高效液相色谱法的计算方法
药物分析计算
分率的计算式为
A. A 250 1 100% 715 5 m
B.
A 715 250 1 100% 5m
C.
A 715 100 250 1 100%
5
m
D.
A 1 100% 715 m
E.
A 100 250 1 100%
715 5
m
假设样品中乙酰氨基酚的量为χ(g)
χ
5
× 250 100
例2计算如下:
百分含量 T(V V)F % ms
37.25 (24.68 14.20) 0.1015
青霉素钾%
0.1 100% 98.54%
0.40211000
2、紫外分光光度法
(1)吸 收系数 法:
c ÷100= C
A E11c%mcl A
c(g/100ml) E11c%ml A
Cc(g/ml) E11c%ml 100
例1计算如下:
百分含量 TVF % ms
17.92 20.00 0.1010
非那西丁%
0.1 100% 99.72%
0.3630 1000
例2、精密称取青霉素钾供试品0.4021g, 按药典规定用剩余碱量法测定含量。先加 入 氢 氧 化 钠 液 (0.1mol/L)25.00ml , 回 滴 时消0.1015mol/l的盐酸液14.20ml,空白 试验消耗0.1015mol/l的盐酸液24.68ml。 求供试品的含量,每1ml盐酸液(0.1mol/L) 相当于37.25mg的青霉素钾。
例7计算如下:
百分含量
c对 ×
A供 A对 ms
×D
×%
50 0.536 1000
盐酸小檗碱%
0.565
高效液相色谱仪的四种检测方法及计算
高效液相色谱仪的四种检测方法及计算高效液相色谱仪(HPLC)在化学、生物学、制药、食品等领域都有广泛应用,其检测方法多种多样,以下将详细介绍四种常用的检测方法及其计算方式。
一、紫外-可见光检测法 (UV-Vis)紫外-可见光检测法是最常用的HPLC检测方法。
在此方法中,样品组分在紫外或可见光区域有吸收,因此可以被检测。
计算方法一般采用峰面积或峰高法定量。
峰面积法比峰高法更为准确,因为它同时考虑了峰的高度和宽度。
在计算时,首先需要获得标准品的校正曲线,然后根据未知样品的峰面积或峰高在校正曲线上找到对应的浓度。
二、荧光检测法 (Fluorescence)荧光检测法的灵敏度通常比紫外-可见光检测法更高,但并非所有化合物都能产生荧光。
在这种方法中,样品组分被激发光照射后发出荧光,荧光强度与组分浓度成正比。
计算方式与紫外-可见光检测法类似,也是通过校正曲线进行定量。
三、电化学检测法 (Electrochemical Detection)电化学检测法通常用于检测具有电化学活性的化合物,如许多药物和神经递质。
它可以在没有光学性质的情况下对物质进行检测,提高了HPLC的应用范围。
常见的电化学检测方法包括安培检测法和电导检测法。
定量计算通常基于法拉第定律,即电流与通过电解池的电荷量成正比。
四、质谱检测法 (Mass Spectrometry)质谱检测法是与HPLC连用的一种高级检测方法,可以提供待测物质的分子量信息,从而确定其化学结构。
在此方法中,HPLC分离后的组分直接进入质谱仪进行检测。
定量计算通常使用内标法或外标法,需要对待测物质进行同位素标记或使用已知量的内标物质。
此外,还可以使用多反应监测模式(MRM)进行更准确的定量。
以上四种方法各有优缺点,应根据具体的应用需求和样品性质选择合适的方法进行检测和计算。
同时,为了获得准确可靠的结果,还需要对HPLC系统进行适当的维护和校准。
高效液相色谱操作步骤
整理ppt
18
化学键合相
利用化学反应将不同的有机官能团通过共价键键 合到载体硅胶表面的游离羟基上而形成的固定相。 种类 非极性键合相:
如键合C18、C8、苯基等,其中十八烷(ODS或 C18)键合相是常用的代表,可完成HPLC分析任 务的80%。 中等极性键合相: 如键合醚基,可分离能形成氢键的化合物(如酚 类)
液相色谱:高沸点、热不稳定、生物试样的分离分析。
+ 分离效率高
若用塔板理论数来表示色谱柱的效率,每米柱长可达 几千至几十万的塔板数,特别适用于极复杂混合物的 分离,且通常收率、产率、和纯度都较高。
+ 操作模式多样
可通过选择不同的操作模式,以适应不同样品的分离。
+ 灵敏度高
可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。
整理ppt
29
色谱图相关术语: 峰面积(Peak Area):峰与峰底之间的面积,又称响应值
标准偏差(σ)(Standard Error):0.607倍峰高处所对 应峰宽的一半
拖尾峰(Tailing Peak):后沿较前沿平缓的不对称峰
前伸峰(Leading Peak):前沿较后沿平缓的不对称峰
鬼峰(Ghost Peak):并非由试样所产生的峰,亦称假峰
❖ 化学稳定性好
❖ 低粘度 若使用高粘度溶剂,势必增高压力,不
利于分离。常用的低粘度溶剂有丙酮、乙醇、乙
腈等。
整理ppt
37
洗脱方式
❖ 等度洗脱 用恒定配比的溶剂系统洗脱
❖ 梯度洗脱 在一个分析周期内,按一定程序不断改 变流动相的浓度配比。
整理ppt
38
化学键合相
利用化学反应将不同的有机官能团通过共价键键 合到载体硅胶表面的游离羟基上而形成的固定相。 种类 非极性键合相:
高效液相色谱法3
2.内标法 内标法分为 工作曲线法 内标一点法 内标二点法 内标对比法 校正因子法 在HPLC中最常用内标对比法。 选择内标物的三个条件(纯、样品中不含有、保留时 间接近),在HPLC中的要求与GC完全一致。一般可选择 一个化学结构与待测物质相似、物理性质相近的纯物质作 为内标物,加到待测样品溶液中,经过样品前处理后进样。 使用内标法可抵消因仪器稳定性差、进样量不够准确等原 因带来的实验误差。
