化探数据处理
化探数据处理的一般性方法
化探数据处理的一般性方法一、分析质量:1.看技术报告中质量评述部分,看各项指标是否合格。
主要有:检出限、报出率、异常检查率、异检合格率、内检率、内检合格率、国家一级或二级标准物质的准确度和精密度等。
看是否符合标准(设计)。
这些数据由化验室提供。
这些一般不会超差的,否则化验室不能给出化验报告。
2.RE计算RE=abs(C1-C2)/(C1+C2)×200要求:小于3倍检出限时,RE≤85%,大于3倍检出限时,RE≤66%为合格。
总合格率一般要求大于70%。
需要说明的是:这种方法适用于简单对比,就是一个点取2个样时使用。
如果用三重套合分析,就不能用这种方法了。
所以写设计时,一定要用简单对比方法。
还有,这些年的化探中的RE还没有超标的,如果真的超标了,我也不知道怎样处理。
二、数据处理:1.剔除一级及二级标准样;2.剔除重复样;3.剔除0值及化验室输入错误的值,或小于检出限的值。
主要是指≤0.3这样数据的≤号;4.做原始数据图;5.计算异常下限,做单元素异常图,圈定单元素异常。
单点异常,只有外带的不圈,有中、内带的圈出。
外带用黄色,中带用浅红色,内带用深红色。
单元素异常编号为Au-1,Ag-1等。
需要指出的是,圈定异常时应该形成数据异常图,但交报告时,必须分开,就是形成一张数据图,再形成一张异常图;需要说明的是,如果面积较大(这个没有标准),总体说是水系面积超过一个5万图幅,就要分子区计算下限。
分子区的原则是不同年代、不同地质体都要划分成子区。
如果各个子区的异常下限接近,就采用总的,否则分别确定子区的异常下限,然后分别圈定子区的异常。
6.填单元素异常评序表。
异常点数、面积、平均值、极大值、标准离差、衬度、规模、浓度分带等。
评序有5参数和多参数两个评序,5参数不参与的参数有标准离差、浓度分带及异常点数。
需要说明的是,排序时,单项值高的给1,以下类推2、3等,一样的值给一样的排序。
不产生空的值。
浓度分带有内带的给1,中带的给2,外带的给3;7.做组合异常图,先把所有的元素做成1张组合异常图,只要外带,圈定组合异常。
地球化学化探数据处理与成图
(三)位置的相对性 无论是土壤测量还是水系沉积物测量所获得的异常, 往往与异常源都会发生不同程度的位移。这种位移与表生 介质本身的位移程度和采样的布局有关。特别是水系沉积 物异常的位移更为明显,可达几公里甚至更大的距离。因 此,查明异常与异常源的空间关系,就成为异常查证中的 首要任务。 (四)表生作用带来的复杂性 不同的景观条件下,表生地球化学作用会有很大的 差异,制约了元素在表生环境中的分散和富集。因此,只 有在同一景观内,异常才有较好的可对比性。地理景观不 同,表生地球化学作用也就不同,元素在地表迁移、分散、 富集的规律也就不同。在异常对比和解释上,除考虑引起 异常的原生因素(地质背景、矿床类型)以外,在一定程 度上必须注重异常所处的地理景观条件及表生地球化学环 境。一般来说,只有同一地理、地质景观区的区域化探异 常才有对比研究的基础。
2、化探数据处理解决的主要问题:
①研究采样和分析中的误差,优化采样布局
②抑制数据噪音,突出主体趋势
③揭示多种数据的内在联系,提取隐蔽的有用信息 ④显示数据空间分布模式,编制地球化学图件
⑤异常对比、分类、评序,等等。
3、化探数据处理中应该注意的问题: 1、地球化学数据通常蕴含多种有用信息并伴随某些 不规律的变化,同时在数据获取过程中还存在分析测定误 差,这些使化探数据的复杂性增加了,在化探数据处理中 要将这些不规律成分和分析误差除去。 2、找矿信息总是同地球化学异常相联系的。最普通 的化探数据处理是对一组化探数据计算出背景值和变化范 围(如用平均值和标准离差来衡量),据此确定出地球化 学异常的下限值。当地球化学背景随着地理位置出现趋势 变化时,要相应地采取适当的处理方法以便获得随地理位 置而变的背景值和异常下限。
