,每个亚单位 包括两段跨膜螺旋。
K+半径=0.133nm Na+半径=0.093nm
膜锚蛋白

内在蛋白的一 种特殊形式
有些膜内在蛋白本身并没有进入膜内,他们以共价键 与脂质、脂酰链或通过糖分子间接与脂质相结合并通过 他们的疏水部分插入到膜内,这种形式的内在蛋白称为 膜锚蛋白。
3. 糖类

影响膜脂流动性的因素
A.磷脂分子中脂肪酸链的长短及不饱和程度: 链越短,不饱和程度越高,流动性越大. B.胆固醇的含量:胆固醇对膜脂流动性有一定 的调控作用,


在相变温度以上,胆固醇的闭合环状结构干扰了 脂酰链的旋转异构化运动,因此降低膜的流动性, 在相变温度以下,阻止脂酰链的有序排列,降低 相变温度,保持膜的流动性。
鞘磷脂
H H O CH3 H3C-(CH2)12-C C- C- C- CH2-O-P-O-CH2-CH2-N+-CH3 H OH N-H OCH3 鞘氨醇 O C 胆碱鞘磷脂 R1
鞘氨醇作骨架 分子中有亲水的磷酸化的头部(胆碱或乙醇胺)和
疏水的两个碳氢链,其中一条来自鞘氨醇,另一条 来自脂肪酸。脂肪酸以酰胺键连在鞘氨醇上。
双半乳糖甘油二酯
③固 醇
又名甾醇,也是一类 重要的膜脂。 动物膜固醇主要是胆 固醇,植物主要有豆 固醇、谷固醇等,许 多真菌以麦角固醇为 主。

生物化学第五章 生物氧化

生物化学第五章  生物氧化

2、氧化磷酸化:代谢物脱下的氢经电
子传递链与氧结合成水的同时,逐步 释放出能量,使ADP磷酸化为ATP的
过程。
氧化磷酸化偶联部位
ATP
ATP
ATP
40
α-磷酸甘油穿梭:
胞液
CH2OH
线粒体膜
基质
1 O 2 2
NADH + +H
C O CH2O P CH2OH
CoQH 2 FAD CoQ
2~ P H2O
*通过苹果酸穿梭系统,一对氢原子可产生3分 子ATP
三、氧化磷酸化中ATP生成的基础
ATP合酶的分子结构
线粒体膜间隙 线粒体内膜
线粒体基粒
四、 氧化磷酸化的偶联机理 1、化学渗透假说:
电子经呼吸链传递时,可将质子 (H+)从线粒体内膜的基质侧泵到内 膜胞浆侧,产生膜内外质子电化学梯 度储存能量。当质子顺浓度梯度回流 时驱动ADP与Pi生成ATP。
功能:递氢体
(三)铁硫蛋白 辅基:铁硫簇(Fe-S)
Fe-S含有等量铁原子和硫原子 ,其中铁原子可进行
Fe2+ Fe3++e 反应传递电子。
功能:电子传递体
Ⓢ 表示无机硫
铁硫蛋白
S
无机硫
S
半胱氨酸硫
(四)泛醌(CoQ)
O H3CO CH3 CH3 H3CO O (CH2 CH C CH2)nH
76
Cyt的功能: 电子传递体
参与铁硫蛋白 的电子传递过程
在呼吸链的NAD+、FMN、CoQ和
Fe-S几种电子传递体中不与蛋白质 结合的电子载体是CoQ。
四种具有传递电子功能的酶复合体 人线粒体呼吸链复合体

生物化学 第5章 蛋白质结构与功能

生物化学 第5章 蛋白质结构与功能

第五章蛋白质结构和功能的关系一、、肌红蛋白的结构与功能:1、肌红蛋白的三级结构哺乳动物肌肉中储氧的蛋白质。

由一条多肽链(珠蛋白,153个aa残基)和一个血红素辅基组成。

亚铁离子形成六个配位健,四个与N原子,一个与组氨酸,一个与氧配位。

球状分子,单结构域。

8段直的α-螺旋组成,分别命名为A、B、C…H,拐弯处是由1~8个氨基酸组成的松散肽段(无规卷曲)。

4个Pro残基各自处在一个拐弯处,另外4个是Ser、Thr、Asn、Ile。

血红素辅基血红素辅基,扁平状,结合在肌红蛋白表面的一个洞穴内。

CO 中毒CO 与肌红蛋白有更高的亲和性2、肌红蛋白的氧合曲线OMb 解离平衡常数:][]][[22MbO K =][2PO Mb K ∙=][2MbO 氧饱和度:[]2MbO Y =][][2Mb MbO +PO 2Y =2PO K +Y=0.5时,肌红蛋白的一半被饱和,PO 2=K =P 50=2.8t torr(托)解离常数K 也称为P 50,即肌红蛋白一半被饱和时的氧压。