(一) 多环芳烃的分析 一 多环芳烃的分析(图21-18) 多环芳烃的分析,可用反相或吸附色谱法分析。反 相色谱法用ODS柱,用乙腈−水或甲醇−水为流动相。但用 甲醇−水时,保留时间较长,因此多采用梯度洗脱。多环 芳烃也可用硅胶(YWG等)柱,以不含水的正己烷为流动相, 也能获得较好的分离效果,但需注意溶解样品的溶剂应与 流动相的性质相近。许多多环芳烃是致癌物质,其含量监 测在食品分析与环境保护监测中都有实用意义。
(1)内标对比法: 这种方法不需知校正因子又具有内标法的定量准确 度与进样量无关的特点,方法简便实用。在药物分析中分 析结果(含量)常用标示量%表示:
( Ai / As )样品 (ms )样品 W 标示量% = × × ×100% ( Ai / As )对照 (ms )对照 m
(21.13)
式中(ms)样品与(ms)对照分别是内标物在试样溶液及对照溶液 中的量,W为平均片重(或丸重等),m是取样量,其它符 号的含义同GC章。若试样溶液与对照溶液中加人内标物 的量相等,所称取的样品重与平均片重相同,则上式的后 二项均等于1。
A的标示量%=(178024/202694)÷(154856/171222)×100%=97.l% P的标示量%=(820968/202694) ÷(692272/171222)×100%=100.l% C的标示量%=(407792/202694) ÷(372221/171222)×100%=92.5%
高效液相色谱设计方案
药物分析设计性实验设计方案维生素C及其制剂的含量测定药学2011级(2)班李智(1103501275)李集毅(1103501276)指导教师:***2014 年 4 月高效液相色谱测定维生素C片剂含量一、实验目的1. 掌握一般药物含量测定实验的设计方法2. 掌握维生素C高效液相色谱法含量测定的原理和方法3. 掌握标准曲线法在药品含量测定检验中的运用二、实验器材仪器:岛津高效液相色谱仪,色谱柱C18;电子天平;烧杯,棕色容量瓶(50ml*7)0.145μm滤膜,棕色容量瓶(20ml*2)试剂:维生素C片(0.1g/片)(市售),维生素C标准对照品(0.1mg/ml);二次蒸馏水,甲醇(0.1mg/ml色谱纯),草酸(分析纯),磷酸二氢钾(分析纯),磷酸氢二钾(分析纯)三、实验原理1. 标准曲线法:采用梯度浓度稀释法,将对照品溶液稀释至不同浓度的待测溶液,制备成标准溶液,用高效液相色谱法按标准进样得样品吸收峰(峰面积),绘制成标准曲线。
2. 将供试品制剂制成规定含量的待测品,进行高效液相色谱测定,对比对照品溶液标准曲线,查看供试品是否符合含量测定要求四、实验内容1色谱条件色谱柱C18,流动相:磷酸盐缓冲溶液(pH=5.18):甲醇=95:5,流速0.18ml/min,紫外检测器,检测波长254 nm,进样10ul。
2供试品溶液与对照品溶液的制备(1)取本品20片(规格0.1g),精密称定,研细,取本品1片(约相当于维生素C100mg),将待测样品用0.1%的草酸溶解至20ml容量瓶,定容;取上述样品1ml 于50ml的容量瓶中,用0.1%的草酸精确定容,制成每1ml含0.1mg的溶液,分析前用0.145μm滤膜过滤。
(2)维生素C对照品溶液的制备:精密称取维生素C对照品适量,加0.1%的草酸使溶解制成0.1mg/ml的标准溶液。
3 标准工作曲线的绘制精密称取对照品50.80mg置50ml量瓶中,用0.1%草酸溶液稀释至刻度,精密量取0.5ml,2.5ml,5ml,12.5ml,25ml 分别置50ml量瓶中,用0.1%草酸溶液稀释至刻度,制成维生素C标准溶液,用0.45um滤膜过滤,用微量进样器进样10ul,依次测出峰面积,然后以维生素C标准溶液质量浓度(mg/ml)作自变量,相对应的峰面积作因变量,绘制标准工作曲线,标准曲线的相关系数R=0.9999,说明曲线的线性关系良好。
高效液相色谱法
4. 区域宽度
衡量色谱峰宽度的参数,三种
表示方法: ( 1 )标准偏差 ( ) :即 0.607 倍峰 高处色谱峰宽度的一半。 (2)半峰宽(Y1/2):色谱峰高一半 处的宽度 Y1/2 =2.354 。 (3)峰底宽(Wb):Wb=4 。
2. 相平衡参数
(1)分配系数( partition coefficient) K 组分在固定相和流动相间发生的吸附、脱附,或溶解、
流动相的选择:GC采用的流动相中为有限的几种“惰性”
气体,只起运载作用,对组分作用小;HPLC采用的流动相为
液体或各种液体的混合,可供选择的机会多。它除了起运载作
用外,还可与组分作用,并与固定相对组分的作用产生竞争, 即流动相对分离的贡献很大,可通过溶剂来控制和改进分离。
操作温度:GC需高温;HPLC通常在室温下进行。
试样一定时,K主要取决于固定相性质;
每个组份在各种固定相上的分配系数K不同; 选择适宜的固定相可改善分离效果; 试样中的各组分具有不同的K值是分离的基础; 某组分的K = 0时,即不被固定相保留,最先流出。
3.分配比 (partition radio)k
一定温度下,组分在两相间分配达到平衡时的质量比。
2. 按孔隙深度分
• 表面多孔型:以实心玻璃珠为基体,在基体表面 覆盖一层多孔活性材料(如 硅胶、氧化铝、离子交 换剂、分子筛、聚酰胺等)。表面多孔型固定相的 颗粒大(易装柱)、多孔层厚度小且孔浅(渗透性好, 出峰快);但交换容量小。适于常规分离分析。 • 全多孔型:全部由硅胶或氧化铝微粒聚集而成, 因颗粒极细,因而孔径小、传质快、 柱效高。特 别适于复杂混合物的分离。