化探讲座数据处理20120212
(4)在数据校正方法上,尽可能地选择线性校正,通过简
单的计算(jì suàn)可以复原数据。。
共八十页
二、常规(chángguī)数据预处理
▲ 元素分析系统误差校正校正步骤
(1) 按原始点位采用符号分级的方式生成元素的符号图或(累计频率)地球化
学初图。
(2) 确定具有明显的数据台阶区域,区域的确定原则是由区域->图幅->批次
低于检出限的数据取检出限的1/2, 如:<3.0=1.5
高于检出最高极限的数据取125%,如:>1000=1250
特异值(高出周边很多的但点异常值)
(1)实验室处理;(2)野外处理;(3)实际处理(背景(bèijǐng)剔除、统计及异常
保留);4、空白值(单空点——多点平均,区空保留)
共八十页
三、数据(shùjù)统计分析
▲根据各省及示范区确定的地理投影模型,对准备各类空间数据(数据表和图形
数据)转换为统一的坐标系统(xìtǒng),椭球参数建议采用西安80/IUUG 1975坐
标系(即长半轴:6378140米,短半轴:6356755.3041米)。
▲推荐软件系统(xìtǒng):GeoExpl,MapGIS . MapGIS .Geoipas1.64 等
--2012年院培训(péixùn)讲座
化探资料
综合整理常规方法技术
(zīliào)
湖北省地质(dìzhì)调查院
共八十页
讲课(jiǎng kè)内容
一、化探数据来源及特点
二、常规(chángguī)数据预处理
三、常规数据统计分析
四、地球化学背景及异常确定与评价表述
五、地球化学数据处理新方法
化探数据处理成图过程
化探数据处理成图的过程毕武1、2段新力1、2黄显义1、2袁小龙1、2彭仲秋1、2李永华1、21.乌鲁木齐金维图文信息科技有限公司,新疆,乌鲁木齐,8300912.新疆地矿局物化探大队计算中心,新疆,昌吉,8311000 前言GeoIPAS软件用户群不断扩大,由于各用户对系统的熟悉程度不同,对软件功能了解不够,有必要分专题将GeoIPAS处理数据及成图过程做一系统总结,下面就化探数据处理成图的过程做一总结。
1 处理步骤化探处理的成果包括:(1)参数统计表;(2)R型聚类分析-谱系图;(3)重复样三层套合方差分析或者重复样合格率计算结果;(4)点位数据图;(5)地球化学图;(6)直方图;(7)组合异常图;(8)综合异常图;(9)远景区划图;(10)单元素异常参数统计(附表册);(11)异常剖析(附图册);(12)综合异常登记卡(附表册)。
在GeoIPAS系统中,化探数据处理分为以下几个主要步骤:1.1 数据检查数值检查,坐标检查,重复样坐标检查。
1.2 分析处理重复样三层套合方差分析、重复样合格率计算、化探特征参数统计、化探背景值分析、R型聚类分析、因子分析。
1.3 数据分析数据变换;衬值、累加衬值;数据累加、累乘、比值;异常归一化。
1.4 网格化离散数据网格化、XYZ数据转网格数据1.5 成图点位数据图、彩色等量线图、直方图、组合异常图、单元素异常图、综合异常图、剖析图。
1.6 单元素异常参数统计1.7 综合异常登记卡图2 化探数据处理成图流程2 具体处理过程2.1 数据检查我们的数据处理工作从化验室提供的样品分析报告开始,项目要提供坐标和样品对应的分析数据,坐标我们一般取实际工作中的米单位,系统中默认东西向横坐标为X坐标,不加带号,南北向纵坐标为Y坐标,需要时还要提供样品对应的地质编码,我们拿到这个数据后首先进行数据检查,以确保数据中不出现写错、漏填、负数、0、>等字符,如果有这样的情况要找实验室给予纠正。
化探数据处理原理及方法
(二)单元划分基本类型
1.规则单元
网格单元 2.自然单元 (1)地质体单元 定性划分;
矿体往往位于地质体内,接触带和地质体外.
(2)地质异常单元 以网格单元为样品单元,样品单元大小根据预测尺度而定; 综合致矿信息定量标度的样品异常单元集合.