3、Hill 曲线和Hill 系数YY K PO YK PO Y log log 1log 122-=-=-Hill曲线Log[Y/(1-Y)]=0时的斜率称Hill 系数(n H )肌红蛋白的n H =1二血红蛋白的结构与功能蛋白的结构与功能1、血红蛋白的结构:成人成人:HbA:α2β298%,a亚基(141),β亚基(146)HbA2:α2δ22%胎儿:HbFα2γ2早期胚胎:α2ε2▲接近于球体,4个亚基分别在四面体的四个角上,每个亚基上有一个血红素辅基。

▲α、β链的三级结构与肌红蛋白的很相似,一级结构具有同源性。

氧合造成盐桥断裂42、血红蛋白的氧合曲线四个亚基之间具有正协同效应因此它的氧合曲四个亚基之间具有正协同效应,因此,它的氧合曲线是S 型曲线。

Hill 曲线和Hill 系数。

协同效应可增加血红蛋白在肌肉中的卸氧量,使它能有效地输送氧气。

生物化学 第五章 大分子复合物

生物化学 第五章 大分子复合物

(四)糖蛋白中聚糖的可能生物学功能
屏蔽作用: 在细胞表面上, 糖分子覆盖了细胞膜中糖蛋 在细胞表面上,
白的表面,而且保护它免于受蛋白酶或抗体的破坏。 白的表面,而且保护它免于受蛋白酶或抗体的破坏。
肽稳定作用: 核糖体合成的蛋白质在ER(内质网)上或高 核糖体合成的蛋白质在ER(内质网) ER(内质网
尔基体内变成糖蛋白, 先前形成的糖分子帮助蛋白质折 尔基体内变成糖蛋白, 叠到现在的形状。那就是说, 如果糖不与蛋白质成键, 叠到现在的形状。那就是说, 如果糖不与蛋白质成键, 蛋白质将变成错误的形状或者被分解, 蛋白质将变成错误的形状或者被分解, 因为它出不了内 质网( 糖化,共翻译过程)。 质网(N-糖化,共翻译过程)。
第五章
大分子复合物
糖与脂质的复合物 糖与蛋白质的复合物 脂质与蛋白质的复合物 蛋白质与核酸的复合物 生物膜的组成、 生物膜的组成、结构与功能
糖与脂质的复合物
糖脂( 糖脂(glycolipids )
一、定义:一个或多个单糖残基通过其半缩醛羟基以糖 定义:一个或多个单糖残基通过其半缩醛羟基以糖 通过其半缩醛羟基以 苷键与脂质共价结合形成的复合物称为糖脂 苷键与脂质共价结合形成的复合物称为糖脂(glycolipid) ) 二、分类:根据脂质不同主要分为 分类: 鞘糖脂(神经酰胺作为母体) 神经酰胺作为母体)
蛋白聚糖(proteoglycans,PG ) ,
是一类特殊的糖蛋白。它是由一条或多条糖胺聚糖链, 是一类特殊的糖蛋白。它是由一条或多条糖胺聚糖链,在特定的 部位,与多肽链骨架共价连接而成的生物大分子。 部位,与多肽链骨架共价连接而成的生物大分子。在结缔组织中起强 弹性和润滑作用。 化、弹性和润滑作用。 其总体性质更接近糖。 其总体性质更接近糖。