(2)用体积表示的保 留值
保留体积(VR): VR = tR×qv qv为柱出口处的载气流量, 单位:m L / min。 死体积(VM): VM = tM ×qv
《中国药典》2015版通则0512高效液相色谱法
通则0512高效液相色谱法高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。
注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。
1.对仪器的一般要求和色谱条件高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。
色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。
超高液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。
(1)色谱柱反相色谱柱:以键和非极性基团的载体为填充剂填充而成的色谱柱。
常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。
正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。
常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。
氨基键合硅胶和氰基键合硅胶也可用作反向色谱。
离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。
有阳离子交换色谱柱和阴离子交换色谱柱。
手性分离色谱柱:用手性填充剂填充而成的色谱柱。
色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。
温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。
为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。
残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。
残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。
(2)检测器最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。
色谱法
载气
检测器
氮气
氢火焰离子化检测器(FID)
检测温度高于柱温
一般 250 ~ 350℃
二、高效液相色谱法(HPLC法)
以液体为流动相的色谱法
(一)HPLC的速率理论
H A Cu
与气相色谱法的差别
GC法 高温(ChP 50 ~ 265℃) 纵向扩散项大(B/u)
HPLC法
室温
传质阻抗项大(Cu)
2. 载体
硅藻土型载体(红色、白色)
3. 毛细管色谱柱 填充型毛细管柱
开管型毛细管柱(WCOT、SCOT)
√
(四)气相色谱仪
气源 进样及气化系统
色谱柱和柱温箱
检测器 热导检测器 氢火焰离子化检测器
电子捕获检测器
ChP(2005)对气相色谱仪的一般要求
色谱柱 固定液 填充柱或毛细管柱(空心柱) 高沸点液体
As Cs f AR CR
内标+样品→计算杂质含量
Ax Cx f As Cs
内标物+ 杂质对照品 →校正因子
内标物+样品 →杂质含量
(2)外标法 供试品→供试品溶液
杂质对照品→对照品溶液
Ax 含量( x) CR C AR
缺点 不易控制进样量
宜用定量环
(3)加校正因子的主成分自身对照法
2
(二)分离度(R)
除另有规定外,R≥1.5
2 t R2 t R1 R W1 W2
t R2 t R1
(三)重复性(RSD)
尾因子(T)
除另有规定外,T应0.95 ~ 1.05
W0.05h T 2d1
四、GC和HPLC在药品检验中的应用
配系数大的后流出
高效液相色谱法的计算方法
高效液相色谱法的计算方法高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。
1、对仪器的一般要求所用的仪器为高效液相色谱仪。
色谱柱的填料和流动相的组分应按各品种项下的规定。
常用的色谱柱填料有硅胶和化学键合硅胶。
后者以十八烷基硅烷键合硅胶最为常用,辛基键合硅胶次之,氰基或氨基键合硅胶也有使用;离子交换填料,用于离子交换色谱;凝胶或玻璃微球等,用于分子排阻色谱等。
注样量一般为数微升。
除另有规定外,柱温为室温,检测器为紫外吸收检测器。
在用紫外吸收检测器时,所用流动相应符合紫外分光光度法(附录ⅣA)项下对溶剂的要求。
正文中各品种项下规定的条件除固定相种类、流动相组分、检测器类型不得任意改变外,其余如色谱柱内径、长度、固定相牌号、载体粒度、流动相流速、混合流动相各组分的比例、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并达到系统适用性试验的要求。
一般色谱图约于20分钟内记录完毕。
2、系统适用性试验按各品种项下要求对仪器进行适用性试验,即用规定的对照品对仪器进行试验和调整,应达到规定的要求;或规定分析状态下色谱柱的最小理论板数、分离度和拖尾因子。
(1) 色谱柱的理论板数(N,用于定量表示色谱柱的分离效率,简称柱效)。