(三)地球化学数据分析
1. 单变量 (1)针对要解决的地学问题,分析多源信息来源、原理、 精度、准确度 、用途及意义。
(四)主要成矿元素的统计意义
(四) 图示分析
(直方图、点阵图、三角图、玫瑰图、曲线图、投影图等) 1、直方图(单元素含量-频数直方图) 2、散点图(只管展示元素间、介质间相互关系)
3、饼图(含量分布百分比)
4、研究统计分布特征 (1)正态分布(分布比较均匀或样本密度大) (2)对数正态分布(元素含量变化大或多因素叠加) (3)二项分布(不确定性大,地质体复杂极不均匀)
i 1
n
n 1
式中:i=1,2,…,n;为样本数;j=1,2,…,m为变量 数; xij 为原始观测值; Sj 为标准偏差; xj 为平均值; 处理后的xij值yij为无量纲数据。
二、多源地学信息分析与变换
4、极差化
y ij
( xij x j min ) ( x j max x j min )
(一)地球化学找矿分类
地球化学找矿——地球化学探矿,化探(Geochemical Prospecting) 1、方法分类
测量方式: 航空化探——放射性、气体
海洋化探——海水、海底沉积物、生植物、放射性、气体 地表化探——岩石、土壤、水系沉积物、水、生植物、气
地下(井中)化探——岩矿石、水、放射性、气体
(二)背景与异常的概念
化探数据处理与解释评价资料课件
CATALOGUE
目 录
• 化探数据处理概述 • 化探数据处理方法 • 化探数据解释 • 化探评价资料 • 化探数据处理与解释的实践案例 • 总结与展望
01
CATALOGUE
化探数据处理概述
化探数据的特点
多元性
化探数据通常包含多种元素或化 合物的浓度信息,呈现出多元性
数据质量挑战
原始化探数据可能存在 采集、传输、存储等方 面的误差,影响处理与 解释的准确性。需要采 取合适的质量控制措施
以提高数据可靠性。
多源性数据融合
在实际工作中,化探数 据通常需要与其他地质 、地球物理、地球化学 等多源性数据进行融合 解释。如何实现多源性 数据的有效融合与协同 解释是一个重要挑战。
便于后续解释评价
将处理后的数据用于后续 的地质解释和资源评价, 提高工作效率。
化探数据处理的基本流程
1. 数据收集与整理
收集原始化探数据,并进行必要的格式转换和 整理。
01
3. 特征提取与选择
利用统计方法、图像处理等手段提取 与地质目标相关的特征,并选择重要
特征。
03
5. 数据可视化与表达
将处理后的数据通过图表、图像等方式进行 可视化表达,便于后续解释评价。
指导找矿方向
数据解释可以揭示地质构造和成矿规律,从而指 导找矿工作的方向。
数据解释的方法
统计分析法
通过对化探数据进行统计分析,可以了解元素的分布特征、异常 形态等,进而推断地质背景和成矿可能性。
地质解释法
结合地质资料,对化探数据进行解释,从地质角度揭示成矿规律和 矿产分布。
地球化学模型法
利用地球化学模型对化探数据进行处理和解释,可以更深入地了解 元素迁移、富集规律。
化探数据处理步骤
所有数据均输入计算机、以MAPGIS 制图系统为平台,以原始数据筛选替换特高值后,转计算成对数值后,用 X +2S 求出异常下限,分别以X -2S 、X -0.5S 、X +0.5S 、X +2S 分出色区,绘制各元素地球化学图,以上做图过程均在计算机上用MAPGIS 软件完成。
对化验室的样品分析结果取对数分组作直方图,证明所有元素均符合对数正态分布。
元素异常参数的确定:首先对原始数据进行假设正态检验,再作X -
+3S 特高值逐步剔除,然后进行各参数统计。
Au 元素含量为W×10-9,其它元素含量为W×10-6。
(1)背景平均值:f
fxc X ∑∑= (2)对数标准离差:1)(22-∑-∑=
n n fxc fxL S (3)对数异常下限:T0=X -L+2S
(4)变异系数:%1001%2230285.2⨯-=⋅S e Cv
e -自然对数,2.30285为常用对数与自然对数模数的倒数
S -对数标准离差,1为常数
(5)衬度:To
Xa K =(Xa 为异常平均值) (6)异常规模:P=k×km 2(km 2为异常面积)
各类系数计算和所利用的公式均符合规范要求。
化探数据处理说明
化探数据处理说明平顺项⽬化探数据处理⽅法⼀、基本概念1、异常⾯积:⽤GeoCIPS 软件直接统计异常⾯积,计量单位为km 2。
2、异常强度:异常区内⼤于下限数据的算术平均值。
3、最⼤值:异常区内数据最⼤值。
4、异常下限:根据作图结果调整异常下限。
5、异常衬度:异常均值/异常下限。