生物化学第五章生物氧化

生物化学第五章生物氧化

1、NADH-Q还原酶(复合体Ⅰ)
功能:将电子从NADH传递给CoQ
复合体Ⅰ NADH→FMN; Fe-SN-1a,b; Fe-SN-4; Fe-SN-3; Fe-SN-2
辅基:FMN,铁硫蛋白
→CoQ
2、复合体Ⅱ:琥珀酸- CoQ还原酶
功能:将电子从琥珀酸传递给CoQ
复合体Ⅱ 琥珀酸→ Fe-S1; b560; FAD; Fe-S2 ; Fe-S3 →CoQ
NADH +H+
H
+
H3N
-
-
OOC-CH2-CH2-C-COO
H
苹果酸 脱氢酶
NAD+
O -OOC-CH 2-CH2-C-COO -
谷氨酸-天冬 氨酸转运体
+
H3N
-
-
OOC-CH2-C-COO
H 天冬氨酸
呼吸链
O
+
H3N
-OOC-CH 2-C-COO -
-
-
OOC-CH2-CH2-C-COO
线
谷氨酸
定义式:ΔG=ΔH-TΔS 物理意义:-ΔG=W ΔG<0,反应能自发进行 ΔG=0,反应处于平衡状态 ΔG>0,反应不能自发进行
2、标准自由能变化与平衡常数的关系
A + B == C + D ΔG′=ΔG°′+ RTlnQc (Qc-浓度商) ΔG°′= - RTlnKeq 例:磷酸葡萄糖异构酶反应的自由能变化
生物氧化与体外氧化之相同点
生物氧化中物质的氧化方式有加氧、脱氢、 失电子,遵循氧化还原反应的一般规律。
物质在体外氧化时所消耗的氧量、最终产物 (CO2、H2O)和释放的能量均相同。

生物化学05.第五章 酶

生物化学05.第五章 酶
2.有的酶原可以视为酶的储存形式。在需要
时,酶原适时地转变成有活性的酶,发挥其催
化作用。
3.胃、肠黏膜及肠道寄生虫均有抵抗消化酶
的抗酶物质。
三、酶促反应的机制
(一)活化分子与活化能
1.活化能:底物分子从基态转变到活化态所需的能量。 2.活化分子:从基态转变到活化态的底物分子。
能 量 非催化反应活化能
一般催化剂催 化反应的活化能 酶促反应 活化能
底物 反应总能量改变 产物 应 过 程

酶促反应活化能的改变
(二)诱导契合假说
酶底物复合物
E+S
ES
E+P
酶与底物相互接近 时,其结构相互诱导、 相互变形和相互适应, 进而相互结合。这一过 程称为酶-底物结合的诱 导契合假说 。
酶的诱导契合动画
(三)邻近效应与定向排列
位于活性中心以外,维持酶活性中心应有的空间 构象所必需。
活性中心以外 的必需基团 底物
+ +
催化基团
结合基团
活性中心
二、酶原与酶原的激活
(一)酶原
有些酶在细胞 内合成或初分泌时 无活性,此无活性 前体称为酶原。
(三)激活过程
酶原
在特定 条件下
特定的肽链水解 分子构象发生改变 酶的活性中心形成
(二)酶原的激活
一些代谢物可与某些酶分子活性中心外的 某部分可逆地结合,使酶构象改变,从而改变 酶的催化活性,此种调节方式称变构调节。
1.变构酶 (allosteric enzyme) 2.变构部位 (allosteric site) 3.变构效应剂 (allosteric effector)
变构激活剂
变构抑制剂
(二) 共价修饰调节