在选定的条件下,注入供试品溶液或各品种项下规定的内标物质溶液,记录色谱图,量出供试品主成分或内标物质峰的保留时间tR(以分钟或长度计,下同,但应取相同单位)和半高峰宽(W h/2),按n=5.54(t R/W h/2)2计算色谱柱的理论板数,如果测得理论板数低于各品种项下规定的最小理论板数,应改变色谱柱的某些条件(如柱长、载体性能、色谱柱充填的优劣等),使理论板数达到要求。
高效液相色谱法测定清肺颗粒中甘草酸的含量
高效液相色谱法测定清肺颗粒中甘草酸的含量引言清肺颗粒是一种中药颗粒剂,常用于治疗咳嗽、喘息等呼吸系统疾病。
其中的甘草酸作为主要有效成分之一,具有镇咳、平喘、化痰等功效。
准确测定清肺颗粒中甘草酸的含量对于保证其药效,具有重要意义。
本文将利用高效液相色谱法对清肺颗粒中甘草酸的含量进行测定。
实验方法1. 仪器和试剂本实验使用的仪器主要包括: 高效液相色谱仪、电子天平、PH计等;试剂有:甘草酸标准品、乙腈、甲醇、磷酸、二甲基亚砜等。
2. 样品制备取清肺颗粒0.5g,加入50ml的乙醇水溶解液中,超声提取3次,每次15分钟,离心,取上清液,合并,浓缩至1ml,称取1ml装入10ml量瓶,加纯水至刻度。
3. 色谱条件色谱柱:C18色谱柱;流动相:甲醇-0.05%磷酸溶液(25:75);检测波长:254nm;柱温:25℃;流速:1.0ml/min。
4. 色谱峰识别用甘草酸标准溶液进行色谱峰识别,测定其保留时间。
5. 色谱峰积分将制备好的清肺颗粒提取液进行色谱测定,测得其峰面积值。
6. 含量计算由色谱峰面积值和标准曲线得出清肺颗粒中甘草酸的含量。
结果与分析通过上述实验方法,我们测定了清肺颗粒中甘草酸的含量。
例如:得到清肺颗粒中甘草酸的含量为Xmg/g。
根据国家药典规定的标准范围,我们可以判断该批次的清肺颗粒中甘草酸的含量是否符合要求。
通过对多个批次的清肺颗粒进行测试,得出结果稳定可靠。
讨论通过本次实验,我们成功地利用高效液相色谱法对清肺颗粒中甘草酸的含量进行了测定。
该方法简单、精确、灵敏,能够满足对清肺颗粒中甘草酸含量的要求。
该方法还可以应用于其他中药颗粒剂中甘草酸含量的测定,具有重要的实际应用意义。
高效液相色谱HPLC简介
h
AB
1/10h
拖尾
T
f
=
B A
前伸
液相色谱图相关术语(3)
色谱图相关术语: 基线(Baseline):在正常操作条件下,仅由流动相所 产生的响应信号的曲线 基线飘移(Baseline Drift):基线随时间定向的缓 慢变化 基线噪声(N)(Baseline Noise):由各种因素所引起 的基线波动
• 溶剂过滤:常用0.5μm膜过滤。HPLC级溶剂:无微粒,无紫外吸收,已用 0.2μm膜过滤。
• 贮液瓶要不定期更换,要有2~3个备用瓶,定期用酸、水、溶剂清洗。 • 沉子:用三个月后必须清洗或更换,若未用沉子,则必须用0.5μm膜过滤。
溶剂脱气
脱气:正相色谱如非水性凝胶色谱的流动相不必脱气,反相色谱的流动相需 要脱气。 He氦气脱气:10min可以除去80~90%溶入的气体,但价格昂贵 真空脱气:这是最常用的方法,可用真空抽滤流动相的方法代替。 超声脱气:使用方便,但只能脱气30% 加热回流:最彻底的脱气方法,混合流动相不能用
底相交两点之间的距离 –半(高)峰宽(Peak Width at Half Height):通过峰
高的中点作平行于峰底的直线,其与峰两侧 相交两点之间的距离
HPLC的图形结果 --色谱图(Chromatogram)
色谱图:色谱柱流出物通过检测器时所产生的响应信号对时间 的曲线图,其纵坐标为信号强度,横坐标为保留时间.
改变a的途径 改变固定相 改变流动相 改变温度 改变样品的本身性质
在反相HPLC中溶剂强度会随着水/有机流动相中的有机相增加而增加 。
确定最佳的溶剂强度
• “试-凑法”,即先用一种可能过强的流动相,在后面的实验中逐步减小溶 剂强度以增加k’,当所有谱峰的k’介于1—20时,其流动相已经接近最佳 了。
高效液相色谱方法通则
6.1 仪器组成 仪器主要组成见图1。
输液系统
进样系统
色谱柱系统
检测器
储液器
打印绘图机
图1 仪器组成框图
色谱工作站 (或记录仪)
6.1.1 储液器:储存流动相的容器应耐流动相的化学腐蚀、方便脱除溶解于液体的气体。 6.1.2 输液系统:输液泵及其控制系统应包括流动相组成及流量梯度的程序控制部分。接触 液体的泵体材料应耐化学腐蚀、泵流量稳定无脉冲,且有足够的精度和重复性。 6.1.3 进样系统:样品引入到色谱柱系统的装置,样品管应为可更换的定体积管。 6.1.4 色谱柱系统:包括保护(预)柱、色谱柱和柱恒温箱,并有足够的恒温精度。 6.1.5 检测器:通用的有紫外-可见光、荧光及折射率检测器。 6.1.6 色谱工作站(或记录仪):控制色谱仪的整机操作、采集和处理色谱数据的微型计算机 系统,或为积分仪或简单的记录仪。 6.1.7 打印绘图机:打印分析数据和绘制色谱图的打印机和绘图机。 6.2 仪器性能
对同一组分,在相同的色谱条件下和线性范围内,可用外标法、内标法或叠加法进行定 量测定。 8.4.1 外标法:在相同的色谱条件下,分别测定和比较标准物质和样品待测组分的峰值。计 算试料中待测组分的含量。采用外标法,必须满足下列条件:
a)用称量法(准确至0.01mg)配制外标溶液,其组分浓度应接近试料中待测组分的含量; b)进样量应相同,且在检测器的线性范围内重复测定。 8.4.2 内标法:在已知量的样品中加入定量的标准物质,测定和比较试料中待测组分和内标 物的峰值。用相对校正因子求出样品中待测组分的百分数,采用内标法定量,必须满足下列 条件: a)内标物在样品的全处理过程中应能保持化学稳定性。其浓度应接近待测组分的含量。 b)内标物和样品中的所有组分应能完全分离。 c)进样量应在检测器的线性范围内。 8.4.3 叠加法:在相同的色谱条件下,测定试料中待测组分及其相邻组分的峰值,然后加入 一定量的待测组分于该试料中,再次测定上述两组分的峰值,用外标法计算试料中待测组分 的百分数。采用叠加法,必须满足下列条件: a)不适宜用外标法或内标法测定微量的组分。 b)进样量应在检测器的线性范围内重复测定。 8.5 测定后的检查 样品测定后,应再次测定溶剂空白,以确证色谱柱在每次进样前均已达到平衡。否则, 应再次测定标准样品的峰值,其偏差应在分析误差的允许范围内。
高效液相色谱(HPLC)柱效测定
实验六高效液相色谱(HPLC)柱效测定093858 张亚辉一. 实验目的1、学习高效液相色谱仪的基本操作方法。
2、了解高效液相色谱仪原理和条件设定方法。
3、了解高效液相色谱法在日常分析中的应用。
二. 实验原理高效液相色谱法是以液体作为流动相,借助于高压输液泵获得相对较高流速的液流以提高分离速度、并采用颗粒极细的高效固定相制成的色谱柱进行分离和分析的一种色谱方法。
在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。
反之,则称为正相色谱分离系统。
反相色谱系统所使用的流动相成本较低,应用也更为广泛。
定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。
分离度(R)的计算公式为:R= 2[t(R2)-t(R1)] /1.7*(W1+W2)式中 t(R2)为相邻两峰中后一峰的保留时间; t(R1)为相邻两峰中前一峰的保留时间; W1及W2为此相邻两峰的半峰宽。
除另外有规定外,分离度应大于1.5。
本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE,常被用作塑料增塑剂。
它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。
但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。
待测物性质见表1。
表1色谱柱测试条件如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC分离检测。
三.仪器与试剂1、仪器Agilent 1100高效液相色谱仪,50ul微量注射器。
2、试剂甲醇(色谱专用),高纯水四. 实验步骤1、色谱条件色谱柱:辛烷基硅烷键合硅胶(C8)柱温:室温流动相:初始为高纯水:20%,甲醇:80%检测器:DAD检测器;检测波长:220nm;进样体积:20µl定量环,实际注射每次可控制在40µl。
高效液相色谱
高效液相色谱(HPLC)法测定邻苯二甲酸酯一. 实验目的1、学习高效液相色谱仪的基本操作方法。
2、了解高效液相色谱仪原理和条件设定方法。
3、了解高效液相色谱法在日常分析中的应用。
二. 实验原理高效液相色谱法是以液体作为流动相,借助于高压输液泵获得相对较高流速的液流以提高分离速度、并采用颗粒极细的高效固定相制成的色谱柱进行分离和分析的一种色谱方法。
在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。
反之,则称为正相色谱分离系统。
反相色谱系统所使用的流动相成本较低,应用也更为广泛。
定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。
分离度(R)的计算公式为:R= 2[t(R2)-t(R1)] /1.7*(W1+W2)式中 t(R2)为相邻两峰中后一峰的保留时间; t(R1)为相邻两峰中前一峰的保留时间; W1及W2为此相邻两峰的半峰宽。
除另外有规定外,分离度应大于1.5。
本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE,常被用作塑料增塑剂。
它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。
但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。
待测物性质见表1。
表1色谱柱测试条件出峰次序样品组成1 邻苯二甲酸二甲酯(DMP)2 邻苯二甲酸二乙酯(DEP)3 邻苯二甲酸二丁酯(DBP)如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC分离检测。
三.仪器与试剂1、仪器Agilent 1100高效液相色谱仪,50ul微量注射器。
2、试剂甲醇(色谱专用),高纯水四. 实验步骤1、色谱条件色谱柱:辛烷基硅烷键合硅胶(C8)柱温:室温流动相:初始为高纯水:30%,甲醇:70%检测器:DAD检测器;检测波长:220nm;进样体积:100µl定量环,实际注射每次可控制在200µl。
高效液相色谱法 药典
高效液相色谱法高效液相色谱法系采用高压输液泵将规定的流动相泵人装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。
注人的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。
1. 对仪器的一般要求和色谱条件高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。
色谱柱内径一般为3.9〜4.6 mm,填充剂粒径为3〜10μm。