6、⾯⾦属量:元素剩余含量(异常均值减去异常下限)与异常⾯积的乘积。
7、NAP 值:异常衬度×异常⾯积。
8、异常排序:各异常按NAP 值⼤⼩排序,⼤的在前。
9、⾦计量单位⽤×10-9(ppb ),其余元素⽤×10-6(ppm )。
⼆、单元素异常的圈定1、异常下限的确定表5-1 各元素异常下限⼀览表单位:Au 为ppb ,其它元素为ppm 。
逐步剔除法剔除⼤于+3S 的值、⼩于-3S 的值后求元素的平均值和标准差S ,选择+2S 定为计算下限,计算下限作为参考,根据表4-1分析结果对各分析指标的下限适当调整,对于有找矿可能的分析指标根据成图效果稍降低了下限,保留了较多的异常,对于找矿指⽰意义⼩的分析指标则提⾼了异常下限,仅保留了异常强度⾼的异常,将部分异常⾯积⼩、异常极⼤值/下限⼩、异常点数为1(少数为2)的异常删除,⼒求异常图可以直观的反x x x x映预查区的元素特征。
具体采⽤的异常下限及浓度分级见表5-1。
2、浓度分级预查区各分析指标尽量采⽤1、2、4分带。
由于预查区各分析指标整体含量低,仅Au、W采⽤了1、2、4分带,部分变异系数⼩和采⽤下限较⼤的分析指标,灵活调整了浓度分带。
三、综合异常的圈定与类别划分1、综合异常的圈定根据预查区内单元素异常分布及组合特征,以主要成矿元素的异常为主,把在空间上分布基本⼀致,相互重合的多个单元素异常圈定为⼀个综合异常。
共圈定以Ag、As、Au、Bi、Cu、Hg、Mo、Pb、Sb、Sn、W、Zn为主要异常元素的综合异常7个。
按所处地质环境、找矿意义和已有资料现阶段的认识⽔平,将各综合异常按下列标准进⾏分类,其中⼄2类异常1个,⼄3类异常4个,丁类异常2个。
化探数据处理方法
内蒙古扎赉特旗东芒合矿和哈拉街吐矿化探数据处理及图件编制方法1 化探数据质量评价的数据处理(分矿区)⑴统计重采样和重分析抽查样所占样品总数的比例比例 = (重采样和重分析抽查样数/工作样总数)100%⑵作出SSPS数据文件将重采样和重分析样分别作成SSPS数据文件。
文件中列出项目为:①重采抽查样重采样号元素含量相应的工作样号元素含量②重分析抽查样重分析样号元素含量相应的工作样号元素含量⑶计算各元素相对误差重采样和重分析抽查样相对误差均按RE(%) = |C1-C2|/0.5×(C1+C2)×100%计算。
C1为重采样或重分析抽查样的分析含量C2为重采样或重分析抽查样的相应的工作样的分析含量| |为绝对值RE(%)≤30%为合格,>30为超差(不合格);(Au:RE(%)≤50%为合格,>50为超差)⑷计算各元素的合格率η= (抽查样品中合格的样品数/抽查样品的总数)100%合格率(η)应>80%,即这批样品的分析结果是可信的。
⑸列表表示检查或分析质量结果表××化探重采样抽查各元素的合格率(%)Cu Pb Zn Cr Ni Co Sn V Ag Ti2 矿区地球化学特征研究的数据处理(以哈拉街吐为例)⑴作出SSPS数据文件作出下列SSPS数据文件:①文件1:整个矿区数据文件;②文件2:矿区地层数据文件;③文件3:矿区岩浆岩数据文件;④文件4 :下二叠统大石寨组(P1d)数据文件;⑤文件5 :下白垩统大磨拐河含煤组(K1d)数据文件;⑥文件6 :华力西晚期侵入岩数据文件;⑦文件7 :燕山期早期侵入岩数据文件;⑧文件8 :燕山期晚期侵入岩数据文件;⑨文件9:已知矿附近一定范围数据文件每一数据文件的内容项目包括:序号野外号 X坐标 Y坐标各元素的含量⑵整个矿区和各地质单元(各地层、各岩浆岩)样品各元素含量特征统计统计的参数包括:①元素含量平均值;②最大值;③最小值;④标准离差;⑤变化系数(标准离差/含量平均值);⑥浓度克拉克值(元素含量平均值/该元素的克拉克值)整个矿区和各地质单元统计结果含量平均值、最小值、最大值用表表示。
化探数据处理及图件编制
化探数据处理及图件编制第二节分析方法及质量评述一、分析方法本次扫面和异常查证的全部样品均交由四川省地矿局华阳地矿检测中心测试,根据任务书要求共分析测试元素14种。
样品从加工到测试到质量监控均按中华人民共和国地质矿产行业标准DZ0130-1994《地质矿产实验室测试质量管理规范》、ISSN-1870《1?5万区域地质调查及地球化学样品分析方法及质量管理指导性规程》和2002年新疆地勘局试验管理科《1?5万化探样品分析质量过程管理规则报告》进行。
14种元素的分析方法见表3,3。
二、技术要求1、报出率十四种元素的总报出率应大于95%。
2、外检样对已测试样品,测试单位按照3%的比率进行外检。