《生物化学》-第五章 酶化学

《生物化学》-第五章  酶化学
亲核基团
—CH2—·O·:
H
底物中典 型的亲电 中心包括:
磷酰基
Cys-SH
—CH2—·S·:
H
脂酰基 糖基
His-咪唑基
—CH2—C=CH
HN N:
CH
(五)金属离子催化
金属离子作为酶的辅助因子起作用的方式:
1.与酶蛋白紧密结合稳定酶的天然构象,亲电催化 2.与酶结合较弱,作为激活剂存在。 3.通过价态的可逆变化,参与氧化还原反应。
其他成分的酶:
核酶(ribozyme) :具有催化活性的天然RNA。 近年还有DNA分子具有催化活性报道。
酶的概念: 酶是生物催化剂。由活细胞产生的具有高效催化能力 和催化专一性的蛋白质、核酸或其复合体。
脲酶:专一性水解尿素。
第一个被分离提取的酶,并证明其化学本质为蛋白质。 抗体酶:是用化学反应的过渡态类似物作免疫原产生 的催化性抗体,是一种具有催化能力的蛋白质,其本 质上是免疫球蛋白。
(6)对于结合酶,辅酶、辅基往往参与酶活中心的 组成。
第二节 酶催化作用的机制
一、酶与底物的结合——中间复合物学说
该学说认为,在酶促反应中,酶(E)总是先和底 物(S)结合生成不稳定的中间复合物(ES),再 分解成产物(P),并释放出酶(E)。 ——中间复合物学说能较好的解释酶为什么能降 低反应的活化能。
实际上,底物与酶结合是一种相互作用的过程, 底物可诱导蛋白质构象改变,蛋白质必需基团也可使 底物敏感键发生变化,更好“契合” 。 3.“三点附着”模型:该模型认为底物与酶活中心的 结合有三个结合位点,只有当这三个位点都匹配的时 候,酶才会催化相应的反应。
二、酶作用高效率机制
(一)底物与酶的邻近、定向效应
1)绝对专一性

生物化学5第五章 糖代谢

生物化学5第五章  糖代谢

丙酮酸脱氢酶复合体由三种酶单体构成:
丙酮酸脱氢酶(E1), 二氢硫辛酰胺转乙酰酶(E2), 二氢硫辛酰胺脱氢酶(E3)。
该多酶复合体有六种辅助因子: TPP,硫辛酸,NAD+,FAD,HSCoA和Mg2+。
整个反应中,中间产物不离开酶复合体,使反 应迅速完成,且没有游离的中间产物,不 会有副反应发生。
(一)葡萄糖经酵解途径生成丙酮酸:
• 此阶段在细胞胞液(cytoplasm)中进 行 , 一 分 子 葡 萄 糖 (glucose) 分 解 后 净生成2分子丙酮酸(pyruvate),2分 子ATP,和2分子(NADH + H+)。
• 两分子(NADH + H+)在有氧条件下 可 进 入 线 粒 体 (mitochondrion) 产 能 , 共 可 得 到 2×1.5 或 者 2×2.5 分 子 ATP 。 故第一阶段可净生成5或7分子ATP。
*
磷酸果糖激酶-1
(3) ATP ADP
2.裂解(lysis)——磷酸丙糖的生成:
• 一分子F-1,6-BP裂解为两分子可以互 变的磷酸丙糖(triose phosphate), 包括两步反应:
⑷ F-1,6-BP 裂 解 为 3- 磷 酸 甘 油 醛 (glyceraldehyde-3-phosphate) 和 磷 酸 二 羟 丙 酮 (dihydroxyacetone phosphate);
CaM:钙调蛋白
3 己糖激酶或葡萄糖激酶: 己糖激酶是肝脏调节葡萄糖吸收的主要的关键酶。
己糖激酶受产物6-磷酸葡萄糖反馈抑制。葡萄糖激酶 分子中没有6-磷酸葡萄糖变构部位,不受6-磷酸葡 萄糖反馈抑制。
己糖激酶有四种同工酶,肝细胞中是Ⅳ型叫葡萄糖激 酶,对葡萄糖亲和力低。

【推荐下载】05生物化学第五章-脂类代谢

【推荐下载】05生物化学第五章-脂类代谢
* 是肝脏输出能源的一种形式。尤其是长期饥 饿时的脑组织的重要能源。
* 酮体利用的增加可减少糖的利用,有利于维 持血糖水平恒定,节省蛋白质的消耗。
酮症酸中毒 酮尿
4. 酮体生成的调节
饱食 饥饿
胰岛素
脂酸β氧化 酮体生成
抑制脂解,脂肪动员 进入肝的脂酸
胰高血糖素等 脂解激素
脂酸β氧化 酮体生成
脂肪动员 FFA
糖代谢 旺盛
(饱 食)
FFA主要生成TG及磷脂
乙酰CoA
+ 乙酰CoA羧化酶