超高效液相色谱仪是适应小粒径(约2μm) 填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。
(1) 色谱柱反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。
常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。
正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。
常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。
氨基键合硅胶和氰基键合硅胶也可用作反相色谱。
离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。
有阳离子交换色谱柱和阴离子交换色谱柱。
手性分离色谱柱:用手性填充剂填充而成的色谱柱。
色谱柱的内径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。
温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。
为改善分离效果可适当提髙色谱柱的温度,但一般不宜超过60°C。
残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2〜8之间。
残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。
(2) 检测器最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。
高效液相色谱法测定饮料中柠檬黄的不确定度评定
液相色谱法测定饮料中柠檬黄的不确定度评定1. 测量方法按照《食品中合成着色剂的测定》(GB/T 5009.35-2003)中高效液相色谱法测定。
取样10.00g (m 2a ),用水定容至10 mL (V 1)容量瓶刻度后混匀,待固相萃取。
取Strata X-AW (60mg/3mL ),依次用甲醇3mL 、水3mL 活化,上样1.00mL (V 2),再依次用水3mL 、甲醇3mL 过柱洗涤,然后用2%氨水甲醇溶液2mL 洗脱,收集洗脱液,真空离心浓缩至干,加水定容至1mL (V 3),待HPLC 测定,进样20uL 。
仪器:Agilent 1200高效液相色谱仪 2. 数学模型2.1 样品中被测组分浓度10001000123⨯⨯⨯⨯=V Vm v c w式中:w —样品中被测组分浓度, mg/Kg ;c —检测液中被测组分浓度,µg/mL ; m —取样量,g ;v 1—待上样样液体积,mL ; v 2—上样体积,mL ; v 3—检测液体积,mL 。
2.2 检测液中被测组分浓度bay c -=2.3 标准曲线y =b c +a(b 为斜率,a 为截距) 2.4 标准系列溶液浓度被稀释标准溶液的浓度×被稀释标准溶液的取出量÷定容体积 3. 不确定度来源与量化上述计算式依据不确定度传播公式,可得被测样品中合成色素的相对不确定度u rel :u rel=)5(2)4(2)3(2)3(2)2(22)1(2)(2)1(rel rel rel v rel v relv rel m rel rel u u u u u u u u +++++++式中:u rel (1)一标准溶液配制产生的相对不确定度;u rel (m)一取样产生的相对不确定度;u rel (v1)一取样后的定容产生的相对不确定度; u rel (v2)一上样量产生的相对不确定度;u rel (v3)一收集的洗脱液在真空离心浓缩至干后定容产生的相对不确定度; u rel (3)一样品重复性测定产生的相对不确定度; u rel (4)一工作曲线拟合产生的相对不确定度; u rel (5)一 回收率相对不确定度。
中国药典版--高效液相色谱法
色谱条件与系统适用性试验
按各品种项下的要求对仪器进行适用 性试验,即用规定的对照品对仪器进 行试验和调整,应达到规定的要求; 或规定分析状态下色谱柱的最小理论 板数、分离度、重复性和拖尾因子。
(1) 色谱柱的理论板数
色谱柱的理论板数(n) 在选定的条件下,注入 供试品溶液或各品种项下规定的内标物质溶液, 记录色谱图,量出供试品主成分或内标物质峰 的保留时间tR(以分钟或长度计,下同,但应 取相同单位)和半高峰宽(Wh/2),按 n=5.54(tR/Wh/2)<2>计算色谱柱的理论板数, 如果测得理论板数低于各品种项下规定的最小 理论板数,应改变色谱柱的某些条件(如柱长, 载体性能,色谱柱充填的优劣等),使理论板 数达到要求。
(3) 拖尾因子
为保证测量精度,特别当采用峰高 法测量时,应检查待测峰的拖尾因子 (T)是否符合各品种项下的规定,或不同 浓度进样的校正因子误差是否符合要 求。除另有规定外, (T) 应在0.95~ 1.05之间。
四重复性
取各品种下的对照溶液,连续进样5次, 除令有规定外,其峰面积测量值相对 标准偏差应不大于2.0%。也可按照规 定 配制相当于80%、100%和120%的 对照品溶液,加入规定量的内标溶液, 配成三种不同浓度的溶液,分别注样3 次,计算平均校正因子,其相对标准偏 差应不大于2.0%。
对氨基酸分离,用经典色谱法,柱长约 170cm,柱径0.9cm,流动相速度为 30cm3·h-1,需用20多小时才能分离出20 种氨基酸;而用高效液相色谱法,只需lh 之内即可完成。又如用25cm×0.46cm的 Lichrosorb-ODS(5μ)的柱,采用梯度洗 脱,可在不到0.5h内分离出尿中104个组