3、分析质量检查及质量监控方案为了有重点地监控元素的分析质量,实验室在送样单位确定的分析元素中,要再选择若干种主要监控元素并根据这些元素在本省制备的全部GRS二级标样中选择四个在元素含量范围及基体组成均为合适的GRD二级标样作为本图幅质量检查监控之用。
主要监控元素和二级标样的选择均应和送样单位协商进行。
每一大批样品测定完毕后,应将数据交给质量管理人员,对每一小批中插入的四个二级标样及四个重复分析(内部检查)样进行统计计算,并及时绘制日常质量监控图,在日常金的分析工作中,必须进行不小于10%的内检抽查。
为满足在一个较大范围的成矿远景区带内的1?5万图幅的拼接,应对分析的准确度进行检查和考核,为此实验室应在每一个1?5万普查化探项目完成后,分析8个GSD一级标样一次,痕金分析也应用金标样作准确度检查。
准确度和精密度计算结果应符合表3,2的要求。
4、微量金由于金元素在自然界中的均匀度和赋存状态对分析检测影响比较大,为确保金元素的分析质量,化验室特采用两种监控措施:第一,在每一分析批次的50个样品中插入两个国家?级标准物质GBW系列,用以计算实测值与推荐值之间的对数偏差:ΔlgC,lgC,lgC; 定值实测值第二,该地区样品分析结果结束或阶段性结束后,再对高、低异常点进行随机抽样检查约20%.5、?级标样为严格监控各元素的分析质量,实验室选取了四个不同含量的GRD系列监控样,每批次50个样品密码插入一组,与样品同时分析。
化探数据处理全解
7.53 7.07 15.48 11.65 11.56 6.54 8.98 6.37
基于 EDA 技术 中位数 上异点
1.63
5.39
1.64
5.41
2.87
13.72
2.39
8.29
2.28
8.03
1.43
4.91
1.22
5.22
1.3
4.59
背景和异常的关系
正异常
负异常
背景值: C0 x
异常下限:
化探数据处理
地调局方法 EDA方法
目前常用的化探数据处理方法
➢ 将地球化学背景看成平面: ①基于元素含量的统计模型,如,(对数)正态分布; ②将数据转换为对数,去掉特高和特低含量后进行统计; ③按数据服从多重分形分布出发,探索异常下限划分; ④基于EDA技术,求上异点作为异常下限的方法。
➢ 将背景面看成连续曲面: ①以构造单元划分子区,分别确定背景和异常下限; ②用各种多元统计方法进行“背景校正”, ③采用各种数据滤波技术去提取地球化学背景与异常, 如,低通滤波方法等; “子区中位数衬值滤波法”
➢生成MAPGIS软件能够接受的grd文件 ➢在空间分析子系统中产生等值线,并保存 为点、线、面文件格式 ➢通过坐标转换与相应的地形地质图相套合 ➢原始数据转换为带点位坐标的属性数据, 通过属性表注释等功能生成实际材料图
➢ 将背景面看成不连续曲面:
铂族元素含量的高值区基本上与峨眉山玄武岩分布区相吻合, 如图所示, PGE地球化学背景并不是一个连续的曲面。
新街 大岩子
铂族元素地球化 学背景面为不完 全连续的曲面
衬 值 滤 波 法 示 意 图
FC=Cm/ FAC0-衬值
Cm-中位数 A0-EDA方 法上异点值
化探数据处理原理及方法[精制材料]
行业相关
8
一、勘查地球化学分类、数据来源及特征
通常的元素分类及意义
(1) 主量元素和微量元素:主量元素(一般在体系中的丰度u/B>0.1%)和
微量元素(一般在体系中的丰度u/<0.1%)。
(2) 造岩元素。是构成岩石圈的主量元素,造岩碱性元素和造岩酸性元
素。
造岩碱性元素: 包括Li、Na、K、Rb、Cs、Be(两性)、Mg、Ca、Sr、Ba。
2
一Байду номын сангаас勘查地球化学分类、数据来源及特征
(一)地球化学找矿分类
地球化学找矿——地球化学探矿,化探(Geochemical Prospecting)
1、方法分类 测量方式: 航空化探——放射性、气体 海洋化探——海水、海底沉积物、生植物、放射性、气体 地表化探——岩石、土壤、水系沉积物、水、生植物、气 地下(井中)化探——岩矿石、水、放射性、气体
行业相关
14
二、常规数据预处理
中国地质大学硕士研究生 “勘查地球化学”课程授 课
勘查地球化学数据常规处理及其意义
行业相关
1
主要内容
一、勘查地球化学分类、数据来源及特征 二、常规数据预处理 三、数据统计分析 四、地球化学背景与异常的分解 五、地球化学异常组合及其作用 六、地球化学数据处理新方法及其用途 七、地球化学异常评价
行业相关
(6) 金属成矿元素:这类元素的亲硫性或亲铁性较强,矿床中主要以硫化