丙二酰CoA
肉碱脂酰转移酶
脂酸β氧化↓ 酮体生成↓
三、脂酸的合成代谢
(一)软脂酸的合成 1. 合成部位
组 织:肝、脂肪为主 细胞定位:
胞液:主要合成16碳的软脂酸(棕榈酸) 肝线粒体、内质网:碳链延长
2. 合成原料
L-甲基丙二酰CoA
CH3CH2CO~CoA
CO2
羧化酶 (ATP、生物素)
消旋酶 D-甲基丙二酰CoA
变位酶 5-脱氧腺苷钴胺素
琥珀酰CoA
TAC
(四)酮体的生成和利用
乙酰乙酸(acetoacetate) 、β-羟丁酸(βhydroxybutyrate)、丙酮(acetone)三者总称 为酮体。
甘油三酯
*
CH2OH CHOH
CH2OH 游离甘油
* G → 3-磷酸甘油
肝、肾甘油激酶
CH2OH CHOH
ATP
ADP
CH2O- Pi
3 - 磷酸甘油
二、甘油三酯的分解代谢
(一) 脂肪动员
储存在脂肪细胞中的脂肪,被肪脂酶逐 步水解为FFA及甘油,并释放入血以供其他 组织氧化利用的过程。

生物化学第5章

生物化学第5章

二、稳定蛋白质三维结构的作用力
R基团间的相互作用及稳定蛋白质三维构象的作用力
a.盐键 b.氢键 c.疏水键 d.范得华力 e.二硫键
氢键是两个极性基团之间的弱键,也就是一个偶极 (dipole) 的带正电荷的一端被另一偶极带负电荷的一端所吸引形成的 键。存在于肽链与肽链之间,亦存在于同一螺旋肽链之中。 氢键虽然是弱键,但蛋白质分子中的氢键很多,故对蛋白质 分子的构象起着重要的作用。
锌指锌指zinefingerzinefinger基元基元znphehishisargcyscysleu锌指基元中cys和his残基构成结合锌的位点锌指与dna的作用亮氨酸拉链亮氨酸拉链leucinezipperleucinezipper基元基元亮氨酸拉链蛋白结合在一个回文的靶dna序列上的模式图回文的靶dna序列亮氨酸拉链蛋白螺旋区螺旋区环环螺旋螺旋hlhhlh和和dnadna的相互作用的相互作用hlh同源二聚体螺旋螺旋螺旋转角螺旋螺旋转角螺旋helixhelixturnturnhelixhelix二结构域在二级结构及超二级结构的基础上多肽链进一步卷曲折叠组装成几个相对独立近似球形的三维实体
范德华力只有当两个非键合原子处于一定距离时才能 达到最大。
疏水键是蛋白质分子中疏水性较强的一些氨基酸(如缬氨酸、 亮氨酸、异亮氨酸、苯丙氨酸等)的侧链避开水相自相粘附聚 集在一起,形成孔穴,对维持蛋白质分子的稳定性起一定作 用。
它在维持蛋白质的三级结 构方面占有突出的地位。
盐健或称离子键,它是正电荷与负电荷之间的一种静电相 互作用。 生理 pH 下, Asp 、 Glu 侧链解离成负离子,L ys 、 Arg 、 His离解成正离子。多数情况下,这些基团分布在球状蛋 白质分子的表面,与水分子形成排列有序的水化层。偶 尔有少数带相反电荷的侧链在分子的疏水内部形成盐键。

生物化学第五章 酶

生物化学第五章 酶

第五章酶第一节概述一、酶的概念酶是由活性细胞产生的、具有高效催化能力和催化专一性的蛋白质,又叫生物催化剂。

酶(enzyme) 是由生物细胞合成的,以蛋白质为主要成分的生物催化剂。

不同生物体所含的酶在种类和数量上各有不同,这种差异决定了生物的代谢类型。

二、酶催化作用的特点1、酶与非生物催化剂的共性:1) 用量少、催化效率高。

2) 都能降低反应的活化能。

3) 能加快反应的速度,但不改变反应的平衡点。

4) 反应前后不发生质与量的变化。

2、酶作为生物催化剂的特性1) 催化效率极高(immense catalytic power )可用分子比(molecular ratio)来表示,即每摩尔的酶催化底物的摩尔数。