3.测定法
定量测定时,可根据样品的具体情 况采用峰面积法或峰高法。但用归一 法或内标法测定杂质总量时,须采用 峰面积法。
高效液相色谱定性定量分析方法
1
134.2
220.2
0 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 Counts vs. Mass-to-Charge (m/ z)
由分子量及其 质谱图可以确 定该代谢物为 乙酰化氨脒
定性分析—两谱联用定性
定性分析—其他方法
1 收集洗脱物后进行定性分析
` 收集色谱分离后的每一个分离组分 ` 对所得组分分别进行仪器、化学分析或其他物理
参数(如熔点、沸点、折光、旋光等)测定
定性分析—其他方法
收集组分时应注意
` 某些情形,如色谱分析,宜采用非破坏性检测器,电化 学检测器不可;
` 如使用破坏性检测器,则须在检测器前分流,使分离后 的一小部分组分进入检测器
` 可根据文献数据和对照品选用已知标准物 ,再用已知标准物进行定性
定性分析—保留值定性
3 利用已知物增加峰高法定性
将已知标准物质加到待测样品,若某一峰 增高,且改变色谱柱或流动相组成后仍能使 该峰增高,则可基本认定该峰与已知标准物 为同一物质
定性分析—保留值定性
4 用三维图谱检测器定性
` 如果HPLC仪配备有三维图谱检测器,除比较未 知组分与已知标准物保留时间外,还可比较两 峰的立体构形
条件下应该有相同的保留值; 但相反结论却不成立,即相同色谱条件下
,具有相同保留值的两个物质不一定是同一 个物质。尚需一些辅助技术 ` 利用两谱联用定性;
其他方法定性
定性分析—保留值定性
1 已知物保留值直接对照法定性
` 未知峰保留值(t’R或V’R)与某标准物完全 相同,可初步确定为同一物质
` 改变色谱柱或流动相组成,二者保留值仍 完全相同,则可认定为同一物质
高效液相色谱法的计算方法
高效液相色谱法的计算方法高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。
1、对仪器的一般要求所用的仪器为高效液相色谱仪。
色谱柱的填料和流动相的组分应按各品种项下的规定。
常用的色谱柱填料有硅胶和化学键合硅胶。
后者以十八烷基硅烷键合硅胶最为常用,辛基键合硅胶次之,氰基或氨基键合硅胶也有使用;离子交换填料,用于离子交换色谱;凝胶或玻璃微球等,用于分子排阻色谱等。
注样量一般为数微升。
除另有规定外,柱温为室温,检测器为紫外吸收检测器。
在用紫外吸收检测器时,所用流动相应符合紫外分光光度法(附录ⅣA)项下对溶剂的要求。
正文中各品种项下规定的条件除固定相种类、流动相组分、检测器类型不得任意改变外,其余如色谱柱内径、长度、固定相牌号、载体粒度、流动相流速、混合流动相各组分的比例、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并达到系统适用性试验的要求。
一般色谱图约于20分钟内记录完毕。
2、系统适用性试验按各品种项下要求对仪器进行适用性试验,即用规定的对照品对仪器进行试验和调整,应达到规定的要求;或规定分析状态下色谱柱的最小理论板数、分离度和拖尾因子。
(1) 色谱柱的理论板数(N,用于定量表示色谱柱的分离效率,简称柱效)。
在选定的条件下,注入供试品溶液或各品种项下规定的内标物质溶液,记录色谱图,量出供试品主成分或内标物质峰的保留时间t R(以分钟或长度计,下同,但应取相同单位)和半高峰宽(W h/2),按n=5.54(t R/W h/2)2计算色谱柱的理论板数,如果测得理论板数低于各品种项下规定的最小理论板数,应改变色谱柱的某些条件(如柱长、载体性能、色谱柱充填的优劣等),使理论板数达到要求。
(2) 分离度(R)定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效液相色谱法的计算方法
高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。
1、对仪器的一般要求
所用的仪器为高效液相色谱仪。
色谱柱的填料和流动相的组分应按各品种项下的规定。
常用的色谱柱填料有硅胶和化学键合硅胶。
后者以十八烷基硅烷键合硅胶最为常用,辛基键合硅胶次之,氰基或氨基键合硅胶也有使用;离子交换填料,用于离子交换色谱;凝胶或玻璃微球等,用于分子排阻色谱等。
注样量一般为数微升。
除另有规定外,柱温为室温,检测器为紫外吸收检测器。
在用紫外吸收检测器时,所用流动相应符合紫外分光光度法(附录ⅣA)项下对溶剂的要求。
正文中各品种项下规定的条件除固定相种类、流动相组分、检测器类型不得任意改变外,其余如色谱柱内径、长度、固定相牌号、载体粒度、流动相流速、混合流动相各组分的比例、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并达到系统适用性试验的要求。
一般色谱图约于20分钟内记录完毕。
2、系统适用性试验
按各品种项下要求对仪器进行适用性试验,即用规定的对照品对仪器进行试验和调整,应达到规定的要求;或规定分析状态下色谱柱的最小理论板数、分离度和拖尾因子。
(1)色谱柱的理论板数(N,用于定量表示色谱柱的分离效率,简称柱效)。
在选定的条件下,注入供试品溶液或各品种项下规定的内标物质溶液,记录色谱图,量出供试品主成分或内标物质峰的保留时间tR(以分钟或长度计,下同,但应取相同单位)和半高峰宽(W h/2),按n=5.54(t R/Wh/2)2计算色谱柱的理论板数,如果测得理论板数低于各品种项下规定的最小理论板数,应改变色谱柱的某些条件(如柱长、载体性能、色谱柱充填的优劣等),使理论板数达到要求。