物、硫盐或自然金属形式存在。根据其经济价值,又可以分为贵金属和
重(贱)金属。
贵金属元素:包括Ru、Rh、Pd、(Ag)、Os、Ir、Pt、Au、(Hg). 以金属态
产出,在基性和超基性岩中富集行。业相关
化探数据处理与编图流程
地球化学数据处理与图件编制方法流程一、指导思想成矿地质背景地球化学研究就是从地球化学特征出发,借助已建立的地球化学信息提取技术,充分利用地球化学调查所获得的海量数据信息,提取有关反应成矿地质背景条件的地球化学信息,并编制相应地球化学图及相应的推断解释图件,为资源潜力评价有关成矿地质背景的研究提供地球化学支撑。
二、工作内容(一)基础图件成矿地质背景条件的地球化学信息提取首先是要编制有关基础地球化学图件。
主要有:1. 39种元素(化合物)地球化学图2. 地球化学组合异常图3. 地球化学综合异常图(二)解释推断图件地球化学解释推断图件,内容包括:1. 地球化学推断解译地质图2. 地球化学找矿预测图三、工作方法(一)数据校正处理由于区域地球化学数据受地理景观、采样介质、分析手段的影响,不可避免的产生明显的系统误差,尤其是涉及到区域性的化探数据,这种误差更为突出。
因此,在各省进行数据处理与专题地球化学图编制之前,有必要分别对各元素进行系统误差的处理,以便能更好地反映地质现象和矿产信息。
误差处理主要针对图幅间(包括分析批次)明显的系统分析误差(必须处理)和地质景观环境差异影响解释的效果(根据解释的需要确定)。
1. 系统误差特征及处理原则(1)分析误差源,所展示的数据误差与周边数据值具有明显的台阶状。
(2)数据误差在空间上具有区域性特点,区域、图幅或分析批次。
(3)在数据值的分布上,掩盖了地球化学特征和地质特征展布的延续性和规律性。
(4)在数据处理方法上,尽可能地选择线性校正,通过简单的计算可以复原数据。
2. 系统误差处理步骤(1)按原始点位采用符号分级的方式生成元素的符号图,分级方法采用累计频率方式。
(2)通过校正图示窗浏览原始数据全图,确定具有明显的数据台阶区域,区域的确定原则是由区域->图幅->批次;采用图形编辑工具,在图上直接圈定要处理的区域(用面的方式表示)。
(3)确定局部图幅和分析批次范围产生的系统误差,校正单元由系统提供的工具直接在显示窗中勾绘,确定完所有需要校正单元,各校正单元的ID需设定为唯一。
浅谈化探数据处理的过程与方法
计
众 披
标 E差
方 差
● ●度
求 和 别 之 前 ,必 须 选 择 合 理 的 方 法 嘣 数 量 大 ( 1) 校 正采样 和分析 测试带来 的系 ●k ( 小 1) 收到 分析数 据后 ,对数 据进 行 10 0 %的 统 误 差 ;b背 景 场 不 是 光 滑 的 . 圈 2 校 对 ,确 保 准确 无 误后 ,将 全部 样 品 分析 平 面 ,而 是有 起伏 变 化 曲面 , 图 l 数 据与对 应 的样品 编号 、横 坐标 、纵坐 标 、 甚 至是 有 一 定厚 度 的 带状 曲 所 属地质 单元 连接起 来 ,然后 运用 MA C S 面 ;c 能够 正确 划分 背景 与 P. I . 在 等软件 进行数据处 理 。 异 常之前 ,往 往需要采 用一 定 J2 正 态 性 检 验 . 的 手 段 把 背 景 的 起 伏 变 化 扣 在 进行 数 据 处理 前 ,首 先 要 对数 据 进 除 ,把背景场转 化成平 面的 或 行分 布 形式 检 验 ,数 据 是否 服 从 正态 分 布 具 有 明 确 的 地 质 意 义 ;d用 于 . ( 或对 教正 态分 布)是 化探 数据 处理 的一个 圈定异常 的剩余值 必须 已经消 重 要前提 条件 。通 常我们 用偏 度 Rl和峰度 除 了系统误 差和 背景 差异 :e . P . 2两个指标 来加 以检验 ,应用 E cl xe 表格 即 要 绝对避 免把背 景总体 和异常 可 完 成 ,具 体操 作 步骤 如 下 :打 开 数 据 电 总体的差 异缩小 的做 法 ,任 何 子 表格 一工具 一数 据分 析 一描述 统计 一确 正确 的方法 都必须把 这种差 异 图 3 三 角吾 分 网和 追 踪 的 等值 线 图 j 定 ,这 时 会 弹 出 图 l 示 对 话 框 。 所 扩 大化 ;f拼图 和背 景 与异 常 表 I地球化学图着色标 准 在 输 入 区 域 中 选 择 要 分 析 的 元 素 。 