酶反应的速度比无催化剂高108-1020倍,比其他催化剂高107-1013倍酶作为催化剂比一般催化剂更显著地降低活化能,催化效率更高。

通常用酶的转换数(turnover number,TN,或催化常数K cat)来表示酶的催化效率。

它们是指在一定条件下,每秒钟每个酶分子转换底物的分子数,或每秒钟每微摩尔酶分子转换底物的微摩尔数。

Kcat:103~1062) 高度的专一性(highly specific )∶所谓酶的专一性是酶对反应物(底物)的选择性绝对专一性:一种酶只能作用于特定的底物。

发生特定的反应,对其他任何物质都没有作用。

相对专一性:有些酶的专一性较低,对具有相同化学键或成键基团的底物都具有催化性能。

立体异构专一性(光学专一性):几乎所有酶对立体异构物的作用都具有高度专一性。

内肽酶胃蛋白酶R1,R1:芳香族氨基酸及其他疏水氨基酸(NH2端及COOH端胰凝乳蛋白酶R1:芳香族氨基酸及其他疏水氨基酸(COOH端)弹性蛋白酶R2:丙氨酸,甘氨酸,丝氨酸等短脂肪链的氨基酸(COOH端胰蛋白酶R3:碱性氨基酸(COOH端)外肽酶羧肽酶A R m:芳香族氨基酸羧肽末端的肽键羧肽酶B Rm:碱性氨基酸羧肽末端的肽键氨肽酶氨肽末端的肽键二肽酶要求相邻两个氨基酸上的α-氨基和α-羧基同时存在3) 反应条件温和4) 酶的催化活性是受调节控制的5) 酶不稳定,容易失活2. 酶的分类(1) 氧化-还原酶Oxidoreductase氧化-还原酶催化氧化-还原反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章核酸
一、选择题
()1、DNA碱基配对主要靠
A 范德华力
B 氢键
C 疏水作用力
D 盐键
()2、mRNA中存在,而DNA中没有的碱基是
A 腺嘌呤
B 胞嘧啶
C 鸟嘌呤
D 尿嘧啶
()3、双链DNA之所以有较高的溶解温度是由于它含有较多的
A嘌呤 B 嘧啶 C A和T D C和G E A和C
()4、对Watson---Crick DNA模型的叙述正确的是
A DNA为双股螺旋结构
B DNA两条链的方向相反
C 在A与G之间形成氢键
D 碱基间形成共价键
E 磷酸戊糖骨架位于DNA螺旋内部
()5、与片段TAGA p互补的片段为
A TAGAp
B AGATp
C ATCTp
D TCTAp
()6、在一个DNA分子中,若腺嘌呤所占摩尔比为32.8%,则鸟嘌呤的摩尔比为: A 67.2% B 32.8% C 17.2% D 65.6% E 16.4%
()7、稳定DNA双螺旋的主要因素是:
A 氢键
B 与Na+结合
C 碱基堆积力
D 与精胺和亚精胺的结合
E 与Mn2+Mg2+的结合
()8、在TψGGImUUA的RNA链中,含有的稀有核苷酸数目为
A 3
B 4
C 5
D 2
E 1
()9、tRNA在发挥其功能时的两个重要部位是
A 反密码子臂和反密码子环
B 氨基酸臂和D环
C TψC环和可变环
D TψC环与反密码子环
E 氨基酸臂和反密码子环
()10、下列核酸变性后的描述,哪一项是错误的?
A 共价键断裂,分子量变小
B 紫外线吸收值增加
C 碱基对之间的氢键被破坏
D 粘度下降
E 比旋值下降
()11、(G+C)含量越高Tm值越高的原因是
A G—C间形成了一个共价键
B G—C间形成了两个共价键
C G—C间形成了三个共价键
D G—C间形成了离子键
E G—C间可以结合更多的精胺、亚精胺
()12、 DNA与RNA完全水解后产物的特点是
A 核糖相同,碱基小部分相同
B 核糖相同,碱基不同
C 核糖不同,碱基相同
D 核糖不同,碱基不同
E 以上都不是
()13、核酸中核苷酸之间的连接方式是
A 2 ′—3′—磷酸二酯键
B 2 ′—5′—磷酸二酯键
C 3 ′—5′—磷酸二酯键
D 氢键
E 离子键
()14、热变性的DNA 有哪一种特性
A、磷酸二酯键发生断裂
B、形成三股螺旋
C、同源DNA有较宽的变性范围
D、载波长260nm处光吸收减少
E、溶解温度直接随A—T对含量改变而变化。