(2) 分离度(R)
定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。
分离度R的计算公式为: R=2(tR2-tR1)/( W1+W2)。
式中t R2为相邻两峰中后一峰的保留时间;t R1为相邻两峰中前一峰的保留时间;W1及W2为此相邻两峰的峰宽。
除另外有规定外,分离度应大于1.5。
(3) 拖尾因子(T)
为保证测量精度,特别当采用峰高法测量时,应检查待测峰的拖尾因子T 是否符合各品种项下的规定,或不同浓度进样的校正因子误差是否符合要求。
拖
/(2d1)。
式中W0.05h为0.05峰高处的峰宽;d1为尾因子计算公式为:T=W
0.05h
峰极大至峰前沿之间的距离。
除另有规定外,T应在0.95~1.05间。
也可按各品种校正因子测定项下,配制相当于80%、100%和120%的对照品溶液,加入规定量的内标溶液,配成三种不同浓度的溶液,分别注样3次,计算平均校正因子,其相对标准偏差应不大于2.0%。
3、测定法
定量测定时,可根据样品的具体情况采用峰面积法或峰高法。
但用归一法或内标法测定杂质总量时,须采用峰面积法。
(1)面积归一化法
峰面积归一化法测定误差大,本法只能粗略考察供试品中的杂质含量。
测定供试品(或经衍生化处理的供试品)中各杂质及杂质的总量限度采用不加校正因子的峰面积归一法。
计算各杂质峰面积及其总和,并求出占总峰面积的百分率。
但溶剂峰不计算在内。
色谱图的记录时间应根据各品种所含杂质的保留时间决定,除另有规定外,可为该品种项下主成分保留时间的倍数。
(2) 内标法不加校正因子测定供试品中杂质总量
采用的峰面积法。
取供试品,按各品种项下规定的方法配制不含内标物质的供试品溶液,注入仪器,记录色谱图Ⅰ;再配制含有内标物质的供试品溶液,在同样的条件下注样,记录色谱图Ⅱ。
记录的时间除另有规定外,应为该品种项下规定的内标峰保留时间的倍数,色谱图上内标峰高应为记录仪满标度的30%以上,否则应调整注样量或检测器灵敏度。
如果色谱图Ⅰ中没有与色谱图Ⅱ上内标峰保留时间相同的杂质峰,则色谱图Ⅱ中各杂质峰面积之和应小于内标物质峰面积(溶剂峰不计在内)。
如果色谱图
Ⅰ中有与色谱图Ⅱ上内标物质峰保留时间相同的杂质峰,应将色谱图Ⅱ上的内标物质峰面积减去色谱图Ⅰ中此杂质峰面积,即为内标物质峰的校正面积;色谱图Ⅱ中各杂质峰总面积加色谱图Ⅰ中此杂峰面积,即为各杂质峰的校正总面积,各杂质峰的校正总面积应小于内标物质峰的校正面积。
(3)内标法加校正因子测定供试品中某个杂质或主成分含量
按各品种项下的规定,精密称(量)取对照品和内标物质,分别配成溶液,精密量取各溶液,配成校正因子测定用的对照溶液,取一定量注入仪器,记录色谱图,测量对照品和内标物质的峰面积或峰高。
按下式计算校正因子:f=(As/Cs)/(Ar/Cr)。
式中As为内标物质的峰面积或峰高;
Ar为对照品的峰面积或峰高;
Cs为加入内标物质的浓度;
Cr为对照品的浓度。
再取各品种项下含有内标物质的供试品溶液,注入仪器,记录色谱图,测量供试品(或其杂质)峰和内标物质的峰面积或峰高。
按下式计算含量:Cx=Ax/( A’s/C’s)*f
式中Ax为供试品(或其杂质)峰面积或峰高;
Cx为供试品(或其杂质)溶液的浓度;
A’s为内标物质的峰面积或峰高;
C’s为加入内标物质的浓度;
F为校正因子。
当配制校正因子测定用的对照溶液和含有内标物质的供试品溶液,使用等量同一浓度内标物质溶液时,Cs=C’s,则配制内标物质溶液不必精密称(量)取。
(4) 外标法测定供试品中某个杂质或主成分含量
按各品种项下的规定,精密称(量)取对照品和供试品,配制成溶液,分别精密取一定量,注入仪器,记录色谱图,测量对照品和供试品待测成分的峰面积(或峰高)。
按下式计算含量:Cx=Cr*( Ax/Ar)
式中Ax为供试品(或其杂质)峰面积或峰高;
Cx为供试品(或其杂质)溶液的浓度;
Ar为对照品的峰面积或峰高;
Cr为对照品的浓度。
由于微量注射器不易精确控制进样量,当采用外标法测定供试品中某杂质或主成分含量时,以定量环进样为好。
(5) 主成分自身对照法
当杂质峰面积与成分峰面积相差悬殊时,采用主成分自身对照法,用于测定杂质含量。
可分为加校正因子的主成分自身对照法和不加校正因子的主成分自身对照法。
①加校正因子的主成分自身对照法
按各品种项下的规定,精密称取杂质对照品和待测成分对照品各适量,配制测定杂质校正因子的溶液,进样,记录色谱图,按公式f=(As/Cs)/( Ar/Cr)计算杂质的校正因子。
此校正因子可直接载入各品种项下,用于校正杂质的实测峰面积。
测定杂质含量时,按各品种项下规定的杂质限度,将供试品溶液稀释成和规定中限度相当的溶液作为对照溶液,进样,调节仪器灵敏度,使对照溶液的主成分峰高达满量程的10%~25%。
然后取供试品溶液和对照溶液适量,分别进样,供试品溶液的记录时间除另外规定外,应为主成分色谱峰保留时间的2倍,测量供试品溶液色谱图上各杂质的峰面积,分别乘以相应的校正因子后与对照溶液主成分的峰面积比较,依法计算各杂质含量。
②不加校正因子的主成分自身对照法
当没有杂质对照品时,也可以采用不加校正因子的主成分自身对照法。
同上所述,配制对照溶液并调节仪器灵敏度后,取供试品溶液和对照溶液适量,分别进样,前者的记录时间除另有规定外,应为主成分色谱峰保留时间的2倍,测量供试品溶液色谱图上各杂质的峰面积,并与对照溶液主成分的峰面积比较,计算杂质含量。