注 划 分 不 是 纯 数 学 的 ,应 从 化 探 色区着色 ( 匿名) 元素含量范匡 ‘ 譬| u,) 意 已 列 表 格 的 分 组 方 式 是 逐 列 还 是 逐 行 , 找 矿 的 实 际 出 发 设 计 相 应 的 方 然后 选定 输 出区域 ,平 均数 置 信 度一 般 默 法 ,处 理 结 果 必 须 便 于 地 质 解 萱 ( 值 区) 氍 <X _ s 2 浅 蓝 ( 背景 区 ) 氍 X一 签 一 X 吨 器 认 为 9 % 击确定 即可获得相 关统计 参数 , 释 ;g尽量 利用 多变 量化探 资 5 单 . 建黄 ( 背景 区 , 0. S 加 L S S— S 如 图 2 。 料消除各 种不确定 性 。 浚 红 ( 背景 区 ) 商 X + . S— X +S o5 2 注 意 :一般 认 为 微量 元 素在 地 质 体 当 依 据 区域 内地 质 及 地 球 深红 ( 高值区) >X + s 2 中是 服从 对 数 正态 分 布 的 ,所 以在 检 验 之 化学特征 ,对于岩 性分 布比较 前 应将 原 始分 析 数 据转 换 为 对数 ,方法 是 复杂的地 区 ,元素 的背景是 变 各 首 先 选 定 数 据 单 元 格 ( 设 为 BI ,然 后 在 化 的 ,若 全 区用 统 一 的异 常 下 限来 圈 定 异 行投 影转 换 后 ,其点 具 有 高程 属 性 ( 元 假 ) 素的 含量值 ) 。在追 踪部 分等 值线 时 ,首 先 公式 栏 中输 入 = O 0 B ) L G] ( I,确 定 即 可 。计 常 显然 是 不合 理 的 ,这时 要 对全 区划 分成 从 点 位 图 中 提 取 某 一 高 程 属性 ,生 成 TN 文 I 算完 成后 ,当 I | 、I2≤】时 ,该元 素 多 个地 球 化学 子 区 ,分别 统 计 各子 区 元 素 Rl≤1 R 1 含 量 的 概 率 分 布 型 式 服 从 正 态 分 布 , 当 地球 化学 特 征值 ,并 确定 背景 值 ( o c)、标 件 ,快 速生 成 三 角剖 分 网 ,再 进 行等 值线 P; S主 I l l I2≥ l时 ,元 素 含 量 的 概 率 分 布 准离 差( 和异 常下 限 ( ),背 景值 最后 选 追 踪 。具 体 步 骤 如 下 : 打 开 MA (I 菜 单 Rl≤ 、 R 1 T 空 间 分 析 一 ' 分 析 ~文 件 一打 开 数 据 文 U/ M 型式 为近 似 服从 正 态分 布 。如 果某 一 元 素 用逐步剔 除离群值 《D 范 围外 的数据1 c ±3 后 选 检 验 后 不 服 从 正 态 分 布或 对 数 正 态 分 布 . 的算 术 平 均 值 ,异 常 下 限 采 用 背 景 值 加 件 一点数 据 文件 ( 择 已投 影转 换 具 有属 性 的点 文件) 一处理 点线 一点数 据高程 点提 说 明 该元 素 在该 地 区 中可 能 存 在不 同期 次 16 .5~3倍 标 准 离 差 ( c+f.5~3s) o 16 )o TN模 型 一快 速生 成三 的地 质作 用 ,使 元 素重 新 分 配 , 因而使 元 计 算 ,并 结 合 区域 地 球化 学 变 化趋 势 和 规 取 一选择 某一 元素 - I 角 剖分 网 一追 踪 部分 等 值 线 。在 追踪 部 分 素 分 布 型 式 发 生改 变 ,产 生 了局 部 富 集 。 律 ,分 别 确 定不 同地 球化 学 子 区 的异 常 下 等 值线 时 ,关 键 的是 等 值 线参 数 的 设置 , 限。 这对矿床 形成是极 为有利 的。 主要 项 目有 等 值 层 值 和 等 值 线 光 滑处 理 。 13 元素的相 关性 f R型 聚类 分析) 22 异常 的圈定和地 球化学 图的形成 . 等 值 层设 置 是 确定 等 值 线 的起 始 值 、终止 为 了解 地 区 内成 矿元 素 与 其 他元 素 的 为 更好 的反 映元 素 含 量 的分 布 特 征 和 关系 ,通 常 对数 据进 行 R型 聚类 分析 ,得 变化 特 征 ,常 常 对化 探 数 据做 各 种 原 始和 值 和 步长 值 。化 探 单 元 素等 量 线之 问 的差 出元 素之 间 的相 关 矩 阵 , 以矩 阵 中 的相关 推断 的图件 ,如 元素 异常 图 、地球 化学 图 、 值 是不 相 等 值 。所 以 步长 值 的确 定 一般 以 系数来 衡 量各 元 素 的相 关 性 。求 元 素 的相 解 释 推 断图 等 ,为后 期地 质 找 矿 工作 提 供 能 反映 等 量线 值 的 最小 值 ,对此 可根 据实 际 情况 采 样 删除 一 层 或添 加 一层 命 令来 完 关 矩阵 可 由 E E XC L表格 来 完成 ,具 体操 作 充 分 的 依 据 。 