()15、hnRNA是下列哪种RNA的前体
A、tRNA
B、真核rRNA
C、真核mRNA
D、原核rRNA
E、原核mRNA
二、填空题
1、DNA双螺旋结构模型是()于()年提出的。

2、在()条件下,互补的单股核苷酸序列将缔结成双链分子。

3、()RNA分子指导蛋白质的合成,()RNA分子用作蛋白质合成中
活化氨基酸的载体。

4、DNA的稀盐溶液加热至某个特定温度,可使其理化性质发生很大变化如()
和(),这种现象叫做()。

其原因是()。

5、tRNA的二级结构呈()型,三级结构为( L)型。

6、DNA双螺旋稳定因素有()、()和()。

7、DNA双螺旋直径为()nm,双螺旋每隔()nm转一圈,相当于
()个核苷酸对,糖和磷酸位于双螺旋的()侧,碱基位于()侧。

8、核酸是由戊糖 \碱基和()组成的,其中()又可分为()
碱和()碱。

9、核酸完全水解的产物是()、()和()。

10、核酸可分为()和()两大类,其中()
主要存在于()中,而()主要存在于()中。

11、DNA和RNA相异的基本组成成分是()。

12、因为核酸分子中含有嘌呤碱和(),而这两种物质又均具有
(),故使核酸对()的波长有紫外吸收作用。

三、判断题
()1、核苷中碱基和戊糖的连接一般为C—G糖苷键。

()2、DNA中碱基摩尔比规律(A=T、G=C)仅适用于双链DNA,而不适用于单链DNA。

()3、在DNA变性过程中总是G—C对丰富区先溶解分开。

()4、RNA的局部螺旋区中,两条链之间的方向也是反向平行的。

()5、双链DNA中一条链上某一片段核苷酸顺序为PCTGGAC那么另一条链相应片段的核苷酸顺序为pGACCTG。

()6、核酸变性时,紫外吸收值明显增加。

()7、Tm值高的DNA,(A+T)百分含量也高。

()8、双链DNA中,嘌呤碱基含量总是等于嘧啶碱基含量。

()9、真核细胞中DNA只存在于细胞核中。

()10、在生物体内蛋白质的合成是在RNA参与下进行的。

()11、在体内存在的DNA都是以Waston—Crick提出的双螺旋结构形式存在的。

()12、在一个生物个体不同组织中的DNA,其碱基组成不同。

四、名词解释
(1)DNA双螺旋结构:
(2)增色效应与减色效应:
(3)DNA变性:
(4)核酸分子杂交:
(5)Tm:
五、问答题
1、简述DNA双螺旋结构特点。

2、RNA有哪三种类型,各有何主要功能?
RNA 有三种即tRNA(转运RNA)、mRNA(信使RNA)和rRNA(核糖体RNA)。


要功能有:1)tRNA:约占总RNA 的16%,含有70-90 个核苷酸,tRNA 的种类很多,
核酸中的稀有核苷酸也主在出现于tRNA 中,tRNA 与蛋白合成所需的单体——氨基酸
形成复合物,将氨基酸运输到核糖体中mRNA 的特定位置上。

2)、mRNA:约占RNA
的5%,上合成蛋白质的直接模板,每一条多肽链均有一种特定的mRNA 作为模板。


将DNA 上的遗传信息转录下来,携带到核糖体上以密码方式控制蛋白质合成的氨基酸
排列顺序。

3)、rRNA:约占总RNA 的80%,原核生物和真核生物中rRNA 种类都很多,
如5SrRNA、16SrRNA、28SrRNA 等。

它与蛋白质共同构成核糖体,核糖体是蛋白质合
成的场所,同时还协助或参与了蛋白质合成的起始
3、在pH7.0,0.165mol/L NaCl条件下,测得某一DNA样品的Tm为89.3℃,求四种碱
基有组成百分比。

(G+C)%=(Tm-69.3)*2.44=(89.3-69.3)*2.44=48.8%,故G=C=24.4%
(A+T)%=1-(G+C)%=51.2%,故A=T=25.6%。

相关文档
最新文档