方 法 是 :选 择 工 具 栏 一工 具 一数 据 分 析 , 各元素 化学 异 常图 的绘 制 可在 M G S 成 。等 值线 光 滑 处 理采 用 中精 度 处理 ,这 AP I 样 经 追 踪部 分 的 等值 线 才 能满 足 化探 数 据 在 其 选项 当 中选 择 相 关 系 数 ,点 击 确 定 , 空 间 分析 模 块 中 ,运 用 T N模 型 追 踪 部 分 I 然后再输 入区域 内选择要 分析数据 即可 。 等 值线 来 完 成 。应 用 TN模 型 不 必 将 原始 处 理 精 度要 求 。 三角 剖 分 同和 追踪 的 等值 I 线 图见图 3 。 2 异常 的圈定与地球 化学 图的形成 的化 探 离散 数 据 进行 网格 化处 理 ,而 是直 制作 地 球 化学 图时 ,等 含 量线 的 间 隔 21 背 景 值 和 异 常 的 划 分 与 确 定 . 接对 非 网格 化 或 网格 化 数据 进 行 等 值线 追 般 采 用 0 I g ( g ), .l / o g ( 下转 9 2页) 化探 背 景 与异 常 划分 涉 及 系统 误 差 和 踪或 分 析 。对 含 有分 析 数据 的采 样点 位 进
第十三章 化探中常用的数据处理
线 显然是毫无实际意义的 因此要问 什么情况下配得
回归直线才有意义呢?也就是所配的回归直线在多大程
度上反映X和Y之间的真实联系呢?为此 必须给出一个
定量指标来描述X和Y间线性关系的密切程度
Q应很小
因此有
上式中 第一个因子仅反映Y的离散程度 不反 映X与Y的线性关系的密切程度
r的绝对线性关系
二. 判别分析法
判别函数的建立
已知两类事物 分别用A、B表示 包含的样品个数分 别为n1, n2 任一样品都有P个特征
用Xki(A)表示A类事物中第i个样品的第k个特征(i=1,
2,…n1; k=1, 2,…p)
问题:对于一个新的样品X 要根据它的P个特征 X1, X2,…, Xp, 决定它归属于A或B的哪一类 每一
分析
化探工作中
需解决
确定几个特定变量之间是否存在相关关系 若存在则要
求得到他们之间合适的数学表达式
根据一个或几个变量 预测或控制另一个变量(指标)的
取值 并且要知道这种预测或控制可达到的精度
从影响某一个量的许多变量中 找出哪些变量的影响是
显著的 哪些是不显著的
1.1 一元线性回归
特点: 一元 & 线性
研究两个元素之间含量的相关关系
例:建立环境中Pt与As含量的关系式
假定两logω(Pt)和logω(As)之间存在 Y=a+bX 的关系式
如何求a、b?
Q最小时 回归直线最好 何时Q最小?
对前述列子 有
相关系数
从上面的计算可以看出 对任何一组观测点(Xi, Yi)
(i=1,2,3…n) 均可按所述方法配一条直线 如果观测的
化探数据处理方法与步骤
化探数据处理⽅法与步骤
⼀、化探数据计算
1、⾸先从⽹上下载Surfer软件
2、将Excel数据转换为CSV(逗号分隔)格式
3、⽤surfer软件将数据打开
4、选中单元素数据,⽤统计功能计算出数据平均值及标准偏差(弹出选项⽤默认即可)
5、采⽤统计出的平均值与标准偏差计算背景值与异常下限:
①⾸先剔除异常⾼值与异常低值,使数据服从正态分布
⽅法:剔除⼤于或者⼩于“平均值±3*标准偏差”的数据,⽤迭代法反复剔除
如:Cu,第⼀次统计结果平均值为27.51,标准偏差36.57
剔除⼤于137.22的数据以后;再次统计得出平均值26.09;标准偏差9.536;同理,再次对数据进⾏剔除,直到不再出现⼤于或者⼩于“平均值±3*标准偏差”的数,最终得出:Cu 平均值24.81;标准偏差6.392。
②此时的平均值即为背景值(取整为25),可⽤“平均值+ 2*标准偏差”作为异常下限。
⼆、作图
作图采⽤原始数据(未剔除异常⾼值与异常低值数据)
⽤Mapgis空间分析,DTM分析
1、⾸先对离散数据⽹格化
X/Y对应经纬度公⾥⽹值,Z对应单元素异常值
⽹络参数设置对应盟铺马幅左下和右上坐标,如图设置其它设置如图,确定保存即可
2、平⾯等值线绘制
①菜单栏中选择平⾯等值线绘制,如图
②选择刚才保存的CU.GRD⽂件(⽹格化⽂件)
等值线值从最⼩值形始设置,⼀般设5-6阶,要单独把背景值,异常下限值标⽰出来,如Cu:背景值25,异常下限37,其它设置如图所⽰,不同元素⽤不同颜⾊表⽰,保存即可。
.
采⽤误差校正,使异常图与5万图幅套合即可,作图例等修饰。